ELF>@ @8 @--$$p~ p p E\Ȝ Ȭ Ȭ 888$$Ptd' ' ' <<QtdRtdp~ p p !!GNU4"Sy4+M1¢w  9 ! X   fy A d 1* b y e . g U  &U[Dzx L   1 w nK n O A  K6 f 8 vd rJ T!,<    8;   UQ l ';: t~ V  5kK  G \         `   x,    ' ( A?  . F" hj \ Bp  '   __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStruct_Py_FalseStruct_Py_TrueStructPyBaseObject_TypePyDict_NewPyExc_TypeErrorPyErr_FormatPyExc_SystemErrorPyErr_SetStringPyDict_SizePyObject_GetAttrPyList_NewPyFloat_FromDoublePyFloat_TypePyFloat_AsDoublePyErr_OccurredPyUnicode_FromStringPyUnicode_InternFromStringPyUnicode_FromFormatPyType_ReadyPyGC_DisablePyGC_Enable_Py_DeallocPyArg_ValidateKeywordArgumentsPyDict_NextPyExc_DeprecationWarningPyErr_WarnFormatPyLong_AsLongPyExc_OverflowErrorPyLong_TypePyLong_FromSsize_tPyThreadState_GetPyFrame_NewPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GetAttrStringPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyDict_SetItemPyType_ModifiedPyObject_HasAttrPyObject_CallMethodObjArgsPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyExc_ValueErrorPyLong_FromSize_t_PyLong_CopyPyObject_InitPyObject_GC_TrackPyMethod_NewPyTuple_GetSlicePyTuple_GetItemPyMem_MallocPyMem_FreePyErr_NoMemoryPyMethodDescr_TypePyDescr_NewClassMethodPyMethod_TypePyClassMethod_NewstrrchrPyImport_AddModulePyDict_GetItemWithErrorPyType_FromMetaclassPyLong_FromLongPyNumber_SubtractPyNumber_TrueDivide_PyType_LookupPyErr_SetObject_PyObject_GC_NewPyObject_RichComparePyObject_IsTruePyObject_RichCompareBoolvsnprintf_Py_FatalErrorFuncPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallmemmovePyMem_Realloc_PyThreadState_UncheckedGetPyThreadState_GetFramePyException_GetTracebackPyExc_StopIterationPyErr_SetNonesqrtPyObject_GetItemPyExc_RuntimeErrorPyUnicode_New_PyUnicode_FastCopyCharactersmemcpymemcmpPyObject_HashPyUnicode_TypePyList_TypePyTuple_TypePyObject_ClearWeakRefsPyObject_GC_DelPyExc_RuntimeWarningPyErr_WarnExPyException_SetTracebackPyImport_ImportModuleLevelObjectPyErr_GivenExceptionMatchesPyTraceBack_TypePyObject_IsSubclassPyTuple_PackPyObject_GetBufferPyBuffer_ReleasePyCFunction_TypePyObject_VectorcallDictPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyUnicode_ConcatPyImport_GetModulePyTraceBack_HerePyCode_NewEmptyPyObject_VectorcallPyObject_VectorcallMethodPyObject_GetIterPyGILState_EnsurePyGILState_ReleasePyObject_ReprPyUnicode_SplitlinesPyNumber_AddPyList_AppendPyObject_FormatPySlice_NewPyUnicode_JoinPyUnicode_ResizePyObject_GenericGetAttr_PyObject_GenericGetAttrWithDict_Py_BuildValue_SizeTPyErr_WriteUnraisablePyExc_GeneratorExitPyErr_PrintExPyErr_NormalizeExceptionPyType_IsSubtypePyIter_CheckPyObject_Size_Py_NotImplementedStruct_PyObject_CallFunction_SizeTPyException_SetCausePyExc_NameErrorPyExc_UnboundLocalErrorPySequence_ContainsPyUnicode_Format_PyDict_GetItem_KnownHashPyExc_ZeroDivisionErroratan2sinPyObject_SetItemPyExc_NotImplementedErrorPyLong_FromLongLongPyNumber_InPlaceMultiplyPyNumber_InPlaceAddPyNumber_MultiplyPyNumber_Absolute__isnanPyArg_UnpackTupleacosPyErr_FetchPyErr_RestorehypotPyObject_SetAttrsincosPyNumber_NegativePyNumber_MatrixMultiplyPyNumber_InvertmemsetPyUnicode_FromOrdinalPyNumber_FloorDividePyNumber_RemainderPyNumber_InPlaceTrueDividePyNumber_PowerPyObject_SetAttrStringPy_VersionPyOS_snprintfPyUnicode_FromStringAndSizePyDict_TypePyUnicode_DecodePyEval_GetBuiltinsPyType_TypePyImport_GetModuleDictPyWrapperDescr_TypePyDict_DelItemPyImport_ImportModulePyExc_ModuleNotFoundErrorPyCapsule_TypePyExc_Exception_PyDict_SetItem_KnownHash_PyDict_NewPresizedPyInit__rotationPyModuleDef_InitPyObject_SelfIterlibm.so.6libc.so.6GLIBC_2.2.5GLIBC_2.14 ui  ui p  x    &  ` Ў @ o& m&     0  @  P  `  p `v   v  u `u Џ u  `t s  `s  s 0 r @ r P ` `  p  ` `r  r q  А q   h  @h @a 0 ] @ W P `W ` 8 p W `E @8 0  # @ Б     k&  ` i& 0  @  P @ `  p  ( d& Z# X$ R$ В L$   @    @ 0  @ ! P   `  p       Г @   P    0  @  P  `  p @ 0   ` p Д   ` p    0   @ @ P  `  p P       Е  0 @   8  0  @ @ P ( `  p  @    F$ Ж (   b&   x 0 `& @  P 9& ` X" p ^& 6&  & &  &  & З  & \& @$   :$  0 4$ @ % P  ` h p  % .$ ($ S# L# И % "$  E#  ># $ 0  @  P  ` X p 7# P" H H"   Й  C% ` >%  9% Z& 0  @ $ P  ` $ p  $ 0% 8  0# $ К  p # %  @" +% 0  @  P   `  p  ` &%   # Л  8" X&   0" (" 0  @ % P !% ` % p *# %  " ## % % М # V&  % #  # # 0 # @  P % ` ( p % #  @    Н      $ & 0 " @  P  ` # p T& # " x # " О  %  $    0  @ |% P ! ` ! p    !  h П X ! ! R&  H P& 0 # @ $ P  ` " p  # & &  $ Р # " " !  $  0 " @ 0 P 8 ` x% p P $ % % % # С   $ $  p% ! 0 $ @ $ P " `  p % h% (  #  Т  $ #   # N& 0 d% @ % P " ` `% p  ! % %   У x x    h L& 0 % @ % P  ` $ p # J& ! "  # Ф % "    h  0 ! @ " P ! ` " p \% 0 0 # X X% Х $  X   ` " 0 ! @ % P $ ` % p H& " x # P ` Ц  h $ $   T% 0  @  P  ` # p $ P%  "   Ч $ x$   q$  H # 0 X @ L% P H% `  p h$ # " y# H s# Ш  8  (  F& " 0 H @ D& P m# `  p ! % B& % c$  Щ p ! 0    p 0 g# @ @& P % ` % p % x! 8 % >& % Ъ % % <& %  a# ^$ 0 % `  `     @  E  (  0  8 @D@ P -X @h 6x M   X  e0 mX x ȷ )ط    h  P  ( p@ H p   b ȸ 0 ظ ` _ @    ` (  @ H p1 m й  x` әh p @ ܙ  @  ` Dغ  ` D     @E( 0  8 pHP X  ` pHx      Ȼ л   '   3 0 @ =H 0 h Fp Mx @F T M @F a ȼ F p   `B  ` 8x   m ( C@ @ H  m Fؾ `  x   x    0  ? 0     p@8 @? ( X  `>X hp 0    @x >  b8 0@  H  P       p  0   0  9( H   ( 8  M @ R @  c         ( @;8 ` @ H pX @ ` ǔh @x   0^  Z P  4     `  A  ( ;8 x @ 7H `X `i ` -h tx @c z ` `^  r N  09 F d  `;  0B 8 ( )8 3 @ KH mX . ` Dh x @* ה  &   pi  Д   \  ` h  _( +` Гh Z  A    _ + h  \  ` Д( 8  @  H piX  ` הh x & >  D  @* K m .  ) 3  0B 8 d( 8 `; @ H rX N ` zh `x `^ - t @c 7 ` `i  ; x  A    ` 4( 8  @ ZH PX  ` h 0^x  ǔ @   p @  @; `        ( c8  @ RH @` Mh @ ( 6 =   > P '    (  H X @&      Ȯ (Ю 4خ : B C E F R i j l8 l n( r0 8 @ H P X ` h p x          ȯ Я د   ;  ( 0 8 @ H P  X  `  h  p x          Ȱ а ذ   ! " # $ % & ' )( *0 +8 ,@ -H .P /X 0` 1h 2p 3x 5 6 7 8 9 < = > ? @ȱ Aб Dر G H I J K L M N O P( Q0 S8 T@ UH VP WX X` Yh Zp [x \ ] ^ _ ` a b c d eȲ fв gز h j k m o p q s t u( v0 w8 x@ yH zP {X |` }h ~p x          ȳ г س          ( 0 8 @ H P X ` h p x          ȴ д ش          ( 0 8 @ H P X ` h p HH HtH5 % @% h% h% h% h% h% h% h% hp% h`% h P% h @% h 0% h %z h %r h%j h%b h%Z h%R h%J h%B h%: h%2 h%* hp%" h`% hP% h@%  h0% h % h% h% h% h % h!% h"% h#% h$% h%% h&% h'p% h(`% h)P% h*@% h+0% h, %z h-%r h.%j h/%b h0%Z h1%R h2%J h3%B h4%: h5%2 h6%* h7p%" h8`% h9P% h:@%  h;0% h< % h=% h>% h?% h@% hA% hB% hC% hD% hE% hF% hGp% hH`% hIP% hJ@% hK0% hL %z hM%r hN%j hO%b hP%Z hQ%R hR%J hS%B hT%: hU%2 hV%* hWp%" hX`% hYP% hZ@%  h[0% h\ % h]% h^% h_% h`% ha% hb% hc% hd% he% hf% hgp% hh`% hiP% hj@% hk0% hl %z hm%r hn%j ho%b hp%Z hq%R hr%J hs%B ht%: hu%2 hv%* hwp%" hx`% hyP% hz@%  h{0% h| % h}% h~% h% h% h% h% h% h% h% h% hp% h`% hP% h@% h0% h %z h%r h%j h%b h%Z h%R h%J h%B h%: h%2 h%* hp%" h`% hP% h@%  h0% h % h% h% h% h% h% h% h% h% h% h% hp% h`% hP% h@% h0SHHPHT$0HL$8Ht$(LD$@LL$HJHT$`HL$ D$HT$HL$HtBLPLL$H׹1҃/w ΃LHHLA0tA0MHH9uHP[ATHUHSHPuHHu[H]A\5HPHtH HqH9~jHDu"HPH H5AH81kHu0H t&HHH H5AHUH816HHHHAątiD[]A\AWIAVI,E1AUIfAATMUSHH8HT$ HHHL$Ѓ?LL$(?HHT$D$ HOHT$LL$(H1H9}IttHtHHHLYIHuE1E1E1LAIHtCt?1E1%D$IHHIHL$1LIHHI E1H L$HAH7 57 HATSt$ t$(t$HPPAUPPAWRH`IHt ǀLsLsHExHHEuH3H8L[]A\A]A^A_AVIAUIHATUSDHt@H; HuE1tHLL!AHEx2HHEu)HH AH8tE1[D]A\A]A^AWIAVIH5AUIATUSHAPIHtLHHHt%tGEB1LrHrLLH5HHH H81LHAuB ILH )< Hr@ H=PL H$H3 HH @ H=@ ILH=xPLw (6 f> )$OH2 H(> H ": IL0 fm> H? LH=P)$H2 H8= 5< IL#  8 =8: LH : H? fmH=Ofl)D$) $H;2 HH[? ILH : H7? H=`OL{ H$_H2 HH? ILH 4? H> H=OLv H$H? HD$H= HD$H,? HD$H1 H,8 5d= ILx Hk> H : LHz> H=NflHD$)$HR1 H(5 9 (%s6 IL fl59 fl%6 L(_6 ( : fl08 fm : )t$ H< H u9 )d$@H= H=M)\$P(=9 (-: f=&: f-9 (; (?8 fv9 f7 D(7 H$fD: )|$D)$)l$0)T$`)L$p)$HV0 H=9 5'; ILeb 7  7 L6 .7 flf5< =< -; (H8 )T$H z8 H< flflH=LfHD$P)$)L$ )d$0)D$@H/ HH6 ILH68 H 7 H=LLa H$H< HD$HHT$HM5 HD$PHT$H6 HT$H: HT$ H\8 HT$(Hh7 HT$0Ht8 HT$8H: HT$@H; 6H/ Hi=4 -!7 IL_ 59 %9 L_6 9 fl7 =E: )d$flf-5 55  7 fm)\$ H 6 Hc; H=\Kfl)T$0f),$)L$@)D$PzHL. H=L5  u7 IL 8 -9 Lf5 =78 )L$+8 56 flH Y6 H: fl)D$ H=Jf)$)\$0H- H : 5a4 IL P: -9 LH 3 H`: fmH=EJf) $)D$Hc- H 3< =,7 ILj %7 -d; L5j; < f(5 D 8 fmfl)d$-; 5;  z; )|$0H 2 H9 )\$Pfm-8 (H=}I)t$`f-9 )$fA),$-S; f)d$ %R; f)L$@(f% ; )L$pfl)$jHT, H 51 6 ILa  8 8 L%7 fl8 fH4 5u3 )T$H !2 H8 fl)L$ H=HfHD$@)$)D$0H+ H H8 ILH4 H 2 H=8HL H$Hv8 HD$HHT$H2 HD$PHT$H0 HT$HP4 HT$ H\3 HT$(H5 HT$0H0 HT$8H6 HT$@H7 H+ HQ Hp2 ILH 0 H7 H=}GLs (7 HD$f7 )$H* H H7 ILH 0 H]7 H=GLt H$Hl7 HD$H1 HD$mHw* H =1 %h4 IL6 5  @2 L5 5/ ff6 =g0 %04 fl)T$H / H6 f)L$ H=`F)$)d$0)D$@H) H H6 ILH / Hb6 H=FL H$H14 HD$H3 HD$H6 HD$H0 HD$ H!2 HD$(H1 HD$0BH\) Hu H0 ILH1 H (0 H=ELzR H$HO5 HD$HT$H~4 HD$ HZ7 HT$H5 HD$(H( H 1 -5 ILR e5 =6 L2 52 flHJ2 fm)L$H 2. H#5 H=Df)$HD$0)D$ CHm( Hv4 3 IL  H 1 H4 LH=dDf)$H'( H(2 %- IL^  4 -H3 LH~0 H _1 flHd4 f)D$H=CHD$ ) $H' H- 5. ILM_  4 ='2 LH, H - flH3 H=|Cfm)D$HD$ ) $HV' HGH3 ILH 0 H3 H=+CLQ H$H5 HD$HM2 HD$H) HD$H+ HD$ H4 HD$(H& H2 %A. ILY 52 I2 L=o1 -81 flf/ %a1 f=2 )D$ 2 f/  / )t$J3 Dr/ )l$@fl=b1 H2 )d$PH 1 H2 fm)\$`fl=4/ )D$0H=AH$f=d2 )T$p)$fA)<$H% H(9, H+ IL(n fm- H y, LH1 H=pAHD$)$)H% H\+ -/ ILd Hc0 H - LH1 H=AflHD$)$H2% H0 %K1 IL`  z+ -3/ LH 90 HJ1 flH=@fl)D$) $lH$ HH.+ IL\P LH$H) HD$H* HD$Hn2 HD$H:0 HD$ Hf) HD$(Hr* HD$0H^& HD$8H*2 HD$@H. HD$HH2) HD$PH>* HD$XH") HD$`H.* HD$hH* HD$pH* HD$xH"1 H$HC1 H$H& H$H+ H$H. H$H0 H$H% H$H% H$H( H$H) H$H\1 H$Hu) H$H/ H$H) H$H- H$Hi% H$H0 H #( HL/ H$H' H=>H$H. H$H # H$H)0 H$ H. H$(HC0 H$0H" H$8H0 H$@Hn+ H$HH. H$PHS" HH. ILH - H'/ H==LZ H$H/ HD$H") HD$Hv/ HD${H! H-. 5, ILn H M. H. LH=L=f)$-H! H`H- ILH ) H- H==LE H$H. HD$H.- HD$H]! HH, ILH H' Hi- H=<L  ( ' (M) HD$0f - (H- )L$f & f. )D$ )$RH HH|+ ILH + H- H=<L ] (S+ ( \+ HD$ f.+ f %+ )D$) $H HtHExHHEuH1HExHHEuHHh]A\AVIHAUIATUDSHIHH@u H LLH5FH81sML$(ID$ Mt ILLIL9v#H ILLH5'H81],u3H9s.RL1IPMH11Y^y LE1$X[L]A\A]A^ATE1UQH5 * HtN1HHIHu vHuH H5H8KHExHHEuH2LZ]A\AVIAUIATE1US2Ht7H5 ALHLHIHExHHEuH[L]A\A]A^HGHH; u 1zAWAVAUATUSQHtIIMMHH H(HC`HLhL9tVHEt:L}1I9~ L;lt7HE1M9~OJtI9t L܍uIHLȍt%H{`HC`HtHx HHuZL[]A\A]A^A_ATIUQH52' HHu E1LH{AąxH VDZ]A\AVIAUATUVHH5) HIHHH5F% HtIHu HEy7FH;% L;- uL;- tLtHHEuH1L\UHtWHExHHEuHI$x"HI$uLHtYL]1A\1A]A^V{ZL]A\A]A^AUIATUHHuV]LA\A]9EtELHtIHExHHEuHMtL]A\A]AWAVAUATUSH(L5- Mt)1I9KHc H5H8oKtH=- H H7tH= H" H?H " H 1H5 H HH  H 1H5 H HH  H 1H5 H HH H5 1\H HLLL17Hh H]H=@ LLH~ H;H ^ H_ 1H5A H H L5e 1LH HLL1H HL1}H HLLL1XH H~H5Q 15H H[H5 1HHx H5(H=[ H=  H= H5$HH H9Xu+Hp(H= H  H H HH(H=| H5HH9Xu+Hp(H=F H X{H Q H * HH(H=/ H5pHPH9Xu+Hp(H= H rH  H  HH(H= H5+6HH9Xu+Hp(H=, H >SH 7 H  HH(H= H5HH9Xu+HPHp(H= H H HX(HH H59 H= cL5& H5 LL- HHuH5 LHH @_H=R H=+ %DH= H= )H= H= H=! H= H=HH AHHH5H HHExHHEuH;H=_HHA HHyH5HS HxAH HHkH5^ZH* HGA0HHCH5-)H HAHHH5H HAHHH5H HAHHH5H HAHHH5ieH] HRAHHqH584H4 H!AHH>H5H  HAHHH5H HAHHH5H HAHHH5tpH H]AHHH5C?Hg H,AHHzH5H> HAHHSH5H HHExHHEuH+H=OHHApHH9H5{H HtlHBHt[AHHH5=H Ht.HHtHExHH={HL$PHT$HLHt$@$l^HEt9L}1I9~ L;ltH1I9~HtI9tL]juHHLIjiQL- AEtAEH: Ht$`LHD$XHD$`藄HIExHIEuL+Ht%11HznHExHHEuHHL$8I~hE1E1HT$0Ht$(A3dH|$@I2H|$H?2H|$P521.2H1H="HH5 H= He}IExHIEuLTL LV 1H=m H  Ho *FIHEH5W H= HAIExHIEuLL L H= H  H EIHH5? H= H.IExHIEuLwL @ Ly H=M H . H JEIHH5O H=P H达IExHIEuL"IHu1E1E1AH%QH H5 H躶|L L H=x H y H DIHZLAEtAEIExHIEuL]H5 H=o Lݽ'IxHIuL(H5 H=: IHHIHIxHIuLޯH5G H= L^IExHIEuL觯L L H== H ^ H zCIHu1E1E1AHH5 H=j HؼgIExHIEuL!H5z H=3 IHtHݾIH6IExHIEuLٮH52 H= LYIxHIuL褮L L H= H [ H wBIHu1E1E1AHH HtH5 H=Q L迻IxHIuL H5{ H= IHtHƽIHdIxHIuLĭH55 H= LDFIExHIEuL荭L v L H= H D H `AIHu1E1E1A$HH HtH5q H=: L診IExHIEuLH5: H= oIHzH詼IHIExHIEuL襬H5 H= L%lIxHIuLpL a Lr H= H ' HX C@IHu1E1E1AHfH HtH5L H= L苹IxHIuL֫H5 H= TIHtH蒻IHIxHIuL萫H5 H= LIExHIEuLYL R L[ H=o H  Hy ,?IHu1E1E1A9HO{H5k H= H芸-IExHIEuLӪH54 H= QIHtH菺IHIExHIEuL苪H5 H= L IxHIuLVqIHH H5 HL ( L) H= H H =IHHO HtAMtAIxHIuL谩H5 H= L0`IExHIEuLyL L{ H=O H 0 H L=IH%H5a H=R H!IExHIEuL L  L H= H H <IHH1 HtH5 H= L:IExHIEuL胨L L H= H : H V<IHH5[ H=\ HʵIExHIEuLL 4 L H= H HC ;IHRH; HtH5 H= LD8IExHIEuL荧L L H= H D H `;IHH HtH5O H=P L辴IExHIEuLL 8 L H== H Hw :IHH/ HtH5 H= L8IExHIEuL聦L L H= H 8 H! T:IHSH5q H=Z HȳOIExHIEuLL R L H= H H 9IHu1E1E1A` H3H5 H= HBIExHIEuL若H5 H= IHtHGIHIExHIEuLCH5l H=U LòIxHIuLL W L H= H H^ 8IHVH6 HtH5 H= L?<IxHIuL芤L L H=@ H A H ]8IHH5b H=c HѱIxHIuLL u L H= H H 7IHH5 H= HcIxHIuL讣L  L H=$ H e H 7IHH HtH5H H=q L߰oIxHIuL*L L, H= H H 6IH6Hb HtH5 H= L[IxHIuL覢L  L H= H ] H> y6IHH HtH5@ H=i LׯIxHIuL"L L$ H= H H 5IHu1E1E1A HDHT HtH5 H= L=FIxHIuL舡H5 H= IHtHDIHIxHIuLBH5 H=T L® IExHIEuL L L H= H H[ 4IHu1E1E1A H-H- HtH5g H= L&t IExHIEuLoH50 H= IHzH'IH? IExHIEuL#H5 H=5 L裭 IxHIuLL w L H= H Hv 3IH H> HtH5` H= L IxHIuLjH=S NvIH 1H|$XH HD$`订IHHK H \ HPtL|$`HL$hLLHL膣HIxHIuL̞IExHIEuL賞Ht!H5o H= ,IH E1M1E1E1HA LHHD$`HD$XoIIExHIEuL8HExHHEuHMuE11E1A HEqL׭HH IxHIuL՝H5 H= HUc HExHHEuH螝L / L H=4 H U H q1HHu1E1E1A HH HtH5 H=K H蹪 HExHHEuHH5 H= HHzH躬IH HExHHEuH趜H5_ H= L6 IxHIuL聜L  L H= H 8 H T0IHuA1E1E1HH5# H=D H販 IxHIuLL L H=S H H% /IH H5 H= HD IxHIuL菛L-x H-Y L=R 蕠IHu1E1E1AbHH5\ HHAy Ix:H5 LL"xM H5 LLxg HIuL1E1E1AbHAE11E1AH"1E1AHڱE11E1AH1E1AHE11E1AH1E1AHdE11E1AHJqE11AH)UE11AH 91AH E11AHذ1AHE11E1AHE11AHE11AHh1AHO{E11E1AH5a1E1H$AJE11E1AH01E1HAE11E1AjHӯ1E1H¯AjE11E1AmH1E1HAm1E1HzAE11HcA1E1HLArE11H5A[1E1HAD1E1HA-E11HA1E1HٮA1E1H®AE11HA1E1HA1E1H}A$E11HfA%1E1HOA$u1E1H8A^E11H!AG1E1H A01E1HA9E11HܭA:1E1HŭA9E11E1AH1E1HAE11H}A1E1HfAE11E1AHFr1E1H5A[E11E1AgHA1E1HAg*E11E1AH1E1HӬAE11E1AH1E1HAE11E1A&H1E1HqA&E11E1AHQ}1E1H@AfE11E1A H L1E1HA 51E1HA` E11HAa 1E1HʫA` E11E1A H1E1HA E11E1A Hy1E1HhA E11E1A HHt1E1H7A ]E11E1A, HC1E1HA, ,E11E1Aa H1E1HժAa E11E1A H1E1HA 1E1HA E11HvA 1E1H_A 1E1HHA nE11H1A W1E1HA @E11E1A H&1E1HA E11E1A HɩE1E1HA E1E1HA E1E1HA E1E1HoA E1E1HWA }1E1H@A fA1E1HOE11E1AH51E1HnAE1E1H1AL < L 1H= H M HV i%HHt8H5R L-c M9nuHNHLGHL.7E1E1H\AH5* HE1/HExHHEuHѐL L 1H= H H $HHiH5L M9nuHNHLO]HLj]HExHHEuHIH Ht$`H= HHD$XHD$`H? Lt$pHD$hc1H~HH5 H= HϕHExHHEuH辏IxHIuL觏L ` L 1H= H a H }#IH%H5 H=s HKIxHIuL<–IHzHo H5x HvHY H5: LoHC H5L LĔhH H5 L覔aH H5 L舔ZH H5 LjSHk H5D LLLHU H5 L.EH? H5 L>H H5 L7H H5 Lԓ0H H5 L趓)H H5 L蘓"Hi H5 LzH H5 L\He H5 L> H H5 L H1 H5 LH+ H5 LH H5 LƒH H5 L訒H H5Z L芒H H5 LlH5 H=v LNIbHIVL7IE1E1HeA鋻E1HPAvE1H;AaE1E1H#AbIE1HAb4A1E1HgAE11E1HעA1E1HA1E1HպA1E1H龺A1E1H{駺A1E1Hd鐺A1E1HMyA1E1H6bA1E1HKA1E1H4A1E1HA1E1HڡA1E1HáA1E1HعA1E1HA1E1H~骹A1E1Hg铹A1E1HP|A1E1H9eA1E1H"NA1E1H 7A1E1H A1E1Hݠ A1E1HƠA1E1H۸E1HAƸH([]A\A]A^A_H= H=I HB H9tHv Ht H= H5 H)HH?HHHtH= HtfD= u/UH=. Ht H=҄ }h ]{f.f.HHHHt 1DHHHHt 1DATIUHSHHHt HՅu!H{1Ht[LH]A\f.[]A\ff.ATIUHSHHHt HՅu!H{1Ht[LH]A\f.[]A\ff.LGPAtALff.fLG`AtALff.fL! AtALf.HGhHttDH ff.@Ht;Ht6H9HOHVH9t(\Ht 1~\HtÐ1H91DF\f9G\u΋GX;FXuATUSH_H9^t|H_ H9^ tiH^(H9_(tVH_0H9^0tCH_8H9^8t0H^@H9_@tH^HH9_Ht HFPH9GPu{\St[]A\Ë^`19_`uLgHnMtOHtI<$1Ht,HtHt1HDI9Du%tHI<Hu1H|f11Hff.@|u H fHI HGXHttDH ff.@HGPHttDH١ ff.@Hu#10Htf@HfH H5 18HHtt f.HH|$zHtH|$HtHff.HG@HttDHH|$"H|$HG@Ht tHfDHHGH5HPHn H81<1HDUHHSHHHGLH@tV$HHH[]AukHLFI$HvHH[]A@HLF1MtHCH HH H5H81~@H9 H5H8H1[]fHtHL $HT$ L $Ht$H`)fDHL $HT$߀L $Ht$H#HCH H5HH H81׈pfHL $HT$菀L $Ht$HHCH HGHHtfDCgSHHHH6 H9Ft(sf. {(H[f.Ff. zuD$蔅D$Ht1DH=@HGXHttDSHGHHxHtچHCXHt t[fDH tff.HGHHttDSHGHH8萆HCHHt t[ff.HwPH1H=~k~ff.HtHx HHt f.[ff.ATSHLMtA$tA$HL[A\DHHHtYHHtHPHtLg A$Lt?A$HxHHuLDL% A$ofATIHH HFHD$t^H@h1PHD$HHt0H LH5H81轅H|$Hx HHtH A\ÐH A\@HD$Ht$tH|$1HT$Ht$3HL${tff.UHGHHPt3HD HѾHH81[AHEu ]fDH H5zH81HEx HHEt1]f.H8~1@ATUHHGHGHvNHHH)HHtbHHcAH9t5Hub݁HtXAH)‹GHHcAH9u3HD]A\GWHH HHcAH9tDH9 H5AH8T~fGWHH HcAH9uHD]A\DH@`HtnHHtbHHtXH" H9Eu6@HAHE>HHE0H|#HHHu輀HHD H5{H8}ATIHUH~HtQHID$LHH@pPIHEx HHEtHL]A\@H(|HL]A\DE1AUATUSHLgpMtA$tA$HL[]A\A]fHhHt`HHtLkhP1HLHzIHEx HHEtMtLcpMu#LkpM@Hx{L%W zIEaHIESLH{LcpBff.@UHGHHHrH}HtHHEx HHtqH}HtHHEx HHtHHUHc Hz u&!P H H¸]HH@]z뱐{zfIHUH(H9B04H|$]ff.UHGHHHrH}HtHHEx HHtqH}HtHHEx HHtHHUHc Hz u&!Pp H Hp]HH@]y뱐{yf~IHUH(H9B04H{$]ff.UHGHHu~HvH}HtHHEx HHtEHUHcb Hz u#PM H޻ H(]@HH@]xf}uHUHXH9B0`HzP]ff.UHGHHH袀H}HtHHEx HHH}HtHHEx HHH} HtHHE x HHtGHUHc Hz (u% P H H]fDHH@]wf{wYfDkwnfD| HUHH9B0Hvy]ff.UHGHHu~HfH}HtHHEx HHtEHUHc Hz u#P Hι H˜]@HH@]vf{uHUHXH9B0`HxP]ff.ATIUHSHHHt HՅu1H{Ht LՅuH{ 1Ht[LH]A\[]A\ff.ATIUHSHHpHt HՅH{ Ht LՅH{@Ht LՅH{XHt LՅuH{`Ht LՅumH{8Ht LՅu[HHt LՅuFHHt LՅu1HHt LՅuH{x1Ht[LH]A\D[]A\ff.ATIUHSHHHt HՅuAH{8Ht LՅu/H{@Ht LՅuH{ 1Ht[LH]A\fD[]A\ff.H9t+HXHt/HJH~F1 fHH9t7H9tuf.HH9tHu1H;5N f1ff.fHLOH?t%HupHHu6IAH6HfHt{HH>HHDHa IIH qH5qH81z1H@HytH qH# IH5qH81yDH SrHysHHHx HHt)H H5~H81yHHt$rHT$ff.