ELF>F@ @8 @@?@?@@@uuppp0(((888$$Ptd   QtdRtdppp GNU&QxU\$h vm _^ =  T Hvh6_}EX@l d] !ndo+ &J  /} = PD?o5'1m UC  d  H.XRt! , ,n  \ ;}F"K1   o __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyDict_NewPyExc_TypeErrorPyErr_FormatPyExc_SystemErrorPyErr_SetStringPyDict_SizePyUnicode_FromStringPyUnicode_InternFromStringPyUnicode_FromFormatPyList_NewPyObject_GetAttr_Py_DeallocPyLong_AsLongPyErr_OccurredPyExc_OverflowErrorPyLong_TypePyExc_DeprecationWarningPyErr_WarnFormatPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyObject_GetAttrStringPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyThreadState_GetPyInterpreterState_GetIDPyExc_ImportErrorPyModule_NewObjectPyModule_GetDictPyMethod_NewPyTuple_GetSlicePyTuple_GetItemPyMem_MallocPyDict_NextPyMem_FreePyErr_NoMemorystrrchrPyImport_AddModulePyDict_GetItemWithErrorPyType_FromMetaclass_PyObject_GC_NewPyObject_GC_TrackPyExc_ValueErrorPyObject_RichCompareBoolmemmovePyMem_ReallocmemcmpPyObject_HashPyBaseObject_TypePyErr_GivenExceptionMatchesPyCFunction_TypePyObject_VectorcallDictPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_Call_PyThreadState_UncheckedGetPyCode_NewEmptyPyException_SetTracebackPyFrame_NewPyTraceBack_HerePyExc_RuntimeWarningPyErr_WarnExPyImport_ImportModuleLevelObjectPyException_GetTracebackPyErr_SetObjectPyObject_GetBufferPyBuffer_ReleasePyObject_ClearWeakRefsPyObject_GC_DelPyErr_PrintExPyErr_WriteUnraisable_Py_FalseStruct_Py_TrueStructPyModule_GetNamePyUnicode_ConcatPyImport_GetModulePyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyExc_NameError_PyDict_GetItem_KnownHashPyExc_RuntimeErrorPyObject_SetAttrStringPy_VersionPyOS_snprintfPyUnicode_FromStringAndSizePyDict_TypePyUnicode_DecodePyLong_FromLongPyType_TypePyTuple_PackPyImport_GetModuleDictPyObject_SetAttrPyDict_GetItemStringPySlice_NewPyType_ReadyPyImport_ImportModulePyObject_IsTruePyDict_SetItemPyExc_ModuleNotFoundErrorPyCapsule_TypePyCapsule_GetPointerPyExc_ExceptionPyObject_CallObjectPyGC_DisablePyGC_EnablePyMethod_TypePyObject_IsInstancePyObject_VectorcallPyUnicode_TypePyArg_ValidateKeywordArgumentsPyObject_VectorcallMethodPyObject_RichComparePyFloat_TypePyFloat_AsDoublePyExc_IndexErrorPyObject_SetItemPyList_TypePyTuple_TypePyLong_FromSsize_tPyObject_GetItemPyNumber_IndexPyLong_AsSsize_tPyNumber_AddPyFloat_FromDoublePyBool_TypePyNumber_InPlaceOrPyNumber_InvertPyInit__toolsPyModuleDef_Initlibc.so.6GLIBC_2.2.5 ui  pppx0pFг@}} C x}0@~P~`:p~~P{0д`|0{h}`zi u0@H|P`x~p{`e`yza@yеy@\BB z |0`B@{PO`yp{`Ky}X}жH}~(| ~0p~@|P"`p~8}h~~{з B@t A0~@`~P~`p8|||z}и } 0@|P|`(|p~X~~x}йs~(}~ A0`A@nP~`ip|p{z}~к~{Cy |0@z@ yP`C`~px|}~`}лPP~~|} ~@h`t(z8 xHXhxy0Xss t 8@tH`hpp`+q5q>pKp(W0pPdXpxpqzqtt P(`@H@qP@hppstIU8PwpX0q<R" # c(Q8'@HX4`thx@8=    %- .(0018D@EHGPIXJ`VhWpXx^acegjkprtȿvп{ؿ~ (08@HP X`hpx !"#$&' (()0*8+@,H/P2X3`4h5p6x789:;<=>?@ABCEFHKLMNO P(Q0R8S@THUPYXZ`[h\p]x_`bdfhilmnoqsuwxyz|} (08@HPX`hpHH5HtH5%@%h%h%h%h%h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %~h%~h%~h%~h %~h!%~h"%~h#%~h$%~h%%~h&%~h'p%~h(`%~h)P%~h*@%~h+0%~h, %z~h-%r~h.%j~h/%b~h0%Z~h1%R~h2%J~h3%B~h4%:~h5%2~h6%*~h7p%"~h8`%~h9P%~h:@% ~h;0%~h< %}h=%}h>%}h?%}h@%}hA%}hB%}hC%}hD%}hE%}hF%}hGp%}hH`%}hIP%}hJ@%}hK0%}hL %z}hM%r}hN%j}hO%b}hP%Z}hQ%R}hR%J}hS%B}hT%:}hU%2}hV%*}hWp%"}hX`%}hYP%}hZ@% }h[0%}h\ %|h]%|h^%|h_%|h`%|ha%|hb%|hc%|hd%|he%|hf%|hgp%|hh`%|hiP%|hj@%|hk0SHHPHT$0HL$8Ht$(LD$@LL$H:HT$`HL$ D$HT$HL$HtBLPLL$H׹1҃/w ΃LHHLA0tA0MHH9uHP[AWIAVI E1AUIfAATMUSHH8HT$ HHHL$ЃLL$(HHT$D$HOHT$LL$(H1H9}IttHtHHHLIHuE1E1E1LAIHtCt?1E1%D$IHH;IHL$1LIHHI E1HL$HAHV5XHATSt$ t$(t$HPPAUPPAWH`IHt ǀL+L+HExHHEuHSH8L[]A\A]A^A_AVIAUIHATUSDHt@H;vHuE1tHLLAHEx2HHEu)HHvAH80tE1[D]A\A]A^AVAUIATE1UQHxHIHyHu H~y#H9tHuH5E1H8L%MtA$A$H5LIHu1H"HIxHIuLHtHIHAH HLHxfAH LLH\xCAH LLH9x E1H LLHy Hn)IZL]A\A]A^QHGu HH5ݫ1Ht$H;W tHH5HsH81[ZAWIAVAUATUSHHL..H|$LHtLhLE1HH2H=QIHtAtA$L'H$Ht&H<$HIHuCHtDLx(E1Lm(HEHHEH,tLAGH|$LHLIHtH<$HHbIHt1tAM9t=Iy$HcSLL^dMQHIuLI?HI3L&HL[]A\A]A^A_ATUHH(ʂ( CHIflՃfl -IL(5@HIL2)H H) $H=HD$0)D$)t$ H~H (nHgIL&flH LHTH=HD$0( q()D$ f fs)L$)$dHHHރILH HH=L,,(( HD$ fPf )D$) $HH!( (IL'fl IfmLHH ؀HYH=z)$(HD$0f)L$)D$ yH+HHILH HH=L.H$7H~H`(%( IL0(fm%fm L(-(=ofm-'H8)d$H LH})T$0H=(),$f~( ց(OHD$pf f؁)\$ )L$@)|$P)D$`nH0~HHXILH ~HH=LvH$HsHD$HHD$HHD$HHD$ HHD$(H}HtHExHHEuH1HExHHEuHHĈ]A\AWIAVIAUIATUHSLAQH=/|ZHTfInfHnIǀflH@(H@p@Ht EtEAWIl$ AD$@tAAEMt$PID$XID$8Ml$`tAEHttAGWI\$hID$xA$%IDŽ$A$t6tKuQHf5ID$0w=t#=u5H4ID$0[H&ID$0MH.4ID$0?ID$04HlH5H8I$xHI$uLE1LZL[]A\A]A^A_AVIHAUIATUDSHIHH@u HulLLH5H81sML$(ID$ Mt ILLIL9v#H!lILLH5H81,u3H9s.RL1IPMHȤ11?Y^y LE1N![L]A\A]A^AWAVAUATIUSHH|$5HFLD$HHt{=+x HcH;\b119~!)LcIB;\ |~H߉HcH;\ ~9~&HHH;XuL A$A$L}`HE`Mt%MwAtAMo(MtAEt AEE1E1LL]1IC MuL14 L, L$ xMtM9o(t LLH}`L}`MtIxHIuLLL*H*xH1LHHt X(H LHH[]A\A]A^A_AWAVAUATUSHL5~Mt)1I9WHiH5ƪH89tH=}HwH!tH=<HttHbwHH=uHttHAwHH)wH=Z}H5nH_iH0HH u1HvHuhoHl$(RHHHHA L RHPHP1zH 1H1H=HxvH1H=tQHbvHHzH\~hfHnHL%flvH;HtdC t/@te2sHc$t1IsHcHtKHEHHt:HH1H#{HHH{Hu1L-A1>HzHt3IHE11AL-HL1H=1{tNH=tttLDH=,H={HtAHzHx/HHu'# HuH@gH5H81H=zH5f1HH'HH5p1HyHExHHEuHH=yH1H5jH(tH=suHH$HwH5xH=yH5H0HtH=,uZHhyHX HyH5]H8H=>xZH!H=tZH yHH=tpZHxHH-qeHHHHsHH=xHHHsHH-:eH5[x1IHHFHsHoH5/xHH1H~sHFH5x1HcsH#H1HLsH=H7oHrHPHHuH=o*ÅH=HHPAHHHH5u&HqH!HExHHEuHH=HHA HHH5cH~qHAH HH?H52HUqHA0HHH5bH,qH]AHHH5Ж1HqH,AHHǖH5HpHAHHH5nHpHAHH|H5=HpHAHHEH5 mH_pHhAHHH5ەHqdHtH5;hH=@H9LH5}H8rH1[]fHtHL $HT$L $Ht$H`)fDHL $HT$oL $Ht$H#HCH 6}H5J}HHKH81pfHL $HT$L $Ht$HHCH |H=|@HGXHttDSHGHHxHtHCXHt t[fDHqKtff.HGHHttDSHGHH8@HCHHt t[ff.HwPH1H=)|ff.HGHHtfDHtHx HHt f.ff.ATSHLMtA$tA$HL[A\DHHHtYHHtL`A$LtA$HW HtHxHHu&LDL%Ioff.ATUHHGHGHvNHHH)HHtbHCHcAH9t5HubHtXAH)‹GHHcAH9u3HD]A\GWHH HHcAH9tDH IH5bAH8fGWHH HcAH9uHD]A\DH@`HtUHHtIHHt?H@H;Hu_HAHEBHHE4H'HH5HH5yAH8"HPtOHHHѾH~H81@lHEHHEHyHGH5 H81YUHGHHuNHH}HtHHEx HHtHEH]H@@fuHUHH9B0uHt]ATIUHSHHpHt HՅH{ Ht LՅH{@Ht LՅH{XHt LՅuH{`Ht LՅumH{8Ht LՅu[HHt LՅuFHHt LՅu1HHt LՅuH{x1Ht[LH]A\D[]A\ff.HLOH?t%HupHHu6IAH6HfHt{HH>HHDHEIIH vH5vH81K1H@HytH vH{EIH5vH81DH HwHysHt VfDtHAWAVIAUATIUHSHhLG0MtHwHhHL[]A\A]A^A_HVLIHL1)IHmLLHHLIIEx HIEtOHhL[]A\A]A^A_DL~HvHu;HhLH1[]A\A]A^A_Af.E1LpfDHBHD$HtJ<8LD$H8IH4MLD$tWIF I9IGHL1HHAoDADHH9uLHAt ITITH|$LD$LD$HHD$KD1AL|$ HHD$HL$PLHD$XH|$HLl$0IHl$8IHIHD$HLD$(EHD$PHPH#tHL$XtH|$JDHD$J ILLHLuL|$ LD$(ILl$0Hl$8HHL$LLHAIH\$Hx HHH\$H~nLd$1DHH9tWIM.tAEH"HH[]A\A]A^ff.LGPAtALff.fAWAVAUATIUHSHH(LwHL$LD$IHEHIL$(IMl$8HL$IGIHHL9puL@M;D$uDX AT$ Dމ@@@8uA >Hx8 M\$8@LIuHD$I)IL8H([]A\A]A^A_DH9Ml$(M|$8HH9HHL;puL@M;D$uDX AT$ Dމ@@@8uA Hx8 M\$8@LI%uH;HT$LH5{uH813H(1[]A\A]A^A_L\$@MDHx(H8A@HDHx(H8A@HDSIH@MMD6ff.LVIIM1fHI9tM9Duf.1fDITHBtv@tmL9tIXHt,HqH~S1HH9t?H;TufDLDHH9xHuH;:ffDHI9k1HG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;5.:f1D飼tt@HHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDH9H5\kH8:1HHDHH9tHuH;5x9tfDH9HNH5rHWH81蘿1@LGH?t HA`HtH>HHA`@HH8IH jH5iH8121Hff.H?IIHHWtLWHw8HBLL@Ht#LIHw8HHBLLHH8HH iH5CiH81蚾1HHLOH?tHu`HHu'IA1HHtsHu~H>HDH7IIH LhH5XhH811H@HytH hHK7IH5hH81DH iHywAUIIIATI?UHSHHDHwMItCH9HF8HDHHH1L[L]A\A]@H9H=87H9LXMI[H~&1@ILH9"H9HH9un MHH1L[L]A\A]=DH9H=6H9LXMI[H~&1@ILH9H9HH9uHL%zCHH=zo1LHI胺MHL[]A\A]@HE0HDHH9t4HuH 5H9t#HHH9tHuH9FfDHMA1HYE1 uLeH=nf1LIϹMLqIHHF4H5nH8 HHH9t4HuH 4H9t#HHH9tHuH9fDHMAM)HYE1 uLeH=n裵uL;E1HMA@HMAuHLH1[]A\A]1H3LGHWtMtIx HIt1HL贵1Hff.fHt+tLGXHwXMtIx HIt1fH5Q3HLT1Hff.fHH;53tKHtFHF tQtLHMtIx HIt1HfD1@LشfDHy2H5lH8jATIUHHLHMtIx HItHMtI$x HI$tAHtHEx HHEt H]A\fHH]A\AL8fDL(fDHHtOHFtBtLGPHwPMtIx HIt 1HDLгfDHq1H5kH8bHHHtOHFtBtLGHHwHMtIx HIt 1HDLPfDH0H5kH8HUHSHH0H9tHHucHH91H5kH8ղtHHHtHx HHt 1H[]諲fHF uH<0H5kH8-fDUHSHHH0H9tHHucHH0H5kH8%tHHHtHx HHt 1H[]fHFuH/H5jH8}fDHHtOHF tjtLG@Hw@MtIx HIt 1HDLpfDH/H5kH8HH.H5 kH8ڱAUIATIUSH艴HtdH5}<LALHH9IHEx HHEtHL[]A\A]fDH踰HL[]A\A]f.HE1[L]A\A]ff.