@Hw asHwtHtH`HH  uK~GH ATf HHL¸A$LAD$pLAsLA\H01ff.fHt FsfDtHAWAVIAUATIUHSHhLG0MtHwHhHL[]A\A]A^A_!HVL/vIHL19sIHmLLHHIIEx HIEtOHhL[]A\A]A^A_DL~HvHu;HhLH1[]A\A]A^A_Af.E1L qfDHBHD$HtJ<8LD$HxIH4MLD$tWIF I9IGHL1HHAoDADHH9uLHAt ITITH|$LD$sLD$HHD$KD1AL|$ HHD$HL$PLHD$XH|$HLl$0IHl$8IHIHD$HLD$(EHD$PHPH#tHL$XtH|$JDHD$J ILLHLuuL|$ LD$(ILl$0Hl$8HHL$LLHAIH\$Hx HHH\$H~nLd$1DHH9tWIlff.AWMAVAAUIATUHSLHH= HT$lHT$HLfInfHnDIflH@(H@p@Ht EtEfIl$ AD$@tAIT$PID$XID$8M|$`tAHt tAEfI\$hID$xA$%IDŽ$A$~?==uEH>ID$0LkHL[]A\A]A^A_tCuHID$0H H5hH8kI$x HI$tHE1ID$0DH9ID$0vH1ID$0^L(jfDH9tCHGH;0 u>HOHt1uHHȃffH;1 tgUHhjHHH; H;-S u,H;-u t#HCnHUx HHUtAH]f1H*f.GE@GH9HD$ $iD$ 뭸AWAVAUMATUSHHGHIHHIIHuIDIFIHt7H8LktnuٸH[]A\A]A^A_DHH9HLH8Pkt܃uH LLH53uH81nfI)IM4$H[]A\A]A^A_fDH LH5tH81nH[]A\A]A^A_Ð1EfG<4w9HHcHfDf.f.HH- @H5tH81n1Hff.f.f.UHH$H$H$L$L$t@)$ )$0)$@)$P)$`)$p)$)$Hl$ H$D$HD$HH$HL$HsD$ 0HD$eHH=hDHH;N tHtP8HG~Hu/LMt&IHxHIuLfDBH1DH=As@ATIUHSHGHHtVH=?sdu31LHIjMtL[]A\iIHtE1[]LA\[1]A\kH H5rH8_fff.fAVAUIATUH=U SHcD%< DHcH;l1 ~.S9})HcHD9}9|9A9LcIIA;n= A9D)؍PIcHHHHHD9HMHHD9HMHtHHHiAEAAnM.D%O tAE[]A\A]A^DD3 A9D`@IcHeHHtD% LcD% IH IA92|kHtH H˺ H hL(AE_^@HcHL4+G1AEI>M.tAEH"HH[]A\A]A^>cff.H;= tHtG8~u tD@H1DH=6pfAWAVIAUATUSHGxHIaLk HHC HtH@(HtLxH`IGHEhHLHHC(LmhSH{ IHC(HEhHC(HtDcHHt7H@HxHtH@Hx HHtiHEx HHEt'{xM,$t/H[]A\A]A^A_fHa{xM,$u1MH[]A\A]A^A_afHtH~ D$ H:xcD$ fSH@LMt L;a~ u'HHuHHH[ALtAIPHtLZbH[D7wYYYXfXf.wQZhf.LGPAtALff.fAWAVIAUIHATAUSHH(hH IAAG D$HA <IG8HD$L9IDE1HD$0DHr8A9t_I1LLcIIL9l$IUHZHtHH)L9|EJ  tHr(Hz8@HDA9uD$LHډHHH|$dcfHy| H5mH8`Ix HIE1H(L[]A\A]A^A_ÐAH?HHFAAED$AG AA IO(IW8@HDHL$f.L^mAWAVAUATIUHSHH(LwHL$LD$IHEHIL$(IMl$8HL$IGIHHL9puL@M;D$uDX AT$ Dމ@@@8uA >Hx8 M\$8@LI`uHD$I)IL8H([]A\A]A^A_DH9Ml$(M|$8HH9HHL;puL@M;D$uDX AT$ Dމ@@@8uA Hx8 M\$8@LI5`uHz HT$LH5;jH81c3H(1[]A\A]A^A_L\$@MDHx(H8A@HDHx(H8A@HDSaIH@MMD6ff.H9t3HGH;y u.HOuHHÐ1DH;x tgUH]HHH;Ey H;-x u,H;-y t#H`HUx HHUtAH]f1H*f.GE@GH9HD$ [D$ 뭸H9oUSHHx H9GH9FHW1H;VHOLFL9AHAt IDW DN 1DEAAD8u]A H8A Hv8DD1E9uHtH]H[]fDHw H9u1uH9u1uֺA[HHH;~w H;-,w uH9u8HUxHHUuHD$ GZD$ yfDfH^fDDD(HG(H8A@HEHF(H8A@HEDDfATUHSHHGH;:w H; v t[HXpHH{tH[IH#HHSI$xKHI$uALHD$KYHD$-@Ht HyHGtH;Es}HDtH[]A\fDHXhHtWHCHtNHyutHH[]A\Ht HyHGtH9EvHUH‹u@H[IHtHHHYI$e@HHtHt$HHt$HxHHCd12Hu Ht$H8%Zt,[HCHt$2ff.LGH?t HA`HtH>HHA`@HHut IH VH5 VH812^1Hff.H?IIHHWtLWHw8HBLL@Ht#LIHw8HHBLLHHs HH %VH5qUH81]1HHLOH?tHu`HHu'IA1HHtsHu~H>HDHas IIH zTH5TH81]1H@HytH TH#s IH5TH81\DH SUHywSHHHtHHCx HHGH{8HtHHC8x HH2H{@HCHHtHHC@x HHH{ HtHHC x HHH{hHtHHChx HHH{pHtHHCpx HHH{PHtHHCPx HHH{XHtHHCXx HHH{`HtHHC`x HHt [f[Tf.TfDTfDTfDTfDT fD{T fDkT5fD[TJfDUH\H}0tHRExxH UHaVuHu\HH]DT@]ff.H ( uS~OH ATf HHLID$ LA$AD$QLxTLA\fH01DH ] uK~GHu ATfA HHL˜A$LAD$YQLTLA\H01ff.fH } uS~OH ATfa HHL(ID$LA$PLSLA\H01DH U uK~GH ATf9 HHLpA$LAD$yPL1SLA\H01ff.fHo LGHWtMtIx HIt1HLQ1Hff.fHn LGHWtMtIx HIt1HLQ1Hff.fHt+tLGXHwXMtIx HIt1fH5An HLDQ1Hff.fHGt{HGHv)HHH)HHt=HtUfH)‹GHDGWHH f.GWHH HUHH@`Ht~HHtrHHthHm H9Eu'H8HUx HHUt&H]HHHuHHHD$#PHD$'THuHl H5NH8Pf.HH;5l tKHtFHF tQtLHMtIx HIt1HfD1@LOfDH!l H5]H8jPHHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDHQk H5'NH8O1HHDHH9tHuH;5k tfDHik HNH5\HWH81(U1@ATIUHHLHMtIx HItHMtI$x HI$tAHtHEx HHEt H]A\fHH]A\1NL(NfDLNfDHHtOHFtBtLGXHwXMtIx HIt 1HDLMfDHYj H5\H8NHHHtOHFtBtLGHHwHMtIx HIt 1HDL@MfDHi H5[H8"NHHHtOHFtBtLGPHwPMtIx HIt 1HDLLfDHYi H5[H8MHHHtOHFtBtLGPHwPMtIx HIt 1HDL@LfDHh H5ZH8"MHUHSHHh H9tHHucHH1i H5ZH8KtHHHtHx HHt 1H[]KfHFuH$h H55ZH8mLfDUHSHH8h H9tHHucHHh H5ZH8KtHHHtHx HHt 1H[]JfHF uHtg H5ZH8KfDAUIATIUHHHt H9J(I}`IU`HtHx HHtZMtI$x HI$tKHtHEx HHEtH]A\A]f.HH]A\A]JJ럐LJfDHHHT$pHHT$WfDHHtOHF tjtLG@Hw@MtIx HIt 1HDLIfDH)f H5bYH8rJHHf H5jYH8JJHG@HFH@H9t*HXHt.HJH~v1 HH9thH;tuf.HH9tHu1H;5e fHDHH9tHuH;e tfDIM9uG1@SItLVM~1 @HI9tH;|ucE1DJTHBt@tH94HXHTLAMo1HI9[H;TufDAWIAVIAUIATUSHH_`HG`HLcA$tA$HHL$HHL$HHt tEA$tA$tIEhM&IH)L(HI$x HI$tDHtHEx HHEt=MtIEx HIEt6H1[]A\A]A^A_DLFfDHFfDLFfDHGhHHHL(H{AUHc ATIUL(IHtjHA$tA$Le1HLLIHEx HHEtAMt/DHH@hH8t:LL7FI$x HI$tu]A\A]HEfDAEtAEI|$(ucH}`Le`HtHx HHt6IExHIEu]LA\A]E]LA\A]sEkEf1LC@ATSHLMtA$tA$HL[A\DHHHtYHHtL`A$LtA$HW HtHxHHuDLDL%a off.AVIAUIATUHHtBHka HH9t:H $a H5TH9Jt(Ha H8H]A\A]A^MEDH)a 1I~HHс@I9H]A@OM(I}H@t.I9SLH|$IH|$yIEH+AEtAE1LLIIIExHIE MtH ?H FH >H 7?H 2?GDE1qAWAVAUATUHSHHWL:ILrMDJXE1HL[]A\A]A^A_D95PEGHE(HEEHHT H5JE1H88례}Dt H}9HtH}!IpHLm8LcTEDMJHM 1HIH5LH)HM &HGHE(HE HEEHE(HE0EDEFCHSHvHUH1H}@t\HP[]A\HqP DH5GH81E:H}HW H9E@t5H2HP[]A\HV H]@HP[]A\@HE@fDfH EfHnHV flH]@E0HP[]A\HH|1H #3AHOHL`;PHO H5jGH81p9XZ$ff.@SHHpHtHHCpx HHH{ HtHHC x HHH{@HtHHC@x HHH{HHtHHCHx HHH{PHtHHCPx HHH{XHtHHCXx HHH{`HtHHC`x HHH{hHtHHChx HH|H{8HC8HtHx HHgHHtHǃHx HHLHHtHǃHx HH1HHtHǃHx HHHHtHǃHx HHH{xHtHHCxx HHt 1[fD01[0fD0fDs0fDc0&fDS0;fDC0PfD30efD#0zfD0fD0fD/fD/fD/ff.UH8H}(tHh.HH]/UHGHHuFHEH;[L tHtP8HE~EHEfHE]H@@@uOHH9P0uHZ1t]@uAH}HtHHExHHu.fD 4UHE랍rH= <l1wH q HGIH9LL L9t}LXMMZM~$1fItH9L9HI9ut'H@8HHtH1Lf1ɺLq2HwVtDATE1 UI)SH^uLgH=V;,umLHI2Mt]L[]A\H9gHG0oHHH9tHuH5J H9uHHwVw&fDE1v1IHuHI H5:H8H.