@AWIAVIAUIATUSHH_`HG`HLcA$tA$HHL$&HL$HHt tEA$tA$tIEhM&IH)L(HI$x HI$tDHtHEx HHEt=MtIEx HIEt6H1[]A\A]A^A_DL蘯fDH舯fDLxfDHGhHHHL(H{AUATUHHH@u~@tz1[IHtR1HH6IIEx HIEtyMt+IL$@tvLHI$x HI$t9]A\A]H]A\A]ˮHA,]H5hA\A]H8-D]LA\A]kL`zH,HH5OhH81蝲uATSHLMtA$tA$HL[A\DHHHtYHHtHPHtLg A$Lt?A$HxHHu覭LDL%y+A$ofHWD_@GDHtWH H1LH9t)HRLIHL\L [L \L \L N\L I\H [H [H [\H [H ,\H W[}EH 7[H[HDcEH [H[HDIEH [H\HD/H #[#H .[H 8[ H [H ZH $[H ZH ZH @[H ;[GDE1qAWAVAUATUHSHHWL:ILrMDJXH81XZUH=>q1Hh[]A\A]A^A_HtHT$ HEN$LL$@O,!I1LT$ IUL\LHuUDHPHHtCL;uIL)LЋ t HHI9uM J| H\$ @HD$8HI9CLLHL$8LL-LT$LL$L\$襺L\$LL$LT$t"LHH,H5=H81~H|$ HHHHyfDI9HtH\$ L% H=GIT$Lj|HH^tEHEH5) HHHmIHEMcxHHEA$tA$H-vH=HUH{IHtAEL5 H=IVL{HHtEHEH5HHHIMiHExHHEHI9EHt$HLH\$HMHLt$PHD$@HIx HIIx HIhE1HfHnfIn1H=flHt$@H)D$@{I$HI$HUxHHU#I$xHI$$HHA1HMEDHxHHuHHD$wHD$yH=IH=1I$x"HI$UxHI$6MtIExHIEHtHEx HHEtH=o:1-HvLvLvjHvHHD$vHD$LHD$vHD$HD$8II ‹tHHfvHUjkxLHH4fLHD$#vHD$&zILvLuLuI$HHH (H58AVL k&AHR(H81zY^yLLHL$8LL,(LT$LL$L\$FLT$LL$L\$ }wL%HHP@ zIbHLL$vuIEE1LL$LHu<DtHIL)HD HCHHM9H0HLL$zLL$HuLL$*wLL$HtuMEM}AtAAtAIExHIE'fInfHnHt$@LflºLD$Lt$P)D$@غLD$HIHILtM9;HD$(Ld$0H\$(HD$0Lt$81LHHLL$|wIEH|$0LLL$HtfDH98tHBHHuHD$8HH9GuWLL&LLLL$観LL$w*HL$0fDLLD$3sLD$LL%LLLL$߯LL$ ff.@AWHAVIAUATUSHH$HHH$H-H$HpH$HGxHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$HNHiIH>HRHAJcHHVtH$HVtH$HVtH$HtH$ID$N,L$O<*#Lt$I1ML$fDIMLLHuKHPHH7L; uITL)L؋ t HHH9uLt$L$MjH$HD$H)L$IYJnIFIt@HĠRIFMt(HĠ:IItJ$L$A$tA$AtA]oHHHtHEHL=ssIHoH5HHLAH$sL $HIx HIHEHxHHEH5HIHtAIx HIHx HHAtAH-H=HUH7rIH|tAHbI9HD$L;-L;-.LL$trL$WjHt$I$tHuI9G?fL$L\$HDŽ$HDŽ$L$L$$qL$L\$HHM MH$1HH 1HMtH L$HM tH H H$HM(tLHLT$(L$L\$ LL$3qHLL$L\$ H$LT$(tHx HHIx HIIx HIHExHHEIx HIH<$I$xHI$L%mH=IT$L pHH`tEHEH5xHHH]IMHExHHEHjI9ALH$HLL$ HDŽ$L$]LL$ HD$LHExHHEH|$CIx HInH|$H5HGHHJHHH-5H=HUHnIH#tAL޺HL\$ glL\$ HIHx HH7Ix HI L;L$L; wu L; Ix HIUH|$H5PHGHH(IMH<$H5#LL$ HGHHLL$ IMLLϺLT$(LL$ mkLL$ LT$(HIIx%HIuLL\$(LT$ jL\$(LT$ IxHIuLL\$ jL\$ L;\$AL;QD L;n LL\$mL\$AIx HIEH-?H=HUHlHHtHCH5$HHHHHHx HH,H<$H5HGHHHHL%H=IT$L?lIHftAHE1IH9EfInfHnۿLT$ flLL$HL$(HDŽ$)$kkLL$LT$ HI HHL$(HPtH LLHLL$(L$LT$ L\$kLL$(L\$LT$ IMtIx HI,Hx HH{Ix HIIx HIHExHHEMyHH9$HH9\$I9IE.IEHrH)AEHHcAH9AHD$H5=H9pHjD$0f(f.- HDŽ$(HDŽ$ HDŽ$HDŽ$HDŽ$HDŽ$H9$HH5SHDŽ$0fHnH$hHfl$XH2H(HJH@Ht$@HL$HHD$H9\$H\fH5$fHnHH$fl$H2HJHt$xH0H@HL$(Ht$ HD$I9+HfH5$fHnHH$fl$H0H@HHD$hH$H\$XHZH@ Ht$PH\$`HHD$8$E"L$8L$(H$E1E11Dt$8L$HD$pHD$p$1J<K*H$Hc9H9T$hMH9\$PH9\$ AHHH;D$HD$(H$4HcIHE1H9AAHhH;L$hAcHL$HLD$@LBX;$AE1HHeHD$eHH5g(H81icLp`HH@`MInEtEMn(Mt AEtAEH$t"HH9$H$cH$(t"HTH9$hH$(cH$t"H'H9$H$lcMt M9n( H{`Ls`HtHx HHHtHExHHEMtIExHIEH=W'A$tA$IHII$MLfDHDŽ$ HmI9ALLLLH$ L\$LL$4LL$L\$Ot"LHHH5%H81gH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HH H=:&E12HL[]A\A]A^A_DIIIzIH]H ^HMHAVH}LDHeL H5$H81eXZIHH8AL AVH H'H8H5i$1e_AX1MA_Lt$L$$MtIx HIMtIx HIMtIx HIHtHExHHEDH=$MtIx HIE1HtHx HHH<$tH4$Hx HHHt$HtHx HHH$HtHx HHH$HtHx HHBH$HtHx HH+H$HHHH_HgL`$LH$ ITI ËtHHD$E1LvAtAL&L$A$tA$L$MH|$qH$HHHL$$tHD$H$FH$HpHt$$tHD$H$HH\$D$tHD$H$Ih^\^1^y^HNHL$D$tHD$H$LnAEtAEL$HD$HH\$D$tHD$H$IH]L] H]']]I$ HI$ MLH]H]H}]!s]8LL\$LT$\]L\$LT$(LL\$@]L\$*L.]6H!]DE1LM]\L]LLL$ /`LL$ 8Lt$L$$11AdE1E1{LLL$ \LL$ HLL$(\LL$(L\$ L\EAjHx HHt1HLL$ 1L\$LT$C\LT$L\$LL$ LLLLH$ L\$LL$ؘL\$LL$L[WHLL$[LL$,LLL$[LL$LLL$ L\$[LL$ L\$L[LLT$[IE1LT$HLt$LMM<tLIH)HIEIHiL9H0Lp`Hu]HtB1E1E1E1E1A^E1E1E1A^HEx HHEt 11rHLL$11L\$L$ZL$L\$LL$EHZHLL$rZLL$gL$$1E1E1Ab Lt$1E1E1L$$A^E1HLL$(LT$ ZLL$(L\$ LT$%LZ\HIHu11E1MA_M1Aa1E1uI_MOtAtAIx HIkffInLL$ $fHnflL$L\$HDŽ$L$)$[L$L\$HLL$ H\ H$1Ad11E1E1E1A_[LIHlH@]IMILt$L9bHDŽ$H$MH$HDŽ$L$ 1HHL\IH$LHtfH98tHBHHuHDŽ$ HcH9Gx L LLL<t5H$ fMaIiA$tA$EtEIx HI< fInfInĺHflH$)$!HD$I$HI$LZWLt$L$$11E1E1E1AbLt$L$$1E1E1E1Ad[HHD$ YHL\$ HIILVtHL$ADL(MII?c`d$0f(HHH)HH HLXHcAH9oHs HH5Z H8VXHIA@E1E1E1E1A^Ht$H$L$AH趵H$H$H4$H$(L$AHmH$`H$XTLt$L$$11E1AgZIH-EtEH.H$HHHDŽ$H$萛IHExHHEM$ LLL$聥LL$Ix HILt$L$$11AeE1E1E1@RYLL$ IELt$L$$11E1E1AgH$L$LAHroH$H$E11HL\$ LT$SL\$ LT$dLL\$SL\$aLShHSqMHSUHaIHn Lt$L$$1E1E1Aj"H-EtEHXH$HHHDŽ$H$™IHExHHE MLLL$賣LL$Ix HILt$L$$11AhE1E1E1rLt$L$$11AgE1E1THDŽ$7HDŽ$hSHDŽ$oLL\$ LT$VRL\$ LT$L&E1E1AjVH-LLL$ L\$L$ RL$L\$LL$ l1LAgHH=ZHSH~THHtHGH5H|$pHHH|$pHHHx HHH5H<$QH@H<$HHHD$pPLL$pIx HIHx HHjt$8\$8LD$@1H|$HL$(CIHL)HHD$8MK4H|$pH9T$8HH9LD$I9~qL9}lH9~mLD$pAHHA)IIAf/H9 H;D$AI9HH9tH|$@LD$HH;D$uADTx HIt%HTHHGHO:LOH;D$H9xvHA_Et |$0?HH|$`9$HLL$XLl$x9$H$t"HH9$H$NH$(t"H[H9$hH$(NH$H*H9$JH$oNpf.LNMLLMLt$L$$E1E1E1Aj_qSHLNLLLTfDLhNLMLeAtAA$tA$HExHHEL1A8PLIHE1AjHLL$MLL$FTPH8LLt$L$$1AlE1E1E1bMHMLMAEAUHH HcAH9*fAEAUHH HHcAH9lH5 L;LLt$L$$1AkE1E1E1H5H|$fDH5H<$fD1AjDt$81H9D$Dt$8H9\$ H;T$HD$(MHIcD=H;T$Dt$8H9\$ ~cH;T$jHD$(MHIcD=hHx+H9H;T$MDEHHH?1H;D$H@`HHHLHHH@H;u:HAHEHHEHmKIHPttHHѾHH813PtHEHHEH KMHHH5H8KHH5H81'O@MHHDŽ$HJE1H9L$AZHLL$ LALT$hJLT$LL$ 1HDŽ$HDŽ$hLt$L$$11E1E1AhHHLL$ILL$LI NH|$pHCIVKH苼HHLt$L$$11E1E1AeEHH~LjIFHL1fAWAVAUATUSHHG:HIHH;H51HHHH HELd$H$H9H=0H9LXMMHM~.1@ItH9H9HI9u+H@8HDHHt$1HHIHExhHHEu^H.HTHLHtI}`IE`HJHCHPHH5- E1H818LHL[]A\A]A^A_fDHuVtTE1 H^uLmH=EFu*LLITJM3IIHE1fH9HE0fDHt$1ɺHJI@HwHHH$LL$HD$0HtHx HHH$HDŽ$Hx HHYHDŽ$Ix HIMH|$0hHx HHGH|$0H5)HGHHIMZID$H;H; HPpHHzHT$1;HT$HI(HLRHD$8IEHIEL9HH )HAHMEIHL UH)HDH5sH81=XZ8H AH@hH-H@H 1LHD$8H|$8i!I$xHI$YH51LR9H$IHtAEH=1LL$HHDŽ$t_H$IH;Hx HH<H5/HL$HDŽ$H9J;HAH; :L|$HALD=L$H|$LLLL$v*H$LL$U:Hx HH:HDŽ$Ix HI:H=fQIH9H5HHD$A^LL$HH$I9Ix HI5:H5-HL$H9P9HAH;D-L|$HALD=H$H|$L),Ix HI9H$Hx HH7-H=HDŽ$hIHe,H5-H]]H$IH,I$xHI$,H$H5E1H9wt+HL$fInI4H)D$H$HH?)$H xpLH$\H$Hx HHS+L$HDŽ$M -HL$Hx HH&-HDŽ$L|$H=>IH$IH-HH)H$Aă8,Hx HH#HDŽ$EH=^HDŽ$՝IH=,HD$+LL$HI+Ht$D$tHD$ID$AEtAEHL$ Ml$ D$tHD$ LL$ID$(*LL$HI3Ht$8ƒ3IwtHD$8MʺIIG H~I9A;3H$LT$PHT$HL\$HDŽ$H$L$*L\$HT$HHH$LT$PH2H5mHptLI4LLT$L$*H$H$ZI$LT$HDŽ$xHI$3Ix HI3H$Hx HH2HDŽ$Ix HI2L$Ld$PM2HD$E1E1HDŽ$ fHHL AUH H$ITI ‹tH HD$H5PHt$HD$tHD$HH$HD$*&E &&RH|$H$t)HDŽ$HDŽ$HDŽ$H5ģHt$HʉL$tHL$HH$HL$%PH%L%I|$^ ID$H0Ht$8D$:3LL$B%LL$L0%H#%H%E1H\$0AE11HD$@E1E1H$HD$E1E1E1HD$HD$HD$ HD$(HD$8HtHx HHcMtI$xHI$MtIx HIH$HtHx HHHtHx HHH$HtHx HHMtIx HIMtIx HIDH=|LT$HE1运HLT$HtHExHHEHtHx HHHt$8HtHx HHH\$@HtHx HHMtIExHIEHt$(HtHx HHCHL$ HtHx HH<H\$HtHx HH5Ht$HtHx HH.MtIx HI,MtIx HI*HL$HtHx HHHD$0HxH\$0HHH$HtHx HHtPH$HtHx HHt:H$HCH8HH+!!!!HLT$8!LT$8HLT$(!LT$(HLT$ !LT$ HLT$l!LT$LLT$U!LT$LC!H6!H)!L\$`LD$pHT$XLT$PLL$H!L\$`LD$pHT$XLT$PLL$HaLL\$`LD$pHT$XLT$PLL$H L\$`LD$pHT$XLT$PLL$H=LL\$pLD$XHT$PLT$H L\$pLD$XHT$PLT$H!L\$pLD$XHT$PLT$H[ L\$pLD$XHT$PLT$HHL\$XLD$PLT$H+ L\$XLD$PLT$HL\$XLD$PLT$H L\$XLD$PLT$HLL\$PLT$HL\$PLT$HLLT$HLT$HHLT$HLT$HHLT$HLT$HHLT$H|LT$HHLT$8eLT$8!LLT$8NLT$8%L<H$HD$(%{LRL THt$ D$LLLHH$LT$L\$[LT$L\$XLLLL$fIE1LL$HHl$LLM9@tLHL)HIIEH9HEH0L#Hu HtI|$It$LL$pH\$0E1E11HD$@E1E11HD$E1AHD$HD$HD$ HD$(HD$8(H\$0E1E11HD$@E1E1H$HD$E1E11HD$E1AHD$HD$ HD$(HD$8kH\$0E1E11HD$@E1E11HD$E1E1AHD$HD$HD$ HD$(HD$8HL$ULHEH$LMtAtAHUx HAAHUHLL$#H$LL$1IH HLHD$8IEHD$@E1E1H$HD$1E1E1HD$E1E1AHD$HD$ HD$(HD$8B I*HPAE1E1HH5H81E1E11HD$E1E1H$HDŽ$HD$HD$HD$ HD$(NH$E1E11E1E1HD$E1E1AHD$HD$HD$ HD$(HD$E1E1H$HD$1E1E1E1E1E1AHD$HD$ HD$(HD$@E1E1H$HD$1E1E1HD$E1E1AHD$HD$ HD$(FIHl$L9H$H$HDŽ$HDŽ$L$1HHLEkIH$LHtf.H;8tHBHHuHDŽ$HH9G L LLLlYtH$fHD$H&L΋IH1'HD$E1E1H$HD$E1E1HT$HHD$E1E1AHD$ HD$(HPhHHz}H5I9uNIUHDAEAI)LIIGH;5H; HPpH HzHT$ LHT$HHD$ zIHLRHD$(I$nHI$`H|$ QfDHD$@E1E1H$HD$1E1E1HD$E1E1AHD$HD$ HD$(Hl$EH$E1E1OHD$E1E1H$HD$1E1E1HD$E1E1AHD$ HD$(9HT$IIEH$IUt t IMH$xHIM_ ILHoeLLXH$E1E11HDŽ$E1WJLIH(IfDH$E1E11E1E1HD$E1E1AHD$HD$&LHD$4L4H=HDŽ$dHD$H$HAH5HOHHD$H$H$Hx HH8Ht$H HDŽ$HIH9N!Ht$H$LH$I4H$h[H$H$GI$HDŽ$xHI$gH$HD$H"HƋD$PtLd$1LH=ʤHHDŽ$L$LILGH$Hx HHE"HDŽ$ME1E11E1HD$AHD$HD$HL莆HD$ H!H$E11E1LD$HE1E1E1HD$AHD$HD$HD$E1E1H$1E1E1E1HD$E1AHD$HD$ HD$1E1H$E1E1E1AHD$HD$HD$ <E1A6~LD$IH\$0E1E11HD$@E111HD$E1E1E1HD$AHD$HD$ HD$(HD$8E1E11E1HD$E1AHD$HD$H;Ht$ HL\$~L\$HD$ HD$@E1E1H$HD$1E1E1HD$E1AHD$HD$ HD$(HD$8HHH)HHHHt$ H|$8L\$H\H@`L\$HD$ M{McAtAA$tA$Ix HIfInǺLLD$ )$qWH$IHILLgHD$ H$HE1E11E1HD$E1E1AHD$HD$HD$E1E11HD$E1E1AHD$HD$ HPhHHzH5I9qIQH>AAAI)LIHD$0H@H;hH;# LxpMA I6 LLL$LL$HHD$Ld$H|$0LL$HLAWLL$HHD$I$HI$H|$LL$HLH=ՃH$IHH5 HAH$IHgH$Hx HHH$H E1HDŽ$H9OUHfInH?D$I4H)H )$TLIMAH$Hx HHHDŽ$MAtAH=Z1LL$HHDŽ$LH$@Ix HIL$ME1E11E1HD$AfDL` hHt$8FVHH Ht$8FVHH HL" H$E1E11E1E1E1E1HD$AM H$E1E11E1E1E1E1HD$AE1E11E1HD$E1AHD$5H$E1E11AE1E1E1HD$HD$LLLL IL H$LL$gL H$HD$sEWH$E1E11E1E1E1AHD$HD$HD$H$E1E11E1E1E1AHD$HD$LxHxAtAtHt$H$Hx HHfInǺLD$)$QIIHIL E1E11E1HD$E1ArH|$ UH L|$jH$E1E11AE1E1E1HD$E1HD$HPhHmHBH`MlLLHD$(MIWLH9,ItHt$(ƒtCMIWLH9IWH ‹HL$(ƒt |HD$(H$}0 HHIGH; tIH;^IWJ"SIIWJ"xH=L~H$E1H$IHI  IH Ht$D$tHD$ICAEtAEHL$ Mk D$tHD$ L\$IC(! L\$HI HL$8ƒ IOtHD$8E1IIG H$HH9GfInfInHt$XflLL$PL\$HDŽ$)$ L\$LL$PHH$Ht$XHHؘHPtH$LLL\$PLL$L$ LL$H$L:L\$PIx HIIx HIH$Hx HHrH$HDŽ$Hx HHL$HDŽ$L|$PMzH=HDŽ$|H$IH$HǸH5cHI9rH$I4H$H$^MH$H$9H$HDŽ$Hx HHL$HDŽ$ML;T$HAL; DL;)Ls AąL$Ix HIHDŽ$EvH5XH8IH3H5HHD$HHDŽ$8LT$HHHD$ LT$XHDŽ$LT$XHD$HH@hL L;%ct M?H@HuHD$XE1HD$p[L5LxhMy IGHl M2 LL$H|$0LLL$HD$LL諻HD$(LHD$ He HLIHD$(I$WHI$IE1E11AHDŽ$HD$.HD$E1AMAH$E1E11AE1E1E1HD$A$tA$It$Ht$XD$ptLLT$`LT$`HD$pAL$tAfInLT$xd$PHDŽ$)d$`)$LT$xHH$HHaHPtHD$H=`LLT$PHH$)H$H$d6H$LT$PHDŽ$Hx HHH$HDŽ$HD$PHt]Ix HIMH|$XLT$HHDŽ$5L5H|$p5L|$PLT$H4H$HD$PH|$PLT$x5H$HDŽ$5H$HDŽ${5HD$HHDŽ$H5Hx`jLT$xH=LT$P'oH|$HH$H$H$uQLT$P)AtAfot$`1LLT$PH=H)$LT$PIL4MLT$PIx HIH$LT$PM4H$HDŽ$o4H$HDŽ$V4HD$HHL$pLHt$XHDŽ$Hxh_LLT$PA HD$HHL$pLLT$PHt$XE1Hxh,LLT$PE1E1H$1E1ALLT$PLT$P#ALLT$HLT$H|LT$P[EIE1E11AHD$IRH$IzttIH$x HIt1(LLH$1H$E1E11HD$E1E1AE1E1H|$PMAE11E1E1HD$-xLOHWAtAtHH$x HHt{1AH$HD$PrLkL rH$E11E1E1HD$E1A2HD$8IG#L\$PALL$LL$L\$P11LgHWA$tA$tHH$x6HHtH$1GTJH$1)1HH$E1E11HD$E1E1AgH$E1E11E1E1E1AHD$:H$MAE1E11E1HD$E1E1 H;#{t_H|$IHH$E1E11E1E1E1AHD$TLGHD$ff.@z L|$HJL=z>H$E11E1E1E1E1AHD$NAE1E11E1HD$E1E1E1&H$E1E11HD$E1E1AH$E1E11E1E1E1AHD$E1E11E1HD$AHHE1E11E1HD$ALHH[HD$H|$IHHHH HT$HLHT$HIHBdH$E1E11E1E1E1AHD$HD$HD$E1E1H$1E1E1E1HD$E1AHD$HD$(HxHT$H8wHT$YHT$ HT$HBIHLL$H|$0LL$HxmIIGILLL$TLL$HHD$L|$H|$0LL$HLLL$HHD$IHI@H,xLL$H8LL$ LL$XIGLL$f.HֹHH)HHHEeAUII H;PxH;[wHwH0YHD$E1E11HD$E1E1H$HD$AE1E1HD$ HD$(LEIEeAEII IH$E1E11AE1E1E1HD$HD$HD$WIEL` HvH5LLH81/E1E11AHDŽ$XH$E1E11E1E1E1AHD$HD$LMHL$0L;aJtHt$D$LMHt$0L;f[HFJ HL$D$LL$rLL$HHHD$0H@H;Avt"IH;Lu)HL$0LLaDIHt$0LLfjHֹHH)HHhHDEaAQII H;u H;tLLLL$LL$HI#HLL$IIBHI5LLL$#H|$0LLL$胭LL$HD$LHtLL$H0PLL$mIALL$HAE1L`HtH5LE1H81LL$HE1E1HD$1E1H$HD$HD$LLLL$ LL$INEaAAII I7E1E11E1HD$ALXMOMgAtAA$tA$Ix HIt91eH$E1E11E1E1E1AHD$LLL$WLL$1H>H$LA;H$E1E11E1E1E1AHD$VZH$HD$PH|$PMMA)IQH$MQtAtAIx HIt 1ALLT${LT$1AeHD$8IG+H$E1E11HD$E1AL,LT$LLT$LT$LT$LT$LE1E1HVH$LftA$tA$HL$Hx HHt 1H1H AHD$81L\$X@L\$HD$ H$E1E11E1E1E1AHD$zLgHWA$tA$tHH$x9HHtH$1fL H$1E1H;HD$E1E1H$1E1E1E1HD$E1AHD$HD$ H$E1E11E1E1E1AHD$HD$E1E11E1HD$E1E1AsLE1E11E1HD$E1AxH頹LD$ 騼L|$HLE1E11E1HD$A H$E1E11E1E1E1AHD$AxH;ntfH|$LL$LL$HH$I@E1E11E1HD$ALrLHD$ff.@z L|$HL=hnL|$HLL$LL$E1E11E1HD$E1E1AE1E11E1HD$ALAH4E1E11E1HD$ALL$LL$ff.AWH}AVAUATUHSHHH$HPHDŽ$HDŽ$H$HDŽ$HLIIMHHHHHH ҡHNHL ELNL@HHlUHH5"H81pXZH$HtHx HHH=E1[HHL[]A\A]A^A_HVtH$HtH$ID$L4L$O|5uHl$IL1L$M@IM\LHuHPHHt{L;uIH)LЋ t HHI9uHl$L$ML$H(HHHtHA@HDŽ$HkI9CJLLtLHH$LT$L\$-L\$LT$t"LHkH.H5H81H$HHHH HHLvAtAL>L$AAL$tAL%,|H=%xIT$LHHHLtEHiH9EfH$HHHDŽ$L$I2HI$xHI$HL%jL9H;i_H;iRH*ŅHx HHdRIGH5zLHH HHH5{H9H-iH9kH9n aHSH;VHKHFH9@H@t HDS DN DD8A  &H{8A %Hv8ȃ%'DA9]HtHCHx HHAtAH={1L$HLL$HDŽ$3HIx HIHqIx HIHEH5zHHHHHHCL=hhL9H;pg;HPpHnHzHT$^1^IH$HT$HD$HHRLL$HD$ Ix HI H|$  Hx HHHEH5&zHHH! HHHCL9H;fLxpMIHPHD$HHAWLL$IIx HIi"MHx HHHt$ LHHuIx HIaL9H;!fH;?fHD$(Hx HHJt$( L%xH=sIT$LHH!tHCH5"uHHHf!IHM&!x HHHELT$HH5vHH["LT$HH!L%XtH=rLT$IT$LLT$HIs!tAHdAE1HI9B!ffHnۿLT$)$fInflLD$LL$HT$0)$(LL$LD$HLT$ItH fuHT$0HHtH vL$H5nsIL$ tH$LKt=LLL$0LD$LT$yLL$0LT$HD$LD$MtIx HIHx HHIx HII$xHI$vIx HIyH|$zL%uH=@qIT$LcHH tHCH5rHHH)"IM$Hx HH0HELD$HH5stHHo$LD$IM#L%rH=pLL$LD$IT$LLD$LL$HHo#tHMbAE1HI9@"ffInLD$0)$fInflLT$LL$HT$8)$LL$LT$HLD$0I["H sHT$8HHtH utH$H5qIL$ tH$LKt=LLT$8LL$0LD$!LT$8LD$HD$LL$0MtIx HIfIx HIiHx HHI$xHI$Ix HIBH|$L%osH=nIT$L IHtAIALL$LH5rpHHb LL$HIH/ x HIHEH5 rHHHIMH=oLL$WLL$HI H`E1IH9CffInLT$8)$fInflLD$0LL$HT$@)$LL$LD$0HLT$8IH pHT$@HHtH ?rL$H5nIL$ tH$LItHLLT$@LL$8LD$0LD$0LL$8HD$LT$@MtIx HIVIx HI1"Ix HI4"I$xHI$+"Hx HH$"H|$H=6q!VHHe$H5oHIH!Hx HH!H5qHLL$0LL$0HHQ!H=mULL$0HI4!H^E1II9Ai'fInfHnLL$8flLD$0Ht$@HDŽ$)$LD$0LL$8HI3!H nHt$@HHtLLLLLT$8LL$0LD$@L$LD$@ILHLL$0LT$8x HH Ix HI Ix HI Ix HI Mt A$tA$H=xocTHH&H5nHXIH%Hx HH"fInfIn1LH=mflH)$LHIx HI%Ha%Hx HH%L-\L9l$%L9l$$L9l$$M9!H\I9FLD$8f(f.%g!HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$(HDŽ$ L9l$#HwoH5`HDŽ$fHnH$fl$HHD$`L9l$fH-oH5_$fHnH$fl$HHD$XL9l$ fHnH5_$fHnH$(fl$HHD$PM9#HnfH5<_$(fHnHH$hfl$XH2L=lH=ghHt$hH0H@IWHt$pLHD$HID$ HHD$@hIHn"tAIFH5lLHH&IIM&x HI&\$@HH\$x!IH$H HH&wHD$0HfInfHnfl@HpYI9G=%HD$0fHDŽ$)$H$MIH$1IHPjIQtHYHkH5^hH$IQ tH$LH LLL$L$[HL$L$ItHx HHp#Ht$0Hx HHt#Ix HI#Ix HI#MM9L$@I~!H|$P|H$HD$@E1DJDP1 D9H9t$XIH$H;t$`/H9D$pH9T$HvgL$IH$( Af/vA9H;L$XH$LYH΋H;L$`LH9T$HwD$(T$(HWH5eH81MMHX`HD$(H@`HqL{AtALk(Mt AEtAEH$t"Hw[H9$H$H$(t"HJ[H9$hH$(H$t"H[H9$[H$bH$t"HZH9$(?H$5Ht L9k(4HD$(Hx`HX`HtHx HHMtIx HIMtIExHIEH=5=MtIx HIA$MA$fDL-UL9u"L9uuuH>IHL9L; }U M9 LLL$LL$AIx HI E EH5eH9H9kH9n„ LKL;NHSHFH9H„tHuwDS N DЉ8uYA uH{8 THv8Ѓr^9u!IIHH5dH9H9kH9n‰ЄHSH;VHKHFH9@H@t HDK N Dȉ@@8A %H{8 ,Hv8ȃjDA9QH1H@Hx HH H-fEtEHcH$HHHDŽ$H$HHExHHEH7H%Hx HHHD$E111HD$ABE1HD$HD$ DHHRAL vUH FHH8H51_AXfH$II ‹tH_L>AWAL$L5veAtAAL$6DL5JeAtAL$L HD$E1E11HD$A?HD$HD$ IMLIMtIx HIMtIx HIMtIExHIEDH=E1x@H|$ tHt$ Hx HH[Ht$HtHx HHH|$HtHx HHHL$HtHx HHMtI$xHI$HExHHEH$HtHx HHH$HHHHmH`HS%I9HMPM`AtAA$tA$Ix HIME1LtLLLyLQHiLL$LD$L74LD$LL$HHmIE1LAKHD$HD$XIE1L1HD$AKHD$0HD$E1E11HD$ABHD$HD$ LD$IIIE11HD$1AKHD$HV(H8@HEHS(H{8A@HEzHt$AH$L$<H;+ AH$AE1kHt$AH$L$<H:AH$AXHt$AH$L$<H:AH$AoANL$8f( IE11AOHLL$0`LL$0`LLT$0ILT$0L7L*HE11E1E1MIMLAOE1HLT$8LL$0 LLT$8LL$0ʾLT$8LL$0LLL$0设LL$0L蜾IxHIMIHIE1HHx HHMIx HIE1mE1E1HIHIVH99HXHH~1H;DHH9HHHn;H5?uMHRE1H81IEHIEL聽HDŽ$"HDŽ$h>HHH9HuH;S;ygH:H5lME1H8ĽlLwHIAQE111H5HL(IE1E11AOH袼eHoHHHWE1Hq*LdH1Hy%ME1LIUL讵IH+tAIGH5@LHHIMIx HIH0I9BfHnfLT$HDŽ$fl)$跴LT$HIE1IH?IWtLLLL\$L$L$LLT$%L\$LT$IMtIx HI6Ix HIIx HIMHx HHIEH5ALHH;IMH5BL9IAH;s/?IAHHHuIx HIL%yBA$tA$H@H$LHHDŽ$H$wII$xHI$ MtLqIx HI!HD$AHD$HD$XH.I9C/LHL$XLLLEcLT$L\$L\$LT$t"LH-H cH5rH81hH|$`HtHx HHH|$hHtHx HHH|$pHtHx HHH|$xHtHx HHtmH$HtHx HHtISH=tvE1HL[]A\A]A^A_fDIH~JcH)"h@HD$E1LvAtALt$pHnEtEHHl$hH\$`HMQH|$MIH ,HL$ D$tHD$ H$IHD$E1E1nE1HNHL$D$tHD$HD$x2Lf A$tA$L$HHD$E1E11)IHL ^AAUH R`Hu+H`H5pH81 XZHD$XII ‹tHMH`H _HNL u\H^LNHLAU|H-a>EtELt$pHl$hMIH5+Ht$ D$tHD$ HD$pIHD$xHD$H#H*H\$ D$tHD$ L$HD$xHD$MH5*Ht$ D$tHD$ H$IH5t*Ht$ D$tHD$ HD$xHD$H G*HL$ D$tHD$ HD$pIH\$`E1E1HD$H-0=EtEHl$hKLLT$LT$ HXpHH{蓩IHHHD$HLSLT$IIx HI:MjIx HI Ht$LϺLL$LL$HIIx HI HU%I9HD$ L;=%L;=!%LkÅVIx HI H;-$ H3H=j2HSH莩IHNtAH1$I9GH$LHHDŽ$H$)MHIx HIHHExHHEH-I6H=1HUHIH1tAIBLT$LH55HH?LT$IMIx HIH?