{HHL9tHuI9tDHHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDHI H5+H8-1HHDHH9tHuH;5I tfDHNH%I H,H5/ALGH8121ff.fAUIIIATI?UHSHHno HwMItCH9HF8HDHHH1L[L]A\A]@H9H=8I H9LXMI[H~&1@ILH9"H9HH9un MHH1L[L]A\A]/DH9H=H H9LXMI[H~&1@ILH9H9HH9uHL%m HH=28)1LHI.MHL[]A\A]@HE0HDHH9t4HuH pG H9t#HHH9tHuH9FfDHMA1HYE1 uLeH={7(1LI?.ML-IHHF H5W7H8* HHH9t4HuH F H9t#HHH9tHuH9fDHMAM)HYE1 uLeH=63(uL;E1HMA@HMAuHLH1[]A\A]1/S'Hx`Ht LGMu1[@HHE H0L9u&HC`HxHHu(1DL@AEtH{`HC`Hu1ff.AWAAVIAUIATMULSHHXHl IAH9t0HXHHqH~.1 HH9tH;TuHLHL1D0 HHHd`fo HL4$H'HD$H@@H;HCA~\S)D$ fHD$H\$HD$@)D$0u-HKLH@HHAHHAHx\StHT$HuhIHHUXMNL9cH}PHMpAEH9~JHuxAAHEtH>H9 tH6HH?H1H)H9HHHyAE~JHMxƃHtHq3Hm tHIHH?H1H)H9AAtHHHxI<$I|$HExHMpHHIT$PH@ID$XHID$HHHI$HQIT$H@I$HE@I,$ID$E8MuHX1[]A\A]A^A_fHH9PHuH;LB U9fH9HA H5:H8&MtIx HIHX[]A\A]A^A_EH&!fHHt H8E1HA DH5;H81*_MdE13H@ H5f8H81*@fHH AL# IT$XHQIT$PUUH'ufH #H!IMHHGHHOHH @ VH5q8H81)XZXH? H5m7IH81)0Hd1H? H5i8H81)IDŽ$HAIDŽ$ID$NHf? H59H8#fA$AHy!Hyy GH> DH58H81(&H> 1H57H81(AT1IIHH;5> LD$ LHH HD$HL$H|$H; [BfoL$ foT$0fo\$@fod$Pfol$`fot$pA $fo$AT$fo$A\$ Ad$0Al$@At$PA|$`AD$pfo$fo$fo$fo$fo$A$A$A$A$A$HLA\fDfo|$0Ht$ fot$ foD$@A|$fo|$`A4$fot$PAD$ foD$pAt$0fo$A|$@fo$AD$PAt$`A|$p$ffot$pfo$fo$A$foD$0fo$At$Pfo$fo$AD$foD$@fo$A|$`AD$ foD$PAL$pAD$0foD$`A$AD$@fo$A$A$A$A$ff.AUIATIUHSHHXH[c HAH9t2HXHJHqH~41DHH9t"H;TuHH=:9 5-HH #9 1Ҿnw HHuHdnHKH=8 HuhIEfHnfHnHH@@flI})$fo Ll$I)D$ fHD$HD$@)D$0HHUXH}PHMpA$H9~JHuxAAHEtH>H9k tH6HH?H1H)H9NHHHyAD$~IHuxǃHtH~H9 tHvHH?H1H)H9AAtHHHxHyAD$^HMxƃHteHqtXHtWH9 H5w2H81#sHH9HuH; : fH9u" HIHH?H1H)H9HJ9 H5;2H8MtIExHIEHX[]A\A]DEtHZfQHHt H8;E1H8 DH52H81"_tHHHxH;H{HMxHEpH0HHSPHQHSXHQHS`HH:HH)HHHH9@H9@oKoH@HC HBHHE@H+HCE8MuHX1[]A\A]MdE1jHr7 H5.H81D!:f.HHd2AnDLHS`HPHSXHPHSPUU@HYHHAAqH9:PDHHH AHOHL"PH96 H5.H81 XZfH6 H5-IH81H-1HH)HˆH"o fvcH@HǃHC HKAH|5 DH5.H81P+H\5 H5/H8f H:5 H5.H8HHKH HHHHKHJHH@HC HBH+E1H>yx"UH~ydHyAyJ=HHǃHSHPHǃHSH@HǃHC Hb4 DH50.H816A1H54 H5f-H81 AWAAVIAUIATMULSHHXHA[ IAH9t0HXHHqH~.1 HH9tH;TuHL!HL1D`o HHHHdfoȫ HL4$H.HD$H@@H;HCA~\S)D$ fHD$H\$HD$@)D$0u-HKLH@HHAHHAHx\StHT$HuhIHHUXMNL93H}P~vHMpAEH9~BHMxHtH1WH9w tH HH?H1H)H9ZDtHHHH8>I<$DI|$8HExHtHHEpIT$PHHID$HHtHI$HE@I,$ID$E8Mu-HX1[]A\A]A^A_HH9HuH;$2 H HIIMHHGHHOHHi1 VH5)H81?XZMtIx HIHX[]A\A]A^A_HH=H 1 1H5+H81@MdE1H0 H5f(H81DLoUhU`HZDHa0 H5'IH810HH20 1H5(H81H0 H5)H8lH/ H5A*H8QfA$H9H/ 1H5)H81]H/ 1H5)H81>H/ H5-)H8#AT1IIHH;5/ LD$ D$ LHHL$H|$ H$, FfoL$ foT$0fo\$@fod$Pfol$`fot$pA $fo$AT$fo$A\$ Ad$0Al$@At$PA|$`AD$pfo$fo$fo$fo$fo$A$A$A$A$A$HLA\f.fo|$0Ht$ fot$ foD$@A|$fo|$`A4$fot$PAD$ foD$pAt$0fo$A|$@fo$AD$PAt$`A|$p ffot$pfo$fo$A$foD$0fo$At$Pfo$fo$AD$foD$@fo$A|$`AD$ foD$PAL$pAD$0foD$`A$AD$@fo$A$A$A$A$ff.AUATUSHLMt"A$tA$HL[]A\A]Hu,L%, A$ЃtA$tA$LfH-$_ IHtEtEID$E1L11H(H=\ II$xHI$MtpIEHLHHHIEx HIEtoHt:LMHEHHEtTL+H-$, EtL$1L;-! LD$HHL$ H|$M1H A.fo$fDo$fDo$ fDo$0fDo$@fDo$P)$fo$`fo$pD)$fo$fo$D)$H$H$D)$fo$fo$D)$fo$HD$D)$ )$0)$@)$P)$`)$p)$)$HIExHLIE fHnD)d$@D$D)\$PD)T$`D)L$pD)$)$)$)$)$)$)$)$foL$@foT$PA$Lfo\$`fod$pfo$AL$fo$fo$AT$ fo$fo$A\$0fo$Ad$@fo$Al$Pfo$At$`A|$pA$A$A$A$A$HĨ[]A\A]A^A_tAEHcHH IHHhHHfHDŽ$)$)$ZIHHT HPtHQ L$IW tHO H$H N IW(tH$H$LLHHIx HIoHExHHEIx HIuIExHIEOHL$1H; LD$H|HL$ H|$IIH A1#fo$fDo$fDo$ fDo$0fDo$@fDo$P)$fo$pfo$`D)$fo$fo$D)$H$H$D)$fo$fo$D)$fo$HD$D)$ )$0)$@)$P)$`)$p)$)$HPHHHHufDo$fDo$ fDo$0fDo$@fDo$Pfo$`fo$pfo$fo$fo$fo$fo$xAIExHIE|Ht8HEx0HHEu&E1HMtIExHIE/DH=fcH! HRH5H81Ix HIAIxHIuL(HtHEATfLL|HXLLLL~HZLx#LhLXwL$Lfo$fDo$fDo$ HD$fDo$0fDo$@)$fDo$Pfo$`D)$fo$pfo$D)$fo$fo$D)$fo$fo$D)$D)$ )$0)$@)$P)$`)$p)$)$H$Hfo$fDo$fDo$ HD$fDo$0fDo$@)$fDo$Pfo$`D)$fo$pfo$D)$fo$fo$D)$fo$fo$D)$D)$ )$0)$@)$P)$`)$p)$)$AAHHHEA_AWAVAUATUSHHHFH;q KHVHHnLn EQEAUtAUEtEH=G 1H$HH$HDŽ$IHExHHEMLD$01L%= LHH HD$M9HL$ H|$MH1 fol$0fot$@fo|$PL|$0)$fol$`fo$)$fot$pfo$fo$)$ fo$fo$)$0fo$fo$)$@fo$)$P)$`)$p)$)$)$)$)$MIx HICHCL9t HtP8HCZfoL$@foT$PL|$0fo\$`foD$0fod$pL;- K fo$L;-q Cfo$S0fo$fo$[@fo$fo$cPfo$fo$k`spuyM9ttLAƃA$DtA$HExHHE.MtIExHIEHL[]A\A]A^A_fDDfHVHHFH(LhEAUfDLt$0fo|$0MfoD$@foL$PfoT$`fo\$p)$fo$)$fo$fo$)$ fo$)$0fo$)$@fo$)$Pfo$)$`fo$)$p)$)$)$)$)$^DHHZpIHIE1oLt$ I1Mt$ tIx HIDH= HMI$LE1LLHH;9 H[IHH@LLAHHLAIHJLAHilIx HIEM_DH^HHHYH HEH H5 H81_nH= E1fDoH=l E1nH{AHt!HHCxHHu l@DaI1ۅHI\u+H51H |H H5 H81HtHExHHEuHnH=  Lt$ t$ HI H5]H81nH=G HEHHEIx HItnE1E1#1nE1L1rH=j71֋I!H HIgInx*E1E1LfgH=F H| IoVE1tftHO tDH tff.ATUHuHHG H]A\L%!I A$tA$H< Ht$LH$HD$ HI$x HI$tfHt11HHEx HHEtSH= HH]A\H H5H8JL8fDH(룐AWAVAUATUHSH(HD$tH== Ht$1HHl$HD$BIHExHHEMLL-3 HHEH H9EI$xHI$^1HIHHExHHEB1KIHI]HH_HAL9IEJ,EtEH=+; HSHD$HHUxHHU?IT$I;T$ LtIL$HHIT$H|$Hx HH3HD$IL9IEL9SLIHt+HL}HIx HIFH+A_I$x/HI$u%1LHtHExHHEH|$HtHx HHRDH=XE1MtE1IExHIEH(L[]A\A]A^A_HxHD$IT$I;T$ HL.CfDI$HA_I$"LHHM/H|$HtHx HHt;]H=RA_DLE1A]f.kfDHXsE1A]+fA]?DA_H|$HHHHtDH=9I@LHIHExHHEML7IEHXpHH{IHiH5g HH$LHk1kHfI$ HI$LH[]A\A]A^A_PLHIHE1E1A@W1$Ix HIIx HItqMIHLIonL,LLD$LD$LLLD$LD$LLwhfAWAVAUATUSHH@ H9H~HILfA$tA$LD$01LHH\z HD$I96HL$ H|$MH 蘽fot$0fo|$@foL$pLt$0)$fot$Pfo$)$fo|$`fo$fo$)$ fo$fo$)$0fo$fo$)$@fo$)$P)$`)$p)$)$)$)$)$MCI$xHI$HEH9t HtP8HEfoT$@fo\$PLt$0fod$`foL$0fol$pU fo$fo$MI}fo$]0fo$fo$e@fo$fo$mPfo$u`}pMe A$tA$L;% L;% ugI9tbLAƃuVHtLI$xHI$ HTH=1H[]A\A]A^A_fDDI$xHI$IEDHHWH50 HFHEHH; H1HHHxHHuHEH5|0 HHH)HHEtEI}Me(A$tA$fInfHn1H=6 flH$H)$IHEwHHEI$xHI$HExHHEMLIExHIEfDH؃JCLd$0foT$0Mfo\$@fod$Pfol$`foD$p)$fo$)$fo$fo$)$ fo$fo$)$0fo$)$@fo$)$Pfo$)$`)$p)$)$)$)$)$DLL)I$LMHI H5rH8 H! H5rH8j 1IHHLIIx HIcMxD~IHXHL7IIxHIuLM)fDH}AHt!HHExHHu @DLxPHhVLXkHHuHHBHH_ L HE`Ht;LhM9t!ID$>LL赕tH}`HE``^HcDL fDHbHIHt'HLIIx HIt|MHEHHEt4tHHEtHt$ t$ _@HHE뾍rH=01vLwHM|$M1M;lHI9uE1KtI9LEIM9uff.