#I9G@H$LHHDŽ$H$L4IHExHHEMiL;T$ @L;#@? L;7#2 LLT$|LT$Ix HI'z HL$ D$tIx HIH"D$t H5"HHLt$ H-4HHUH=!0HIIH tAIGH55LHH2IIMx HIIELL$LH55HHuLL$IMAHv!E1HI9AfInfInLL$0flLT$(L\$HDŽ$)$L\$LT$(HLL$0InH=2H 0IWtLI4HLT$8H$LL\$0LL$(pLT$8LL$(HD$L\$0MtIx HIIx HIIx HIIx HIH|$yH=2H<H5O2HHD$(LL$(HIIx HIAtAHD$fInfInǿHDŽ$flH$)$虤HHH/HPtHHLH=1HH$ΥLHD$(HEL\$(xHHE^Ix HIM/IEHxHIEHt$HD$ H9H;5=FH;5[9HL\$(蠤L\$( L;t$ L;5L;5LL\$ WL\$ ICL\$ LH50HHhL\$ IMLT$(H=0L\$ L\$ LT$(HI/H@H5 0L\$0HH0LL$ LLL$ LT$(L\$0IMIx HIVHI9GXH$LLT$(LHL$L\$ HDŽ$L\$ LT$(IHExHHEM^LLL\$0LL$(LT$ 襢LT$ LL$(HL\$0IIx HIIx HIICL\$ LLH5.HHaL\$ IxHBIHAAHM*H@hHH@HLI#1yIHHLHD$轟L\$HD$IwHL\$ 苞L\$ HL\$tL\$LL\$]L\$HL\$FL\$LL\$/L\$HL\$L\$LLLT$(LL$ LL$ LT$(LLT$(LL$ ΝLT$(LL$ LLL$ 貝LL$ LLT$(L\$ 薝LT$(L\$ L\$}L\$IL\$iL\$SL\$UL\$]L\$AL\$gLHL$XLLLPLT$L\$LT$L\$HD$ HD$H-,BIIGLHAALIHHD$IAHD$HLL$ќqIE1LL$HLl$LMM6DtLIL)HD`IIL9SHbH0HtHu芞HtLHD$IE1AHD$蛠IIIOHL$D$1*MZIRAtAtIx HI? fInfHnHT$flL\$HDŽ$)$胝L\$HT$HItI1AHD$IIAHD$LLL$LL$7IMO AH=_IE1HD$E1IAHD$OLpLc>HD$AHD$E IL$ @H;LϺLL$OLL$HI$H;H; L;LLL$L\$L\$LL$Ix HIyOAE1E1E1HD$HD$AA1f.fA.AEIx HIkHD$AHD$趝IHD$A蕝IMLl$L9HD$HLl$PH\$HHD$PLt$X1LHH+kIH|$PLHtH98tHBHHuHD$XHH9Gd L!KLLL_t HL$P薙IHK HLHD$ژLl$HD$AE1E1jL詗L蜗(H='{ IHl H5&HpIHIx HIa H 1HI9K1fHnfHnI4LflL\$)$HIL\$Ix HIL M L;|$ @L;=@L;=~LŅvIx HI Ht$ D$tHL$Hx HHN H9D$t H5'H.HL$ HH-"&HHL$hH H-&TH-%H;H=k!HU5H艘IHtAIALL$LH5@%HHLL$IMuIx HI"AtAfInfInǿHDŽ$flH$)$芗HD$H=H"HPtHHL$LHH=$H$軘IIqHIHD$HxHt$HHhIx HIMHD$IEHD$E1E1AH5#LL\$(ML\$(HI` H=5$ L\$(HI H5#HL\$0HD$(LT$(L\$0HH Ix HIH EE1HH9M fInfInI4HflL\$0)$2LHD$(HELL$(L\$0xHHEcM LLL\$0LL$(7LL$(L\$0HI Ix HIIx HIICLT$0LLL\$(H5"HHm L\$(LT$0E ItHIgLL\$(襒L\$(PLL\$(莒L\$(蟔HGIHHD$A[HOHD$E1AL%#A$tA$H(!H$LHHDŽ$H$II$xHI$@M/LIHAHD$IL葑HD$LLL$vLL$HD$HLOHL\$(=L\$(@LHT$L\$L\$HT$HD$HALLݐHLT$ːLT$FIۅHIvLLL$虐LL$ LL\$肐L\$HD$HAeHMATLL\$(CL\$(iTHHtI\HD$HA̔LL$IYHAMME1E1ZL͏ MWMOAtAAtAIx HIfInfHnLLflƺLT$(LL$)$LT$(LL$HIHILLL$4LL$ME1E1AHD$HD$HMHHIHD$HE1A艓LT$IL褎HD$E1AALLL${LL$.HMA2HA MAHD$MHME1MIHD$H- AMQIYAtAtIx HIIٽ1HD$H- E1E1A0vLL$IHD$AMOIoAtAEtEIx HIfInfHnLHflźLL$)$LL$IIHIwLLT$LT$`LL\$(LT$ ߌL\$(LT$ L?LLL'DLL\$(蛌L\$(L艌蟎HGIHHD$H-C ATLLT$(LL$ L\$0LT$(LL$ IHL\$0LT$(LL$ L\$0LT$(LL$ $HMALQMoIoAEtAEEtEIx HIfInfInLHflĺLT$(L\$ )$L\$ LT$(IIEsHIEeLL\$0LT$(LL$ HD$E1HD$HD$MtIx HIOH=IE1HMtIx HIMtIExHIEHL$HtHx HHHT$HtHx HHHL$HtHx HHH<$HtHx HHuHExHHEoHhL[]A\A]A^A_DHXLH-L8H(H_HH;HVIH=H;H;L;LL$L$AIx HIvEQHx HH5EXL`<LPGH@UH0cH qfDHL߉t$ t$ {fDHx HH\HEH5HHHIMIGHH9H;WL`pMI|$v1IH3H$HLAT$L$IIx HIMIx HIHEH5HHH6IMIGH9sH;DHXpH)H{4IHHLSHIExHIEHIx HIyLH虀IHHx HHL; L; L; LL$$L$&Ix HIEtEHt$ 1H=! HHl$@HD$HTIHExHHE{MHEH5HHHIMLHD$HIx HI L%H=~ IT$L衁HHtHCH5 HHH>IHMx HH<L%} H= L$IT$L-L$HHtHD$HE1HI9BMffInտL$)D$PfInflHT$)D$@^L$HIH HT$HHtH H\$PH52 IO tHt$XLHt$LHt$ L$ǀML$HD$(tI$xHI$+Hx HHIx HI3Ix HIH|$(+IExHIEL- H=IULIHtA$ID$H5 LHHHHI$xHI$I ~IHAƒ]AMt$tAL-f Mt$ H=IULIHtAHD$HE1IH9CfInfInǿL$flLD$HD$P)D$@B~L$HIH LD$HPtHt$LHt$ LHLT$PL$~ML$HD$t"IxHIuL{L$fDI$xHI$uLL$Z{L$IxHIuL>{IExHIEuL${HxHHuH {H|$L% H=rIT$L}IH$tAICL$LH5HH- L$IM+Ix HIL%pH=IT$L}IHtAH$H1II9G<fInfHnÿL\$HD$Pfl)D$@V|L\$HIHHPtH4$LHt$ LLL\$PL\$|HL\$ItHx HH}Ix HIIExHIEIx HIMH|$HWHBpH7H@H*H5LЅ9I$xHI$H= IHH5,HIHPI$xHI$Ht$H|$L$4L$HIH=L$HIHE1II9CffInL\$)D$PfInflL$LD$0)D$@|zL$L\$HIHLD$0HPtH'L|$PH KIU tHD$ LHL$XLLL$H4LT$0zLT$0HD$LǪI$L$xHI$]Ix HIZIExHIEYIx HIH|$H=<'IH_H5<HHHtIx HIIVH;LeIFH)H¸H)AVHHxxIMDH=L$L$HIHAE1HH9CfInfInL\$0flL$HT$8HD$P)D$@{xL$L\$0HIH HT$8HHtHD$ LHLT$8L\$0J48Ld$PxL\$0H$LLT$8Ix HI I$xHI$IExHIEHx HHH<$3HL$D$0tH\$Ho1HH=Ht$ H\$@HD$HxHI5M.AtAHt$ 1H=kHL|$@HD$HxLHIx HIHH<$HWHBpHZH@HMH5HЅlHx HHH=HHHQvIHEHL$(D$0tHD$(HL$ID$D$0tHD$H $ID$ D$0tH$ID$(*vIHAƒAMrtAMr E1H HH9KHt$ fInfInHflLT$PHLT$0)D$@LIrI$LT$0xHI${Ix HIMHx HHFLl$(ME1۾P@H@hHCH@H61LIIIGL0AAzf.H@hHH@HLH@IIGHXL rI}MwAk tHIHH$E1E1LHD$E1۾:HD$HD$>fDcvHXH$LE1E1HD$E1E1:HD$HD$MtIx HItKMI$HI$Lt$(L\$ qt$(L\$ fLt$(L\$ pL\$ t$(@LpzII_ IBH$E1E1E1HD$L:HD$HD$HL$LpL$* uHH$E1E1E1HD$=HD$HD$f.Lo!tI:H$E1E1E1HD$?HD$HD$:f.1)qIHtqHLH$rp9DL`oLPoL$C1f.f.CDAH$LE1E1E1E1E1?HD$HD$HD$fDHx HHtXMgI\HIOL׉t$(L\$ nt$(L\$ 0KsL$IHLT$0t$(L\$ RnL\$ t$(LT$0fH$E1E1=E1E1E1E1HD$HD$HD$1LmHmxH$E1E1۾@HD$HD$HD$MDsrI.oIHHLwnHIEHL$TmL$H@mH$E1E1E1HD$E1@HD$HD$/LE1E1E1H$E1E1?HD$HD$HD$fHD$E1@HD$H$E1E1E1HD$LhlJHXlHL$DlL$L0lLL$lL$L%iA$tA$HHt$HLHHD$@HD$HpII$xHI$MLfIx HIH$E1E1۾AHD$HD$HD$HD$E1M@HD$fDMt$fDLkE1E11HD$M׾GMHD$E1E1H$HH$E1۾DHD$HD$HD$8LjKoI4H$E1۾EHD$HD$HD$IDHILj}HD$MEdf. lLH$ H$E1۾GHD$HD$SE1E1E1GH$HD$HD$KnIL$kL/L$HHE1E1M׾GH$HD$HD$E1E1E11Ll$(IE1HD$HD$MbMzA$tA$AtAIx HIuHD$MifDLh HD$M@HD$H$Ll$(JHD$kjLH|H$Ll$(E1۾IHD$HD$lH1H$Ll$(E1۾IHD$HD$Lg=LgFLgMLl$(E1E1E1H$IHD$HD$E1E11MLl$(JE1HD$E1nniLIHLl$(E1E1IH$HD$HD$;HHRH H5z,H81HkLl$(LJE1H$HD$H^HSHHFH߉t$(L\$ fL\$ t$('LfoL{LkAtAAEtAEHx HHAHD$LAL'fkHL$fL$nLfnLL$eL$)H$E1E1E1HD$>HD$HD$UH$gLtL$H'IH$Ll$(KHD$-gL+IHLl$(MJL5eL(eL$LL$eL$LL$dL$I_MgtA$tA$Ix HIMH$A|H$E1E1E1HD$E1E1=HD$HD$E1E1E1E1LLl$(KE1HD$bL?dMHD$L!d H$Ll$(E1۾KHD$H$E1E1۾AHD$HD$HD$fH$Ll$(KHD$FLcLcLcHwcMSI[AtAtIx HI~IA1E1E1E11MLl$(ME1-L cNHL$LbL$AHD$Ll$(E1۾NlH$Ll$(E1۾MRHbAMrLl$(E1E1MH$/H;xLLaILl$(E1E1E1H$MoHHRH5'H 4H81|fLl$(NE1CA[ASMLl$(E1E1H$MLaHaLLT$ aLT$ nHƹHH)HHbHDHB`LLIL[LkAtAAEtAEHx HHLE1LL\$MA aH$L\$Ll$(Ll$(E1E1E1ҾP Ll$(E1E1PLL$`IL$1ADLkL{AUtAUAtAHx HHL1HLT$0LE1L$J`L$LT$0AFAVHH kAFAVHH HTLl$(NE13jAXFaI3HLT$0L_LT$014IHff.AWHAVIAUATUSHXHD$ HD$@HD$HHLyHMHttHt]HHHTL AVAH H5&"H81tcXZH=$1HX[]A\A]A^A_HtHT$ HEN$LL$@O,!/I1LT$ IUL\LHuUDHPHHtCL;uIL)LЋ t HHI9uM J| KH\$ @HD$8HI9CcLLHL$8LL2LT$LL$L\$EL\$LL$LT$t"LHHH5 H81&bH|$ HHHH]fDI9HtH\$ HHA1H\ESHxHHuHHD$0]HD$HD$8II ‹tHHHH H5AVL AHH812aY^LLHL$8LLLT$LL$L\$rLT$LL$L\$HLL$\IEE1LL$LHu3mtHIL)HD HCHHtan integer is required__loader__loader__file__origin__package__parent__path__submodule_search_locationsneeds an argumentkeywords must be stringsMissing type objectendunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'buffer dtypecannot import name %Sname '%U' is not definedbuiltinscython_runtime__builtins__scipy.sparse.csgraph._toolsdoes not matchnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy.import_arrayat mostat leastcsgraph_from_densecsgraph_to_maskedexactlyconstruct_dist_matrixreconstruct_pathcsgraph_to_densecsgraph_masked_from_denseassignmentcsgraph_from_masked__reduce____module____dictoffset____vectorcalloffset____weaklistoffset__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineITYPE_tDTYPE_t__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)value too large to convert to intInterpreter change detected - this module can only be loaded into one interpreter per process.Shared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompilingunbound method %.200S() needs an argument%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectUnexpected format string character: '%c'%.200s() keywords must be strings%s() got multiple values for keyword argument '%U'Cannot convert %.200s to %.200s while calling a Python objectNULL result without error in PyObject_Call__annotations__ must be set to a dict object__qualname__ must be set to a string object__name__ must be set to a string object__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function calls__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function callsfunction's dictionary may not be deletedsetting function's dictionary to a non-dictcalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zd byte%s) does not match size of '%s' (%zd byte%s)scipy/sparse/csgraph/_tools.pyxscipy.sparse.csgraph._tools.__defaults__../scipy/sparse/csgraph/parameters.pxiModule '_tools' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%dbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base type_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtime../../tmp/build-env-99e64tom/lib/python3.12/site-packages/numpy/__init__.cython-30.pxdinit scipy.sparse.csgraph._tools%s() got an unexpected keyword argument '%U'%.200s() takes %.8s %zd positional argument%.1s (%zd given)scipy.sparse.csgraph._tools.csgraph_from_densescipy.sparse.csgraph._tools.csgraph_to_maskedOut of bounds on buffer access (axis %d)scipy.sparse.csgraph._tools._construct_dist_matrixscipy.sparse.csgraph._tools.construct_dist_matrix'%.200s' object is not subscriptablecannot fit '%.200s' into an index-sized integer'%.200s' object is unsliceablescipy.sparse.csgraph._tools.reconstruct_pathscipy.sparse.csgraph._tools._populate_graphscipy.sparse.csgraph._tools.csgraph_to_densescipy.sparse.csgraph._tools.csgraph_masked_from_dense'%.200s' object does not support slice %.10sscipy.sparse.csgraph._tools.csgraph_from_masked_cython_3_1_6.cython_function_or_method_cython_3_1_6._common_types_metatypescipy.sparse.csgraph._tools.