@AW1AVIAUI͹ATIUHSHH$LD$HH$zH$LD$HDI.KtEfo$L$HKLfDo$YDm)\$DY)D)d$ fDo$fDo$fDo$fDo$D)\$0fo$fo$ D)T$@fo$0fo$@D)L$Pfo$PA\H$fo$`D)D$`fo$p)|$p)$)$)$)$)$)$AEE.AYEH; DY.A\AAD*YEYmA\AGS8fod$fol$ fot$0fo|$@foL$P)$fod$`fo$)$fo$fol$p)$fo$)$fo$)$ fo$)$0fo$)$@)$P)$`)$p)$)$)$S8fInfHnH$0fo$fo$flLfo$fo$ A\$fo$0fo$@Ad$ fo$Pfo$`Al$0fo$pAt$@fo$A|$Pfo$AT$`fo$A $A\$pA$A$A$A$A$HĈ[]A\A]A^A_)H=,E11DD)$D)$D)$D)$ D)$0)$@)$P)$`)$p)$)$)${fDHdHHWHHD$HD$@Qfol$fot$ fo|$0)$fol$@)$fot$P)$fo|$`)$fol$p)$ fo$)$0fo$)$@fo$)$Pfo$)$`fo$)$pfo$)$)$)$JrH=VF1prH=@.1pff.AW1AVAUAATIUSHL5 H|$0HAtAIcFHH IH H, tfHnfHnflAEHH fHDŽ$)$)$IHX H&* HPtHJ& L$IW tH% H$H /$ IW(tH$H$LLH-HIExHIED HExHHE^ Ix HI: Ix HI HHSHBpHH@HH5 HIHHxHHuHL$1L;5 LHHj HD$HL$ H|$ME1H A18fo$fDo$fDo$ fDo$0fDo$@fDo$P)$fo$pfo$`D)$fo$fo$D)$H$H$D)$fo$fo$D)$fo$HD$D)$ )$0)$@)$P)$`)$p)$)$HIxHLI[fHnD)d$@D$D)\$PD)T$`D)L$pD)$)$)$)$)$)$)$)$tAHcHHIcIH?IHfInfHnſfl@'IH#fHDŽ$)$)$HHHv& HPtH" L$HU tHV! L$H  HU(tH$H$HLH}HIx HIIExHIEHExHHEIx HIHL$1H;O LHHf HD$HL$ H|$IپHF Xfo$fDo$fDo$ fDo$0fDo$@fDo$P)$fo$`fo$pD)$fo$fo$D)$H$H$D)$fo$fo$D)$fo$HD$D)$ )$0)$@)$P)$`)$p)$)$HfHHHHfDo$fDo$ fDo$0fDo$@fDo$Pfo$`fo$pfo$fo$fo$fo$fo$*DH) HRH5H81Hx HHADH=ffoL$@foT$PA$Lfo\$`fod$pfo$AL$fo$fo$AT$ fo$fo$A\$0fo$Ad$@fo$Al$Pfo$At$`A|$pA$A$A$A$A$HĨ[]A\A]A^A_fDIxHIuLPADH8L$Lfo$fDo$fDo$ HD$fDo$0fDo$@)$fDo$Pfo$`D)$fo$pfo$D)$fo$fo$D)$fo$fo$D)$D)$ )$0)$@)$P)$`)$p)$)$H$Hfo$fDo$fDo$ HD$fDo$0fDo$@)$fDo$Pfo$`D)$fo$pfo$D)$fo$fo$D)$fo$fo$D)$D)$ )$0)$@)$P)$`)$p)$)$ L(LLHL3L L=HE1AIx HIE1HtHEx HHEtYMtIEx HIEtRMIHIL9@AHfDLfDL`AZDADIAE11E1IAff.AW1AVAUATIUSHL-^ H$HAEtAEIH HH Hi tfInfHnflEIH fHDŽ$@)$ )$0NIH| H HPtH H$(IW tH L$0H  IW(tH$8H$(LLHHHExHHE Ix HIz Ix HIY IExHIEj H HSHBpHx H@Hk H5= HIHo HxHHuHL$P1L;-n LHH] HD$h6 HL$pH|$hMHe fo$pfo$)$@fo$)$Pfo$)$`fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$iL$PH$XL$`H$hL$H$fHnfHnfHnfo$fInfInfInfo$flflflIEfo$@)$fo$Pfo$`)$fo$fo$)$pfo$)$fo$)$fo$)$ )$0)$p)$P)$`)$)$)$)$)$)$M xHIE fo$pfo$fo$fo$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$ )$0)$@tAEHc8IH "HH HH fHnfInƿfl@HH fHDŽ$@)$ )$0~IH H HPtH7 H$(IV tH H$0H  IV(tH$8H$(LLHIHx HHHExHHEIx HIIExHIEM L$P1L- LHH?Y HD$hM9uHL$pH|$hMH { L$PH$XL$`H$hL$H$fo$pfo$)$@fo$)$Pfo$)$`fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$fHnfHnfHnfo$@fInfInIfInflflflfo$Pfo$`)$pfo$fo$)$fo$fo$)$fo$)$fo$)$fo$)$ )$0)$p)$P)$`)$)$)$)$)$)$Mx HIUfo$Pfo$`fo$pfo$fo$)$ fo$)$0fo$)$@fo$)$Pfo$)$`fo$)$pfo$)$fo$)$fo$)$)$)$)$)$M~41H~-fDH1HHHH9uHLL9uM9AF8jfo$ fo$0fo$@fo$Pfo$)$fo$`)$fo$p)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$ )$0)$@AF8hIHIuzL)T$ )L$)$tfo$foL$foT$ QH HRH5H81Hx HHADH=\ffofofo$A$Lfo$fo$AD$fo$fo$A\$ fo$Ad$0fo$Al$@fo$ At$`fo$0A|$pfo$@AL$PA$A$A$A$A$H[]A\A]A^A_H=fo$pM11fo$L$PE1E1)$@fo$)$Pfo$)$`fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$fo$pM11fo$E1E1fo$fo$fo$)$@fo$)$Pfo$fo$)$`fo$fo$L$P)$)$)$)$)$)$)$L訽L蛽yH莽XL聽LtLLg)HZHM1AIEx HIEtgE1MtIx HItYHtHEx HHEtLMIEHIELԼA L迼L赼H諼A xL)T$ )L$)$舼foT$ foL$fo$(LHL$ LL$L$)T$P)L$@)D$0MfoT$PfoL$@foD$0HL$ LL$L$afo$@fo$Pfo$`fo$)$fo$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$ )$0)$@iA!HRHHEHS8A A M1A Afo$ Afo$0fo$@fo$P)$fo$`fo$p)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$ )$0)$@|L$`1E1H$hL$H$fo$p1E1fo$fo$fo$)$@L$`fo$)$PH$hfo$)$`L$fo$)$H$fo$fo$)$fo$)$)$)$)$)$NpH=o1QpH=Y1Qf.AW1AVAUATIUHH|$0H@y@z @xHa H5H8誹ffoL$@foT$PA$Lfo\$`fod$pfo$AL$fo$fo$AT$ fo$fo$A\$0fo$fo$Ad$@fo$Al$PAt$`A|$pA$A$A$A$A$HĠ]A\A]A^A_fDH= k IH H=p1DHHIV L HH G IHHExHHE6Ix HIL$1L;- LD$HXHL$ H|$MH zfo$fDo$fDo$ fDo$0fDo$@fDo$P)$fo$`fo$pD)$fo$fo$D)$H$H$D)$fo$fo$D)$fo$HD$D)$ )$0)$@)$P)$`)$p)$)$HA_IEoHIEaLĵTH= S HHH=X1,IHHU L HH / IHIx HI@HExHHEL$1L;- LD$H HL$ H|$MHw bfo$fDo$fDo$ fDo$0fDo$@fDo$P)$fo$`fo$pD)$fo$fo$D)$H$H$D)$fo$fo$D)$fo$HD$D)$ )$0)$@)$P)$`)$p)$)$HA^fH= [ HHH=`14IHHU L HH 7 IH Ix HIhHExHHEBL$1L;- LD$H(HL$ H|$MH jfo$fDo$fDo$ fDo$0fDo$@fDo$P)$fo$pfo$`D)$fo$fo$D)$H$H$D)$fo$fo$D)$fo$HD$D)$ )$0)$@)$P)$`)$p)$)$H|IEx HIEtjfHnD)d$@D$D)\$PD)T$`D)L$pD)$)$)$)$)$)$)$)$fLXfDo$fDo$ fDo$0fDo$@fDo$Pfo$`fo$pfo$fo$fo$fo$fo$fL$fo$)$fDo$LfDo$ HD$fDo$0fDo$@fDo$Pfo$`D)$fo$pfo$D)$fo$fo$D)$fo$fo$D)$D)$ )$0)$@)$P)$`)$p)$)$L$fo$)$fL$fo$)$fA_Ix HIHtHExHHEDH=i蜥fA`A^L(HHLHLخLȮ=H踮HA`:DA_*DA^DA^DA`DA`oDAWAVAUATUSHHGHIHH; H5 1ԭHHHH 1 HELd$H$H9gH=@ H9WLXMMHM~.1@ItH9 H9HI9u{H@8HDHiHt$1HHIHEHHEH&HHHԫHH2 H}`L Ht>LoM9t%ID$LLctH}`HE`3,諯HCHPHD H5 E1H81HL[]A\A]A^A_fDHuVtTE1 H^uLmH=8u*LLI脰M6IHE1fH9HE0fDHt$1ɺHDIHfHH9t4HuH5 H9t#HHH9tHuH9fDHuVòHYH H5H8UMt$M1M;luHI9uE1KtI9WLaGIM9uMff.fHWHBpHtH@Ht HBhHtHxtcAWAVAUATIUSH(HGH9 HD$ HH;? H5` 1.HHH5 HUf)D$H9 H= H9LXMMHM~,1f.ILH9H9HI9u+HB8HDHHt$1HHIHELd$xHHEMdHt$E1KLd$AAMtI$xHI$1H(D[]A\A]A^A_HMAt_LiE1 uLeH=w1LAI:M HELd$xHHEE1gH9HE0@LL- MAH=uuA1LHAI辬MutHuH H5H8IfHEAHD$HHEtALHLd$afDH\HH蜦HH H}`L(Ht>LwM9t$IE&LLQ^tH}`HE`&@胫HLd$ME1@1LH蓭IHDHH9t4HuH 0 H9t#HHH9tHuH9fDHMA@HH H5LH8货HEHD$zf.LέHI]H1M;tHH9uE1KtI9L\IL9u@AVAUATUHSG|G|Lg@HMA$tA$L0H{@HCHAHtHHC@x HHI$x HI$t^EtAH1HBAătdH}H;=Y C|[D]A\A]A^H H8)L8Et또+vfDC|L@`HMtBHD MhL0HN H0L9t M9HE`Ix HIE1[]DA\A]A^f.Hx HH|H HEAH5 H8xC|D[]A\A]A^H AH5H8DHED[]A\A]A^L(ZzfDIEtpA@tfHtIIXHHy1HnDHTH9I9HH9uDLL/,L{tLE`HE`MLLRLHH9`HuHQ H9KMM9;MuI9-ff.fHHD$Ht$t4H|$HtHx HHtH HfD賢1HfWxAVAUATUHSHQLp`HH@`MMnAEtAEMf(Mt A$tA$Ht$HHD$ H|$HtHxHHu @Mt M9f(H{`Ls`HtHx HHMtIEx HIEtqMtI$x HI$tBH[]A\A]A^DExtE1E14fDHةcHL[]A\A]A^L@L@fD3^fDLL蝟'AWI1MAVfInAUIHATfInMUflSH˹HxL5 H$L$H$)$HLHM9tMtAB8E1E1LHDŽ$H$jjjjjjjL$4ARLT$@ H@0fInM9L$$)$tMtAD$8E1E1HLDŽ$jjjjjjjARH$H$ H@L$1H$PL$H$H|$L$ HH|$ LL$HT$L$Ęo\$ L\$ od$0ol$@ot$PML$Mo|$`HT$)$)$o\$po$o$)$o$)$LL$o$)$o$)$o$)$o$)$)$ )$0)$@)$P)$`RI4KH$HL$T$L\$fDH$HHDŽ$H7HH7L\$T$HL$H$ΗH$HL$T$L\$^fDH$HHDŽ$HHHprH$HHDŽ$HHH(A$A$f.HLkۖCfDHȖL踖HL%pZ,H=٣1J/p,H=ã14/po,H=1/FH=1/rH=.1.w,1H=i.w,1H=S.rH=D,1.rH=.,1.f.AW1AVAUATIUSH˹HHHH$0L$Ht$0HLL$HL$LHH$pLHHHT$xHHغHD$H$LD$PHD$LL$X>o$Do$Do$Do$Do$fH~Do$fD$o$fD$8o$o$o$ )$o$0o$@D)$o$PD)$ D)$0D)$@D)$P)$`)$p)$)$)$)$)$HH$)$`fH$XD)$pHD$ H$D)$HD$H$PD)$HD$(D)$D)$)$)$)$)$)$)$)$ )$H+H$HC  