__pyx_defaults vuu vuuuuu@vuuuuuuuuuuuuuuuuuuuuuuuuu v vuuu0v@vuuuuuuu vuu v܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋܋̍܋܋؍6B܋܋N܋܋܋܋܋܋܋܋܋܋܋܋܋Z f܋܋܋*܋܋܋ ܋ 6*ʊ֊BOfF44D<>> import numpy as np >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import construct_dist_matrix >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 3) 3 >>> pred = np.array([[-9999, 0, 0, 2], ... [1, -9999, 0, 1], ... [2, 0, -9999, 2], ... [1, 3, 3, -9999]], dtype=np.int32) >>> construct_dist_matrix(graph=graph, predecessors=pred, directed=False) array([[0., 1., 2., 5.], [1., 0., 3., 1.], [2., 3., 0., 3.], [2., 1., 3., 0.]]) reconstruct_path(csgraph, predecessors, directed=True) Construct a tree from a graph and a predecessor list. .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like or sparse array or matrix The N x N matrix representing the directed or undirected graph from which the predecessors are drawn. predecessors : array_like, one dimension The length-N array of indices of predecessors for the tree. The index of the parent of node i is given by predecessors[i]. directed : bool, optional If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then operate on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i]. Returns ------- cstree : csr matrix The N x N directed compressed-sparse representation of the tree drawn from csgraph which is encoded by the predecessor list. Examples -------- >>> import numpy as np >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import reconstruct_path >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 3) 3 >>> pred = np.array([-9999, 0, 0, 1], dtype=np.int32) >>> cstree = reconstruct_path(csgraph=graph, predecessors=pred, directed=False) >>> cstree.todense() array([[0., 1., 2., 0.], [0., 0., 0., 1.], [0., 0., 0., 0.], [0., 0., 0., 0.]]) csgraph_to_masked(csgraph) Convert a sparse graph representation to a masked array representation .. versionadded:: 0.11.0 Parameters ---------- csgraph : csr_array, csc_array, or lil_array Sparse representation of a graph. Returns ------- graph : MaskedArray The masked dense representation of the sparse graph. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import csgraph_to_masked >>> graph = csr_array( [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ]) >>> graph >>> csgraph_to_masked(graph) masked_array( data=[[ --, 1.0, 2.0, --], [ --, --, --, 1.0], [ --, --, --, 3.0], [ --, --, --, --]], mask=[[ True, False, False, True], [ True, True, True, False], [ True, True, True, False], [ True, True, True, True]], fill_value=1e+20) csgraph_to_dense(csgraph, null_value=0) Convert a sparse graph representation to a dense representation .. versionadded:: 0.11.0 Parameters ---------- csgraph : csr_array, csc_array, or lil_array Sparse representation of a graph. null_value : float, optional The value used to indicate null edges in the dense representation. Default is 0. Returns ------- graph : ndarray The dense representation of the sparse graph. Notes ----- For normal sparse graph representations, calling csgraph_to_dense with null_value=0 produces an equivalent result to using dense format conversions in the main sparse package. When the sparse representations have repeated values, however, the results will differ. The tools in scipy.sparse will add repeating values to obtain a final value. This function will select the minimum among repeating values to obtain a final value. For example, here we'll create a two-node directed sparse graph with multiple edges from node 0 to node 1, of weights 2 and 3. This illustrates the difference in behavior: >>> from scipy.sparse import csr_array, csgraph >>> import numpy as np >>> data = np.array([2, 3]) >>> indices = np.array([1, 1]) >>> indptr = np.array([0, 2, 2]) >>> M = csr_array((data, indices, indptr), shape=(2, 2)) >>> M.toarray() array([[0, 5], [0, 0]]) >>> csgraph.csgraph_to_dense(M) array([[0., 2.], [0., 0.]]) The reason for this difference is to allow a compressed sparse graph to represent multiple edges between any two nodes. As most sparse graph algorithms are concerned with the single lowest-cost edge between any two nodes, the default scipy.sparse behavior of summing multiple weights does not make sense in this context. The other reason for using this routine is to allow for graphs with zero-weight edges. Let's look at the example of a two-node directed graph, connected by an edge of weight zero: >>> from scipy.sparse import csr_array, csgraph >>> data = np.array([0.0]) >>> indices = np.array([1]) >>> indptr = np.array([0, 1, 1]) >>> M = csr_array((data, indices, indptr), shape=(2, 2)) >>> M.toarray() array([[0., 0.], [0., 0.]]) >>> csgraph.csgraph_to_dense(M, np.inf) array([[inf, 0.], [inf, inf]]) In the first case, the zero-weight edge gets lost in the dense representation. In the second case, we can choose a different null value and see the true form of the graph. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import csgraph_to_dense >>> graph = csr_array( [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ]) >>> graph >>> csgraph_to_dense(graph) array([[0., 1., 2., 0.], [0., 0., 0., 1.], [0., 0., 0., 3.], [0., 0., 0., 0.]]) csgraph_from_dense(graph, null_value=0, nan_null=True, infinity_null=True) Construct a CSR-format sparse graph from a dense matrix. .. versionadded:: 0.11.0 Parameters ---------- graph : array_like Input graph. Shape should be (n_nodes, n_nodes). null_value : float or None (optional) Value that denotes non-edges in the graph. Default is zero. infinity_null : bool If True (default), then infinite entries (both positive and negative) are treated as null edges. nan_null : bool If True (default), then NaN entries are treated as non-edges Returns ------- csgraph : csr_array Compressed sparse representation of graph, Examples -------- >>> from scipy.sparse.csgraph import csgraph_from_dense >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> csgraph_from_dense(graph) csgraph_masked_from_dense(graph, null_value=0, nan_null=True, infinity_null=True, copy=True) Construct a masked array graph representation from a dense matrix. .. versionadded:: 0.11.0 Parameters ---------- graph : array_like Input graph. Shape should be (n_nodes, n_nodes). null_value : float or None (optional) Value that denotes non-edges in the graph. Default is zero. infinity_null : bool If True (default), then infinite entries (both positive and negative) are treated as null edges. nan_null : bool If True (default), then NaN entries are treated as non-edges Returns ------- csgraph : MaskedArray masked array representation of graph Examples -------- >>> from scipy.sparse.csgraph import csgraph_masked_from_dense >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> csgraph_masked_from_dense(graph) masked_array( data=[[--, 1, 2, --], [--, --, --, 1], [--, --, --, 3], [--, --, --, --]], mask=[[ True, False, False, True], [ True, True, True, False], [ True, True, True, False], [ True, True, True, True]], fill_value=0) csgraph_from_masked(graph) Construct a CSR-format graph from a masked array. .. versionadded:: 0.11.0 Parameters ---------- graph : MaskedArray Input graph. Shape should be (n_nodes, n_nodes). Returns ------- csgraph : csr_array Compressed sparse representation of graph, Examples -------- >>> import numpy as np >>> from scipy.sparse.csgraph import csgraph_from_masked >>> graph_masked = np.ma.masked_array(data =[ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ], ... mask=[[ True, False, False, True], ... [ True, True, True, False], ... [ True, True, True, False], ... [ True, True, True, True]], ... fill_value = 0) >>> csgraph_from_masked(graph_masked) numpy._core.umath failed to importnumpy._core.multiarray failed to importgraph should have two dimensionsgraph and predecessors must have the same shapecsgraph should be a square matrixcsgraph must be lil, csr, or csc formatcsgraph_masked_from_dense (line 83)Type of predecessors array should be np.int32scipy/sparse/csgraph/_tools.pyx reconstruct_path(csgraph, predecessors, directed=True) Construct a tree from a graph and a predecessor list. .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like or sparse array or matrix The N x N matrix representing the directed or undirected graph from which the predecessors are drawn. predecessors : array_like, one dimension The length-N array of indices of predecessors for the tree. The index of the parent of node i is given by predecessors[i]. directed : bool, optional If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then operate on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i]. Returns ------- cstree : csr matrix The N x N directed compressed-sparse representation of the tree drawn from csgraph which is encoded by the predecessor list. Examples -------- >>> import numpy as np >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import reconstruct_path >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 3) 3 >>> pred = np.array([-9999, 0, 0, 1], dtype=np.int32) >>> cstree = reconstruct_path(csgraph=graph, predecessors=pred, directed=False) >>> cstree.todense() array([[0., 1., 2., 0.], [0., 0., 0., 1.], [0., 0., 0., 0.], [0., 0., 0., 0.]]) %'q\ Q N!7*F!&a)Q2XQa|7#Qiq|7#U!j"F!5a!7.%Q 1 csgraph_to_masked(csgraph) Convert a sparse graph representation to a masked array representation .. versionadded:: 0.11.0 Parameters ---------- csgraph : csr_array, csc_array, or lil_array Sparse representation of a graph. Returns ------- graph : MaskedArray The masked dense representation of the sparse graph. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import csgraph_to_masked >>> graph = csr_array( [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ]) >>> graph >>> csgraph_to_masked(graph) masked_array( data=[[ --, 1.0, 2.0, --], [ --, --, --, 1.0], [ --, --, --, 3.0], [ --, --, --, --]], mask=[[ True, False, False, True], [ True, True, True, False], [ True, True, True, False], [ True, True, True, True]], fill_value=1e+20) csgraph_to_dense(csgraph, null_value=0) Convert a sparse graph representation to a dense representation .. versionadded:: 0.11.0 Parameters ---------- csgraph : csr_array, csc_array, or lil_array Sparse representation of a graph. null_value : float, optional The value used to indicate null edges in the dense representation. Default is 0. Returns ------- graph : ndarray The dense representation of the sparse graph. Notes ----- For normal sparse graph representations, calling csgraph_to_dense with null_value=0 produces an equivalent result to using dense format conversions in the main sparse package. When the sparse representations have repeated values, however, the results will differ. The tools in scipy.sparse will add repeating values to obtain a final value. This function will select the minimum among repeating values to obtain a final value. For example, here we'll create a two-node directed sparse graph with multiple edges from node 0 to node 1, of weights 2 and 3. This illustrates the difference in behavior: >>> from scipy.sparse import csr_array, csgraph >>> import numpy as np >>> data = np.array([2, 3]) >>> indices = np.array([1, 1]) >>> indptr = np.array([0, 2, 2]) >>> M = csr_array((data, indices, indptr), shape=(2, 2)) >>> M.toarray() array([[0, 5], [0, 0]]) >>> csgraph.csgraph_to_dense(M) array([[0., 2.], [0., 0.]]) The reason for this difference is to allow a compressed sparse graph to represent multiple edges between any two nodes. As most sparse graph algorithms are concerned with the single lowest-cost edge between any two nodes, the default scipy.sparse behavior of summing multiple weights does not make sense in this context. The other reason for using this routine is to allow for graphs with zero-weight edges. Let's look at the example of a two-node directed graph, connected by an edge of weight zero: >>> from scipy.sparse import csr_array, csgraph >>> data = np.array([0.0]) >>> indices = np.array([1]) >>> indptr = np.array([0, 1, 1]) >>> M = csr_array((data, indices, indptr), shape=(2, 2)) >>> M.toarray() array([[0., 0.], [0., 0.]]) >>> csgraph.csgraph_to_dense(M, np.inf) array([[inf, 0.], [inf, inf]]) In the first case, the zero-weight edge gets lost in the dense representation. In the second case, we can choose a different null value and see the true form of the graph. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import csgraph_to_dense >>> graph = csr_array( [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ]) >>> graph >>> csgraph_to_dense(graph) array([[0., 1., 2., 0.], [0., 0., 0., 1.], [0., 0., 0., 3.], [0., 0., 0., 0.]]) csgraph_masked_from_dense(graph, null_value=0, nan_null=True, infinity_null=True, copy=True) Construct a masked array graph representation from a dense matrix. .. versionadded:: 0.11.0 Parameters ---------- graph : array_like Input graph. Shape should be (n_nodes, n_nodes). null_value : float or None (optional) Value that denotes non-edges in the graph. Default is zero. infinity_null : bool If True (default), then infinite entries (both positive and negative) are treated as null edges. nan_null : bool If True (default), then NaN entries are treated as non-edges Returns ------- csgraph : MaskedArray masked array representation of graph Examples -------- >>> from scipy.sparse.csgraph import csgraph_masked_from_dense >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> csgraph_masked_from_dense(graph) masked_array( data=[[--, 1, 2, --], [--, --, --, 1], [--, --, --, 3], [--, --, --, --]], mask=[[ True, False, False, True], [ True, True, True, False], [ True, True, True, False], [ True, True, True, True]], fill_value=0) csgraph_from_masked(graph) Construct a CSR-format graph from a masked array. .. versionadded:: 0.11.0 Parameters ---------- graph : MaskedArray Input graph. Shape should be (n_nodes, n_nodes). Returns ------- csgraph : csr_array Compressed sparse representation of graph, Examples -------- >>> import numpy as np >>> from scipy.sparse.csgraph import csgraph_from_masked >>> graph_masked = np.ma.masked_array(data =[ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ], ... mask=[[ True, False, False, True], ... [ True, True, True, False], ... [ True, True, True, False], ... [ True, True, True, True]], ... fill_value = 0) >>> csgraph_from_masked(graph_masked) csgraph_from_dense(graph, null_value=0, nan_null=True, infinity_null=True) Construct a CSR-format sparse graph from a dense matrix. .. versionadded:: 0.11.0 Parameters ---------- graph : array_like Input graph. Shape should be (n_nodes, n_nodes). null_value : float or None (optional) Value that denotes non-edges in the graph. Default is zero. infinity_null : bool If True (default), then infinite entries (both positive and negative) are treated as null edges. nan_null : bool If True (default), then NaN entries are treated as non-edges Returns ------- csgraph : csr_array Compressed sparse representation of graph, Examples -------- >>> from scipy.sparse.csgraph import csgraph_from_dense >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> csgraph_from_dense(graph) construct_dist_matrix(graph, predecessors, directed=True, null_value=np.inf) Construct distance matrix from a predecessor matrix .. versionadded:: 0.11.0 Parameters ---------- graph : array_like or sparse The N x N matrix representation of a directed or undirected graph. If dense, then non-edges are indicated by zeros or infinities. predecessors : array_like The N x N matrix of predecessors of each node (see Notes below). directed : bool, optional If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then operate on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i]. null_value : bool, optional value to use for distances between unconnected nodes. Default is np.inf Returns ------- dist_matrix : ndarray The N x N matrix of distances between nodes along the path specified by the predecessor matrix. If no path exists, the distance is zero. Notes ----- The predecessor matrix is of the form optionally returned by `shortest_path`. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 It should be noted that `shortest_path` only returns distance matrix by default. With ``return_predecessors=True``, it returns a tuple with distance matrix as its first element and predecessors array as second element. Examples -------- >>> import numpy as np >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import construct_dist_matrix >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 3) 3 >>> pred = np.array([[-9999, 0, 0, 2], ... [1, -9999, 0, 1], ... [2, 0, -9999, 2], ... [1, 3, 3, -9999]], dtype=np.int32) >>> construct_dist_matrix(graph=graph, predecessors=pred, directed=False) array([[0., 1., 2., 5.], [1., 0., 3., 1.], [2., 3., 0., 3.], [2., 1., 3., 0.]]) Tools and utilities for working with compressed sparse graphs graph should be a square arrayd BfAWEuF#QjV1AuF!3cj{'U!1 2V1A q  vQa A {#QrqXV1#]!7&Q#^1G X`  4H\ pp@0`dx`plTx0,` p  p 0  0  p  @ T t @   @ h  0 4 H  P! `#p&&@)$P+ -p.1xP204P686`E(pNx|Tp  :aLzRx $(FJ w?;*3$"D`Xllx! Ul hJd e@(AGG0k GAF d DAG Z CAJ 0 Dbah G `Dab|AG`A%(BAD ] DBF 4 BAD  DBI \ DBF x<gBEI K(D0A8Gp"xIDDDDAABAABIp8D0A(B BBBAB M w8BEH A(A0m(D BBB8{BBE D(A0b(D BBB4PBDD  GBG AABGAE Dq K K E Px\BBE B(D0D8Dc 8G0A(B BBBF ] 8D0A(B BBBF Q 8I0A(B BBBM HTZBEB B(A0A8GPk8D0A(B BBB(BAGABH7BEE E(A0D8E@w8D0A(B BBBDBHE A(D08I@T8A0P(D BBB`tDbxx'BBB E(A0A8D@_ 8A0A(B BBBF _ 8A0A(B BBBG _ 8F0A(B BBBB LBBE A(J0 (A BBBF (A BBBD`X5BBB B(D0D8G` 8A0A(B BBBF  8C0A(B BBBH h4 DE G \ D le|h dh 8<Do E C E p\oBKF D(D0F (I DBBF u (I DBBJ  (D ABBE (I ABBCtNSDNHBBB B(D0A8FP8D0A(B BBBLDM G 4hBDG M ABC D DBF xD~ F oDxD~ F o(ADD d AAA ( (ADD d AAA 8 D~ F o I XX ,BED A(F0~ (D ABBG L (D ABBK D(D DBBH p8BEE E(A0A8DP 8C0A(B BBBF P dBBA  BBD D BBH H IBM A EBH (T BAD ] DBF  d QBB B(A0D8DP`HPg 8D0A(B BBBD H BBB B(H0D8GP  8D0A(B BBBA H L BEF G(J (A ABBH  (F ABBF _ (A ABBK k (A ABBG iHRA A  G H H  )Ac` BEB A(A0S (A BBBK  (A BBBI Y (D BBBE `p  KAD D0  AABK   CABK D  DABE C08 BBA A(D0] (D ABBH H TFBBB E(A0D8D@^ 8D0A(B BBBA d\ XBBB B(A0D8FP  8A0A(B BBBI  8A0A(B BBBE 4 !AAL a AAG g CAE @ !bBB A(A0D@S 0D(A BBBF @@4#BBE A(A0D@z 0D(A BBBD %>Ae J I\BBB B(A0A8GiHHK 8A0A(B BBBl$BIB B(A0D8G 8D0A(B BBBF V_AMVKAlt03 BIE B(A0A8DW_AW 8A0A(B BBBA uW_Al;)BIE B(A0A8G 8D0A(B BBBF {ElALV`BHTeBBB B(A0A8DPn 8D0A(B BBBG \tiBBB D(G@Z (D BBBK  (A BBBI \ (G BBBG hmPBMG B(A0D8T 8D0A(B BBBG H`A NL llHE:BIB B(A0D8GHYA| 8D0A(B BBBA U`Bh(.BMG E(A0K8\ 8D0A(B BBBG fOgAT JE LH%&BBB B(D0A8D 8D0A(B BBBF llLBIE B(A0A8DW_AW 8A0A(B BBBA W_A pp0p `F`@`} ``} ` C. x} ` ~`~`:`~`~`P{```0 ``|`0{`h} ``z`iQ u! `H|``x~`{``e2 `y z`a @y y`@\R B$ B( z | ``B" {`OY y {``Ko y `} `X} `H} `~``(`| `~ `p~ | `"``~ `8} `h~`~`{` ` ` B0 @t A! ~ ``~`~``8|`|``|`z`} ``} ``` ``| `|`(|`~`X~`~ `x ``} `s`~``(} `~`A( `A# n`~`i``| `p{`z`} `~`~`{`C! y `| `@z` y``C ~`x| `} `~`` `} ``P `P~`~`|`} `~`IR @ lpxo`    5( oooo(6@F@V@f@v@@@@@@@@@AA&A6AFAVAfAvAAAAAAAAABB&B6BFBVBfBvBBBBBBBBBCC&C6CFCVCfCvCCCCCCCCCDD&D6DFDVDfDvDDDDDDDDDEE&E6EFEVEfEvEEEEEEEEEFF&F6FFFVFfFvFFFFFFFFhM4B`t2zG x3@HI6y @0(ss ttp`+q5q>pKpWpdppqzqttP`@q@pIstIUw@p0q<R" #cQ'4t@8=GCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8`( 5 @ @ F l  ؂px(  pK pi p p q! 0q  @qU qJ4 qP s v sb tD `t F t t% t u ( G9T w ?I I{@ x CKG y. yA z_ K M v p `t h  ` zH0 uW X_ Pg 0~x w H @ J P P P Pe~ R } P~'  4 5Z    o C S8 ^SW @x Ќ `x x `   % `2 8F @^ P~    p @ @  +  )D  f  `   p  @F      p<  PQ  p>l  U   x     5  o H{  `  @ @   }    <  y    ) @h8hz 0  P QE:$ .h & `h@3Le P   F @ }   }  C.0 x} C N ~] ~m :{ ~ ~ P{   0  `| 0{  h}  `z< iQ d u!  H|  x~ { `e2  `y1 zM au @y y @\R B$  B(5 zT | i `B" { OY  y { `Ko7 yZ f } x X}  H}  ~  ( |  ~  p~ |  "  . ~= J 8} ] h~m ~| {     B0 @t  A!5 ~ F `~V ~e q 8| |  | z }    }  % 0  = J | _ |v (| ~ X~ ~  x   }  s ~   (}  ~+ A(T `A#} n ~ i  |  p{ z }  ~  ~. {G C!o y  |  @z y `C  ~+ x| @ } Q ~_ ` l } }  P  P~ ~ | }  ~ t@ "08 Q z ! #o 'Y 0 42n @8R = o o 0p'3xZ ppfp l(  @3DOav  ' 8 N Z e v    o     !!&!9!H!X!h!!!!!!!""4%"6"O"_"p"""""""" ##)#K#^#q#~######## $ $'$?$Q$e$q$$$$$$$$%$%5%J%U%d%~%%%%%%%&&&7&C&V&b&n&&&&&&&&')';'J'_'p''''''''' (( 8(I(X(i(z(((("(((( )#)_tools.c__pyx_tp_traverse_5scipy_6sparse_7csgraph_6_tools___pyx_defaults__Pyx_CyFunction_get_qualname__Pyx_CyFunction_get_globals__Pyx_CyFunction_get_closure__Pyx_CyFunction_get_code__pyx_tp_new_5scipy_6sparse_7csgraph_6_tools___pyx_defaults__Pyx_CyFunction_get_annotations__Pyx_CyFunction_get_dict__Pyx_CyFunction_CallMethod__pyx_CommonTypesMetaclass_get_module__Pyx_CyFunction_get_doc__Pyx_CyFunction_get_name__Pyx_CyFunction_repr__Pyx_PyList_Pack__Pyx_PyObject_GetAttrStrPy_XDECREF__Pyx_CyFunction_get_defaults__Pyx_PyLong_As_int__Pyx_PyCode_New__pyx_mstate_global_static__pyx_tp_dealloc_5scipy_6sparse_7csgraph_6_tools___pyx_defaults__Pyx_copy_spec_to_module__pyx_pymod_createmain_interpreter_id.7__pyx_m__Pyx_CyFunction_traverse__Pyx_VerifyCachedType__Pyx_CyFunction_Vectorcall_O__Pyx_PyMethod_New__Pyx_CyFunction_CallAsMethod__Pyx_FetchCommonTypeFromSpec.constprop.0__Pyx_CreateCodeObjects.constprop.0__pyx_k_P_Bc_uF_Q_j_V1A_uF_3c_j_5_1_1Edescr.0__pyx_k_d_BfAWE_uF_Q_j_V1A_uF_3c_j_U_1descr.1descr.2__pyx_k_R_1G_z_Qa_z_1_z_uA_1__pyx_k_a_t81A_j_whhgWA_j_gV1_vQa_wfASdescr.3descr.4__pyx_k_2S_q_0_A__pyx_k_Ax_Q_1_nAYj_Q_vQa_Bd_b_awgQa_qdescr.5descr.6__pyx_k_q_Q_N_7_F_a_Q_2XQa_7_Q_iq_7_U_j__Pyx_CyFunction_New.constprop.0__Pyx_CyFunction_Vectorcall_NOARGS__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS__Pyx_ImportType_3_1_6.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__Pyx_MatchKeywordArg_nostr.constprop.0__pyx__insert_code_object.constprop.0__Pyx_CyFunction_reduce__Pyx_MatchKeywordArg_str.constprop.0__Pyx_PyErr_GivenExceptionMatchesTuple__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx_TypeTest__Pyx_PyObject_FastCallDict.constprop.0__pyx_tp_clear_5scipy_6sparse_7csgraph_6_tools___pyx_defaults__Pyx_CyFunction_set_doc__Pyx_AddTraceback.constprop.1__Pyx_CyFunction_set_annotations__Pyx__ExceptionReset.isra.0__Pyx_CyFunction_set_qualname__Pyx_CyFunction_set_name__Pyx_CyFunction_set_kwdefaults__Pyx_CyFunction_set_defaults__Pyx_CyFunction_set_dict__Pyx_Import__Pyx__GetException__Pyx_Raise.constprop.0__Pyx_CyFunction_get_kwdefaults__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__GetBufferAndValidate.constprop.0__Pyx_minusones__Pyx_zeros__Pyx_CyFunction_clear__Pyx_CyFunction_dealloc__Pyx_WriteUnraisable.constprop.0__Pyx_PyErr_ExceptionMatchesInState.isra.0__Pyx_CyFunction_get_is_coroutine__Pyx_ImportFrom__Pyx_AddTraceback.constprop.0__pyx_pf_5scipy_6sparse_7csgraph_6_tools_14__defaults____Pyx_PyObject_GetAttrStrNoError__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__pyx_pymod_exec__tools__pyx_string_tab__pyx_string_tab_encodings__pyx_CommonTypesMetaclass_spec__pyx_CyFunctionType_spec__pyx_builtin_ValueError__pyx_builtin_TypeError__pyx_builtin_ImportError__pyx_type_5scipy_6sparse_7csgraph_6_tools___pyx_defaultsPyArray_API__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_1csgraph_from_masked__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_3csgraph_masked_from_dense__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_5csgraph_from_dense__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_7csgraph_to_dense__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_9csgraph_to_masked__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_11reconstruct_path__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_13construct_dist_matrix__pyx_pw_5scipy_6sparse_7csgraph_6_tools_5csgraph_from_dense__pyx_pw_5scipy_6sparse_7csgraph_6_tools_9csgraph_to_masked__pyx_pw_5scipy_6sparse_7csgraph_6_tools_13construct_dist_matrix__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_6_tools_ITYPE_t__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_6_tools_DTYPE_t__Pyx_PyObject_GetItem_Slow__Pyx_PyObject_GetItem__pyx_pw_5scipy_6sparse_7csgraph_6_tools_11reconstruct_path__pyx_pw_5scipy_6sparse_7csgraph_6_tools_7csgraph_to_dense__pyx_pw_5scipy_6sparse_7csgraph_6_tools_3csgraph_masked_from_dense__pyx_pf_5scipy_6sparse_7csgraph_6_tools_csgraph_from_masked.constprop.0__pyx_pw_5scipy_6sparse_7csgraph_6_tools_1csgraph_from_masked__pyx_moduledef__pyx_CyFunctionType_slots__pyx_CyFunction_methods__pyx_CyFunction_members__pyx_CyFunction_getsets__pyx_CommonTypesMetaclass_slots__pyx_CommonTypesMetaclass_getset__pyx_k___pyx_k_C__pyx_k_DTYPE__pyx_k_ITYPE__pyx_k_ImportError__pyx_k_N__pyx_k_TypeError__pyx_k_Type_of_predecessors_array_shoul__pyx_k_ValueError__pyx_k__2__pyx_k_arange__pyx_k_argsort__pyx_k_array__pyx_k_asarray__pyx_k_astype__pyx_k_asyncio_coroutines__pyx_k_bool__pyx_k_c__pyx_k_class__pyx_k_class_getitem__pyx_k_cline_in_traceback__pyx_k_compressed__pyx_k_construct_dist_matrix__pyx_k_construct_dist_matrix_graph_pre__pyx_k_construct_dist_matrix_line_525__pyx_k_copy__pyx_k_copy_if_dense__pyx_k_csc__pyx_k_csgraph__pyx_k_csgraph_from_dense__pyx_k_csgraph_from_dense_graph_null_v__pyx_k_csgraph_from_dense_line_172__pyx_k_csgraph_from_masked__pyx_k_csgraph_from_masked_graph_Const__pyx_k_csgraph_from_masked_line_18__pyx_k_csgraph_masked_from_dense__pyx_k_csgraph_masked_from_dense_graph__pyx_k_csgraph_masked_from_dense_line_8__pyx_k_csgraph_must_be_lil_csr_or_csc_f__pyx_k_csgraph_must_be_sparse__pyx_k_csgraph_orig__pyx_k_csgraph_should_be_a_square_matri__pyx_k_csgraph_to_dense__pyx_k_csgraph_to_dense_csgraph_null_v__pyx_k_csgraph_to_dense_line_223__pyx_k_csgraph_to_masked__pyx_k_csgraph_to_masked_csgraph_Conve__pyx_k_csgraph_to_masked_line_341__pyx_k_csr__pyx_k_csr_array__pyx_k_csr_matrix__pyx_k_csr_output__pyx_k_cumsum__pyx_k_data__pyx_k_data2__pyx_k_dense_output__pyx_k_directed__pyx_k_disable__pyx_k_dist_matrix__pyx_k_dtype__pyx_k_empty__pyx_k_enable__pyx_k_fill__pyx_k_fill_value__pyx_k_float64__pyx_k_format__pyx_k_from_scipy_sparse__pyx_k_func__pyx_k_gc__pyx_k_graph__pyx_k_graph_and_predecessors_must_have__pyx_k_graph_should_be_a_square_array__pyx_k_graph_should_have_two_dimensions__pyx_k_idx_grid__pyx_k_indices__pyx_k_indptr__pyx_k_inf__pyx_k_infinity_null__pyx_k_initializing__pyx_k_int32__pyx_k_is_coroutine__pyx_k_is_pydata_spmatrix__pyx_k_isenabled__pyx_k_isinf__pyx_k_isnan__pyx_k_issparse__pyx_k_lil__pyx_k_ma__pyx_k_main__pyx_k_mask__pyx_k_masked_array__pyx_k_masked_invalid__pyx_k_masked_values__pyx_k_matrix__pyx_k_minimum__pyx_k_module__pyx_k_name__pyx_k_nan__pyx_k_nan_null__pyx_k_ndim__pyx_k_nnull__pyx_k_np__pyx_k_null_value__pyx_k_numpy__pyx_k_numpy__core_multiarray_failed_to__pyx_k_numpy__core_umath_failed_to_impo__pyx_k_ones__pyx_k_order__pyx_k_pind__pyx_k_pop__pyx_k_predecessors__pyx_k_pydata_sparse_cls__pyx_k_pydata_sparse_fill_value__pyx_k_qualname__pyx_k_range__pyx_k_ravel__pyx_k_reconstruct_path__pyx_k_reconstruct_path_csgraph_predec__pyx_k_reconstruct_path_line_415__pyx_k_res__pyx_k_scipy_sparse__pyx_k_scipy_sparse__sputils__pyx_k_scipy_sparse_csgraph__tools__pyx_k_scipy_sparse_csgraph__tools_pyx__pyx_k_sctree__pyx_k_searchsorted__pyx_k_set_name__pyx_k_shape__pyx_k_spec__pyx_k_spmatrix__pyx_k_sum__pyx_k_test__pyx_k_toarray__pyx_k_tocsr__pyx_k_validate_graph__pyx_k_validation__pyx_k_zeros__pyx_k_Tools_and_utilities_for_working__pyx_methods__pyx_moduledef_slots__pyx_doc_5scipy_6sparse_7csgraph_6_tools_12construct_dist_matrix__pyx_doc_5scipy_6sparse_7csgraph_6_tools_10reconstruct_path__pyx_doc_5scipy_6sparse_7csgraph_6_tools_8csgraph_to_masked__pyx_doc_5scipy_6sparse_7csgraph_6_tools_6csgraph_to_dense__pyx_doc_5scipy_6sparse_7csgraph_6_tools_4csgraph_from_dense__pyx_doc_5scipy_6sparse_7csgraph_6_tools_2csgraph_masked_from_dense__pyx_doc_5scipy_6sparse_7csgraph_6_tools_csgraph_from_maskedcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END___fini__dso_handle__pyx_module_is_main_scipy__sparse__csgraph___tools_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE__initPyUnicode_FromFormatPyObject_SetItemPyList_NewPyExc_SystemErrorPyType_FromMetaclassPyDict_SetItemStringPyDict_SizePyException_SetTracebackPyMethod_Type_ITM_deregisterTMCloneTablePyFloat_TypePyTuple_TypePyObject_ClearWeakRefs_PyThreadState_UncheckedGetPyModuleDef_InitPy_EnterRecursiveCallPyFrame_NewPyMem_FreePyBuffer_ReleasePyNumber_AddPyObject_GetAttrStringPyInit__toolsPyImport_AddModulePyBytes_FromStringAndSize_PyObject_GenericGetAttrWithDictPyObject_SetAttrStringPyErr_WarnEx_Py_DeallocPyModule_NewObjectPyErr_NoMemoryPyErr_SetObjectPyObject_GC_DelPyArg_ValidateKeywordArgumentsPyObject_RichComparePyGC_DisablePyImport_GetModuleDictPyObject_GC_TrackPyExc_RuntimeErrorPyErr_GivenExceptionMatchesPyErr_SetStringPyObject_IsInstance_PyObject_GC_NewPyException_GetTracebackPyExc_ExceptionPyExc_ValueErrorstrrchr@@GLIBC_2.2.5PyExc_DeprecationWarningPyExc_TypeErrorPyInterpreterState_GetIDPyTuple_GetItemPyErr_PrintExPyMem_ReallocPyErr_ExceptionMatchesPyOS_snprintfPyTraceBack_HerePyObject_CallFinalizerFromDeallocPyLong_FromSsize_tPyFloat_FromDoublePyType_ReadyPyLong_FromLongmemcmp@@GLIBC_2.2.5PyLong_AsSsize_tPyObject_RichCompareBoolPyModule_GetNamePyErr_ClearPyImport_GetModule_Py_FalseStruct__gmon_start__PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyType_TypePyObject_SetAttrPyErr_OccurredPyLong_AsLongPyImport_ImportModule_PyDict_GetItem_KnownHashPyObject_CallObjectPy_LeaveRecursiveCallPyObject_VectorcallDictPyNumber_InPlaceOrPyTuple_GetSlicePyDict_GetItemStringPy_Version_Py_NoneStructPyExc_ModuleNotFoundErrorPyObject_VectorcallPyFloat_AsDoublePyObject_IsTruePyImport_ImportModuleLevelObjectPyObject_Hash_Py_TrueStructPyDict_SetDefaultPyDict_NewPyExc_IndexErrorPyObject_GC_IsFinalizedPyBool_TypePyObject_GetBufferPyDict_TypePyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5PyObject_VectorcallMethodPyLong_TypePyCapsule_TypePyGC_EnablePyUnicode_FromStringPyUnicode_InternFromStringPyUnstable_Code_NewWithPosOnlyArgsPyExc_ImportErrorPyDict_SetItemPyExc_AttributeErrorPyBytes_AsStringPyExc_RuntimeWarningPyObject_CallPyUnicode_TypePyUnicode_DecodePyErr_FormatPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDict_ITM_registerTMCloneTablePyUnicode_ConcatPyNumber_IndexPyObject_GetAttrPyCFunction_TypePyNumber_InvertPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5PyTuple_PackPyCode_NewEmptyPyObject_GC_UnTrackPyErr_WriteUnraisablePyDict_GetItemWithErrorPyList_Type.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``$8 P @ HoUo d((nB 5 5 x@@s @ @~FF|ll    ؂؂ppxx ((x  0/м +? /)