H|$Ht$0L$H9fHnAHl$x)l$@A H9$ADt$`H$E1E1E1A D|$pE1MILvfDHD$0P8H$HD$PL~$HDŽ$`|$pH$H$H$$)$H$ AH$P8H$H$HHDŽ$0H$H$H$H$HD$fHnD$ )$pH9HD$8P8aH$xH$H$H$L$0HD$LL$H$xH$HDŽ$AWQAPWVRH$L$L$H$PH$H$0H$H0Ht$H9tJ8HDŽ$H$f)$H9t$HtJ8HDŽ$H$pf)$Ht$H9tJ8HDŽ$xfILt$(H$)$pLl$XL9d$t(foT$@|$`)$wHT$xDL$LH9\$ Ht$8F8fo$`fo$pfo$fo$)$0fo$fo$)$@fo$fo$fo$)$Pfo$)$`fo$)$pfo$)$fo$ )$)$)$)$)$)$)$Ht$8F8 HD$~d$(fHnfo$P~\$H$HflLfo$@fo$`\$ fo$pAl$ fo$At$fo$A$fo$AL$0fo$A|$@fo$Ad$Pfo$At$`fo$A\$pA$A$A$A$A$HH[]A\A]A^A_H$H$H$IHL$ F HD$0H$0$f.v H$H$$GH$8L HD$H$xH$Ɖ$tHD$0H$H$L$0x( H$HHDŽ$HHH H$HHDŽ$HHH蘌 H$pHHDŽ$pHHHP H\$D$fo$`fo$pfo$fo$fo$)$0)$@fo$fo$fo$)$Pfo$)$`fo$)$pfo$)$fo$)$fo$ )$)$)$)$)$)$f.H|$n Ht$0H Ld$p~$HfHnH9l$x)l$@$ H9$)T$`H$E1E1E1 HMLT$XAI@H$P8&H$H$LHDŽ$0H$H$H$H$HD$fHnD$ )$pH9gHD$8P8H$xH$H$H$L$0HD$LL$H$xH$HDŽ$AVQAPWVRH$PL$L$H$H$H$H$H0Ht$H9tQ8HDŽ$zH$f)$H9t$HtQ8HDŽ$H$pf)$Ht$H9tQ8HDŽ$xfHLl$(L$)$pH9l$hfot$@)$EuHD$0P8HD$Pfo|$`HDŽ$`|$XH$H$)$H$ H$H|$Ht$0Ld$pIH9fHnH|$x)|$@ H9$H$E1E1E1 LAT$`YHD$0P8H$HD$PL~$HDŽ$`|$`H$H$H$$)$H$ uH$P8H$HDŽ$0H$H$H$HD$fHnD$ )$pH9HD$8P8`H$xH$H$H$0HD$LL$H$xH$HDŽ$ATRWVQ$H$PL$L$H$H$H$:H$H0H9t$HtQ8HDŽ$H$f)$Ht$H9tQ8HDŽ$H$pf)$Ht$H9tQ8HDŽ$xfHLt$(Ll$X)$pH9l$foL$@)$EHT$xDLd$pL.L.L.LH.1H=9{HD$ HD$(HD$fH$H$IHL$ LLd$pfHD$00t$xDH$H$D$xH$f.HD$H$xH$ƉD$xtHD$0H$H$L$0@LH$HoHDŽ$HXHHK蠃A0H$HdHDŽ$HMHH@X6H$pHYHDŽ$pHBHH5+H$H$HHT$ /HD$0H$0$ fH$‰$SH$DRHD$H$x$tHD$H$H$H$0y H$HHDŽ$HHHH$HHDŽ$HHH訁H$pHHDŽ$pHHH`H\$H$HHH- fo$pfo$fo$fo$)$@fo$)$fo$)$Pfo$)$fo$ )$`fo$)$)$pfo$)$)$fo$)$)$Bp .H=1 rH=-1rH=r-1rH=\-1q-H=A1q-H=+1q-H=1H rH==-1drH=0-1NrH=̌V-18rH=J-1"rH=X-1 rH=Z-1rH=t-1rH=^-1rH=H-1rH=2-1rH=-1rH=-1rp'.H=1\ff.AW1AVAUATIUHSHHS ~ Ll$@LfD$(HI9HL$0H|$(MMH— ULd$@H$Lt$HL|$PMHD$LT$XL$~3 H1LfD$(HH9iHL$0H|$(IMHB LT$L\$NUHl$@HD$HHT$PHL$XHL\$LT$H$H$HMMWLVLQLRLPUt$@iL$H@MDI9tAD$8JH9tE8b$1HH5$$$$$$$$$$$$$$$$$$$$$$$$$a HHI9tAU8H[]A\A]A^A_fDI9dAD$8HH9 ÄuE8=H=q1E1E1E1E1HD$fD111DI9tAE8IExHIEuL{yfDIUHIULHD$zHD$fI9*1I$HI$LzHEHHE~HhzqHEHHEH8zrH=q.1DuwHI$H9 ÅHHI$:Ly-p.H=1p.H=1up.H=1_p.H=؆1Ip.H=†13L9DAWH_ AVAUATIUSHxHD$PHHD$@HD$HHD$XHD$`HLyHMHHHHH HyL 'wATAH yH5H810XZH|$HHtHx HHH=n1Hx[]A\A]A^A_HVtHT$HHtHT$@HEN,LL$PO4)I1LT$@IL\LHuHPHHL;uITL)LЋ t HHI9uH|$@I"J|@eIIt J|@OHt$HH|$@HtHx HHqH|$HHHHHHD$EwHD$HD$8Hx I9CMLLHL$8LLwLT$LL$L\$L\$LL$LT$t"LHv HwH5H816}H|$@HHHHvfDIH>tHvH|$@tHt$HHH H 6wH5ATL tAH wH81|Y^X vtHD$uHD${HD$8ITI ‹tHLLHL$8LLvLT$LL$L\$ LT$LL$L\$HLL$'vIE1LL$LHu:tf.tHIL)HD@HCHHtMLfHHHFtHHD$HtHL$@LL$PHHi H &NH5.hUL LAHNH817SY^GHD$8ITI ËtH~HtH6i HL$@tHD$HLL$P\LHi tHD$HALHL$8LL\$LMLT$LL$H<$L\$LT$LL$H<$bLLL$L$LyIE1L$LLL$Hu9fDtHIL)HD@HCHHtjM9H0LLL$L$SL$LL$HuLL$L$rOL$LL$Ht$H=gH$zAH$M9HD$(Hl$0H\$(HD$0Ll$81HHLL $CPIH|$0LL $HtH98tHBHHuHD$8Hg H9Gu8LLKLLL $L ${HL$0LLKLLL $GL $CUSH(IHx`HHtHH^g H0H9HHL$HT$Ht$;H|$HtHxHHDH|$HtHx HH H;f HFH5a1H817KIx HI,Hx HHHtHExHHEMtIxHIuLWDHD$Lh`M>H=EE1e: HHÅIHExHHEuE1fDHCgHCLC;HCHCYHa HDH53`H81I$@HD$HD$2fH` HDH5#`H81II1HIWLE1 CxHBhHHxC4HSBfDHB,HBhHLHHx3IDHD$LHH}FHtH_ H2H9PEIx HI{L-^ AE(AEH9~ITfDH;Y^ 7HLPAHE1E1H*_EE@HǾHH)HHHtzHB`HLH9fDLGIHH@HHD$HHD$D軒H{諒IA{ACHH @A{ACHH HL@xAXC!CH|L@HD'FLo@f.AWAVAUATE1USHGx+HIHLwE1LBHmI~IFHtHx HHIFHxH;HWIvHBpHH@HyHH IFHxH"MFL%ߔ IPH;\ I@HH)A@HH BIMIFHxHWHBpHH@HLIMI$xHI$uLLD$>LD$LƺHLD$?LD$IHM xHHu H>LD$IxHIuL>HK[ L;%[ I9 L;%\[ L&CI$xHI$KIzI܃tA$ExHHL[]A\A]A^A_HHHI$xHI$MtIxHIu L=DMe`M{^H= ?E13ExH;]fD [=ZfDHBhHHx.HgHBhLHtCHxtH5YH81C@HY H=H5[YH81BHHHHI<@HE1HHSE1HLD$E1E1H7xH=HHH@LMkIfDAWH fAVfHnAUATUHSHXHH)D$@fHnflHD$pHD$PHD$x)D$`HyLyIMiHHtHHtHT$@ID$L,LL$`O4)I1LT$@@IM\LHucHPHHOL;uITL)LЋ t HHI9uH\$@H8H|@KHEHt"H|@2HHt H|@H|$HHGHGHHHH)HHHmDgGII LLt$P8HH+ H=@{ HX7AŅGHExHHEEL%y A$tA$fHnH= fIn1flHt$`H)D$`:HI$xHI$HL;5)R t=IFH;Q LHNIH! HxHI$EItEHExHHEH|$@HtHx HHH|$HHtHx HHH|$PHHHHw4Hu,HVtHT$PHVtHT$HHHHP H5L ~2UAH 5H5jOH81:XZH|$@HtHx HHH|$HHtHx HHoH|$PHtHx HHGH[4H=PE1JHĈL[]A\A]A^A_@HD$8HP I9CLLHL$8LL4LT$LL$L\$EL\$LL$LT$LHO H4H54<H81r9DHHtH~H\$@tHVH|$HtHT$PJ6II6H~IxDgGII I`2V2L2_HD$8ITI ‹tH}AI)ċGLtH2L191MH1/HHH}z tHEHL-΂ 6IHH5t LE1HHe6IIxHIuLj1HEMUxHHEuHG1H5y L(&HHtEHExHHEsIExHIE6L3IHtTH=y H8IH[IExHIE1LHI$xHI$HA1H=MFHExHHEE1~LT0MLG0IExHIECH0H=IMFHuDAHExHHEH0DH= MVFmH/_LLHL$8LL.1LT$LL$L\$LT$LL$L\$`AyLLL$0`IE1LL$LHu<fDtHIL)HD@HHM9~HH0LLL$7LL$HuLL$3LL$HtLt$.t$H.Hv/DH=K1EHH[/H=KE+M9HD$(Hl$0H\$(HD$0Ll$81HHLLL$3BIH|$0LLL$HtH;8tHBHHuHD$8H^K H9GLLz/LLLL$LL$wHL$0f.L-L-L-H-H@`HHHHHH@L%vJ L9uoHEHvuHHH)HHHtdH,1IHEaHHESH,FHHHfH5@ )$HI9ufInfInHt Lfl)D$ LHD$գIHD$x HIIUxHIUHH@ LAfWfInLIfIn1MH@ H5=AAY H81=*DH$H@ Ht$H9tP8HDŽ$PHDŽ$DH= A1H9tHtU8HĨ[]A\A]A^A_@Ha@ H5#AU H8$W1HH@ H5a@AU H81a)$@ҐH? H5m$AY H8#fH? H5#AL H8#AM DHUHHUHHD$;"HD$oH$HHDŽ$HHH!wH> H5#H8"IEA\  HIEL!HHH5m HD$vH|$HInHx HH$1HqH5Z$$$$$$$$$$$$$$$$$$$$$$$$$x IHHH5< E1HI9u[fInfInHt Lfl)D$ LHD$譟I$HD$xHI$IUx HIUtyHA^ 4@IEA^ rH=-x[1{rH=,t[1eLD$LL$&LHD$zHD$pLhHD$LA\ LKHD$LHD$4HD$A\ HaHHTUA^ MuI]AtAtIEx HIEtNI1hMeI]A$tA$tIEx HIEt&I1LIx1LIa1DHHHuRHifHH: E1L rRH HH8H5Z91{$XZ1HfHyxtHH=HfDAW1AVAUATUSHHLKH|$@Ht$H|$(HH$H|$ HM Ls H$H|$0DLt$~EL$M fo$fo$ fo$0fo$@)|$@fo$P)l$Pfo$`)d$`fo$p)t$pfo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$)$M HT9 L{1E1H$M~HCL$H$L;<$t#AG8H$L$HS`H$HDŽ$pIHH$HC(H$HChH$01HFIHH$HD$LL$HIAIWhE1LH )s LL$HIH$1Ҿ<LHs LL$HIH@xH HIEpIH0HHtHMu@LL$8AE81ҿfInfInH$flHL$H$H$@)$$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$q H$L$HĠ8Ix HIIHI]H$HMHt%H;$tP8HDŽ$f)$H;,$tHtE8(HIHfALHL8f..A(f(fE1E1LHL$ MHL$Cf.LLL$8HL$HL$LL$8 H$HHDŽ$HHHHL$HL$fM HEHHEHHL$CHL$H$0 H5LAH8E1E1E1E1H$rH,0 1E1E1H5rLL$E1AH8H/ LL$H$H$)H/ 1E1E1H$E1AH$Hj/ E1H$Ht$H;5o/ H;5/ u H $H9H=b  IHH5a^ HIHIx HI9fod$@H|$@P)$褮HD$X1HDŽ$pHڏH5ÏH$H$H$0$$$$$$$$$$$$$$$$$$$$$$$$$$i IHHH|$ PHD$1AfH, LL$)$I9GH$HfInfHnLLL$fl)$ HIϏLL$Ix HIIx HILM;E1E1E1AH$qf.H|$@H6HD$@H"HH HEHHE HH$HHDŽ$HHHLL$?LL$IIMXIHH5T[ HIHIx HI$1HH5݌$$$$$$$$$$$$$$$$$$$$$$$$$Sf IHH'HQ* H$1HI9D$fInfHnLLL$fl)$gHI,LL$Ix HII$xHI$LME1E1E1AH$H LA#1QH=] IHH5^ HIHIx HI>$1HH5$$$$$$$$$$$$$$$$$$$$$$$$$Xd IHHH5V( 1HI9t$fInfHnHLfl)$lHHD$/ILL$x HII$xHI$}McH|$0LLL$eL$LL$MIx HIH|$([P輤fo$fo$ fo$)t$@fo$0)|$Pfo$@)t$`fo$P)|$pfo$`)$fo$p)$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$pOH=1H$GrH=qO1ݢpOH=V1ǢrH=EP1豢L pPH=1莢pPH=1xL L L L L| ULo 4LE1E1AH$LLE1E1AH$L L L LL$mLLL$LL$lIl$Mt$EtEAtAI$xHI$M1LE1E1AH$L$L$IoI_EtEtIx HI/IH$LE1E1AH$LE1E1E1H$AlLE1E1AH$PLE1E1AH$4Il$I\$EtEtI$x HI$tPIH$LE1E1AH$LE1E1E1H$ALLL$I-LL$H$H8L[]A\A]A^A_@x HIE11I$xHI$,HtHExHHEMIEq xHIEH=E1^kfHHH%-HL1?LHBhLLH5Hx*IDLxHhLXHHL8Lt$$t$L%IF A$tA$H9 Ht$LHD$HD$2HI$xHI$AHt"11HHExHHE*o kLHH-fq 9fDI1H H5H8:DMEI]AtAtIExHIEuLLD$LD$fInfHnHt$HflºLD$)D$vLD$IIHILHEDLHp?Iff.AWAVAUATUSHHGH|$H$HiHD$HHL` Lp`LhhH$H; HL$D$tp8L=0 AEm tAtIHHD$ YLD$ HHLD$ HH?HA tH](fHnfInflEHHfHDŽ$0)$)$ IHH,? HPtHP; H$IP tH : H$ H559 IP(tH$(LLH$HLD$ .LD$ IHEx!HHEuHLL$(gLL$(LD$ Hx%HHuHLL$(LD$ ;LL$(LD$ IxHIuLLL$ LL$ IxHIuLLL$ LL$ MP IQHBpH H@H LL$ LH5// LL$ HI Ix HI;H$@1L;=b HD$hHH~HD$`Ht$pH|$`Lfo$P)$ fo$`)$0fo$p)$@fo$)$Pfo$)$pfo$)$fo$)$fo$)$fo$)$fo$)$fo$)$H$@H$HL$H$H$fHnfHnfInH$pflfHnIfl)$fo$ )$`)$Pfo$0)$@)$`fo$@)$)$pfo$P)$fo$p)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$Hx HIfo$PfDo)L$p)$)$fo$`fDo$)$)$fo$pfDo$D)$ )$fo$fDo$D)$0)$fo$D)$@)$fo$H$)$fo$)$fo$)$fo$)$fo$)$ fo$)$0fofDo$fo$fo$fo$)$`fo$fo$D)$Pfo$ )$pfo$0)$)$)$)$)$)$D)$@D)$PD)$`D)$pD)$)$)$)$)$)$)$)$)$MSH H\$H<6E1OL-~={HO)f.F$+IB BLf(fE(fE(YfD(f(EYfD(f(DYf(YDYDYYf(A\AYYAYA\Xf(A\AXXXf(AXA\XXfA(\,0fWA\X1f(\XXX2f(A\$8L 9LAXX:LM9L5t5 H=' IVLIH tA$ID$H50 LHH II$MD xHI$ $1HgbH5Pb$$$$$$$$$$$$$$$$$$$$$$$$$; IHHzHI9F Ht$xLL|$xMHHD$pIIx HIIExHIEE1AaMHD$ ID$H;l H;? HXpHH{1IHt)HLSIIx HI: MMActAIc HHG HH7 HHD$  LL$ HIfHnLH(fHnÿflHD$ @oL\$ HH fHDŽ$0)$)$ $L\$ HHH4 HPtH0 L$HS tH/ H$ H . HS(tH$H$(LHHL\$ L\$ IIxHIuLLL$ LL$ HExHHEuHLL$ LL$ HxHHuHLL$ LL$ IxHIuLLL$ LL$ M H$@1L; MHD$hHHtHD$`LLHt$pH|$`LL$ LL$ fo$P)$ fo$`)$0fo$p)$@fo$)$Pfo$)$pfo$)$fo$)$fo$)$fo$)$fo$)$fo$)$H$@H$HL$H$H$fHnfHnfInH$pflfHnI fl)$fo$ )$`)$Pfo$0)$@)$`fo$@)$)$pfo$P)$fo$p)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$HUHI LT$8LHT$0HD$(Ht$ )L$P)D$@foL$PfoD$@LT$8HT$0HD$(Ht$ HsHRLL$H5#H811LL$IxHIuLADH=L1E1A>MMDH=\E1|$uH4$F8H;-tHtE8MtI$xHI$HL[]A\A]A^A_I1Ix HIMAIx HIHtHx HHtbHtHEx HHEt3MIHILbDHL\$KL\$@HL\$3L\$@LL\$L\$ZLL\$L\$%fo$PL11L$@E11)$ fo$`)$0fo$p)$@fo$)$Pfo$)$pfo$)$fo$)$fo$)$fo$)$fo$)$fo$)$HAaI$LE1I^HAaIjLE1]A$M\A$SLIHzAa@LxqLh LX0LH61E1AIx HIE1MM\H@hH9H@H,1LIeID$L(AEoAEffHH5?1E1A<H8D$!DAaDLLD$sLD$EfH $H HHH6HEHHEHE1$H4$D$ Ml$AE]I6fo$PL11L$@E11)$ fo$`)$0fo$p)$@fo$)$Pfo$)$pfo$)$fo$)$fo$)$fo$)$fo$)$fo$)$|I^MntAEtAEIxHIuLfInfHnHt$pLflǺ)D$p-IH8HH+HZLML@LT$8LHT$0HD$(Ht$ )L$P)D$@11AE11(1A1AO1E1MA13IH>HLIIL$H$11H$L$H$11H$pNH=1opNH=z1nvcMH=d1nIsff.fHHHuRHfHH}E1L "RH HH8H5 1+XZ1HfHyxtHH=UfDAWAVAUATUSHDE?HHu HIHEH9t:HXHHqH1DHH9H;TuL=% H= IWL2IHtAIFH5! LHH~IIMx HI<H{1HRH5Rsxspshs`sXsPsHs@s8s0s(s ssD, IHHwHBI9GH$LHL$LD$HDŽ$]LD$MIIx HIFIx HIJMEtEH= 1H$HH$HDŽ$IHExHHE MLLLIxx HIaLD$@1H-LHH gHD$(I9HL$0H|$(MHEfoT$@fDo\$PfDoT$`fDoL$pfDo$Ll$@)$fo$fo$D)$ fo$fo$D)$0fo$fo$D)$@fo$)$`fo$D)$P)$p)$)$)$)$)$)$MHCHH9P8HCfDo\$PfDoT$`fo$fDoL$pfDo$fo$fo$fo$fo$fo$fo$fo$Ll$@fDod$@D[ DcDS0DK@DCP{`spIHILHH9tHuH;bfDL%' A$tA$Hu$ LH$HDŽ$H$yHI$xHI$Ht"11H_HExHHE H= A'x HLItY H=AHD[]A\A]A^A_@HH5H8zIxHIuLbLXMWMOAtAAtAIx/HIu&LLT$LL$LD$LD$LL$LT$fInfInLϺflH$LT$LD$LL$)$uLT$LL$ILD$IHILLL$LD$LL$LD$ x HI4H=ADLLL$;LL$L(Lt$@fo\$@MfDo\$PfDoT$`fDoL$pfDo$)$fo$fo$D)$ fo$fo$D)$0fo$fo$D)$@fo$)$`fo$D)$P)$p)$)$)$)$)$)$f.L(L%Q$ A$tA$H LH$HDŽ$H$1HI$xHI$Ht11HHEx HHEt H=AfLxHhJ[L裡IHffIzL+^HtLH u;NH{HtHHCx HHt TKrH=q1bdfHtHHGH5HPHH81HAWAVAUATUSH8HIHL% H=? IT$LbHHtEHEH5  HHHIHEMxHHEImHA1HHH5HAAAAAAAAAAAAuxAupAuhAu`AuXAuPAuHAu@Au8Au0Au(Au AuAuV" HHHHTI9D$Hl$HD$ HD$PIHH HPtHLLLHHt$HD$ 'IHExHHEIx HIHx HHML;=H-! EtEIWHBpHH@HHLIMIFHH5j H9!I~@CHAFHHIM Ix HIMLHLwI$xHI$aHExHHE[H-< EtEIWHBpHH@HHLIMID$H5 H9I|$@H9AD$HHIMI$xHI$LHLIx HI8HExHHEH-[ EtEIWHBpHH@HHLIMnIFH5 H9I~@HAFHHIMjIx HI&LHLpI$xHI$HExHHEAx11LlIHH;)I@HI3LM&1IHExHHEMI$HI$ 1E1A LHtHExHHEDH=+λMtSE1Ix HIrH8L[]A\A]A^A_[L裚HH; H=vE1뿐H(YE1A I$SHI$E1MAEtAEffInϿ)D$ fInfl)D$:HHHO HPtH H DHL$ HU tH=K HL$(Ht$HHIIExHIEHExHHEM H=NfLHFHHULYH]HE1E1H7RH HH8L H51ZYHyHH=YCL0HBhHLH%HxeIDLH#IHH5GE1A H8@LHBhHLHt)Hxt"ճIeDL`ICH@L0MD$I\$AtAtI$xHI$fInfHnտLD$HD$ fl)D$ILD$HIIHILLHBhHLHHx轲I6DH5 Lq MA 1E1IeHIXLKA HECDH=|Qf.HOL)H;!LIA ]DAMAfA I$CfH8 HC`LPI|fDA DH;iL#I2A DA$MA$A DA DHC`LPIfDH;(LIA -DAMwAofA DHC`LPI;fDMA f.ILLD$ӾLD$ H=U-^IH5 H7oTA 1kAFfWtSIAD$fWXSIAFfW=SI]Hi HPtcLD$Ht$LHHHD$ LD$II_HIRLνEE1A LD$@AWAVAUATUSHHHHLcM1H;H5z;sxspshs`sXsPsHs@s8s0s(s ss3 IHH*H-UtUL$2L$HI:fInfHnflAD$H5/ HFHCHH;,1HIHcL=$M9-詿IH}AtAMuLLCIIEMcxHIEuLL$ٻL$I$xHI$uLL$跻L$L%$ H=L$IT$LԿL$HH,tEL$L$HIHStIUH tAIU tAM}(L$蚾L$HIfHnfInfl@AtAMD$(Ix HIIx HIHL[]A\A]A^A_fDH-YUHIH9GHHL(HE`H6LxM9t$IE&LLp H}`HE`9L=AtAH-w H=HUH,IHAtAL$GL$HIHStIUH tA$IU tA$Me(L$L$HHfInfInMMflI@[ME1L2MUd@LSHE1E1HRH HH8L =H571XZYE1Hy/HH=ʺ9HH5H8芹H9H=?DIE1E1HIHtHExHHE|MtIExHIEHH=zMI$xHI$E1HEHHEqMĻ H覷wHEYE1E1L@Lx.fDL`LHHIM HHgL(HE`HtCLpM9t IEPLLmtH}`HE`i6fHE1f.HoH=z-f(HIEH)H=/lDL$OL藋L$HHMľ jf.MĻ HH=E1u0H3IHMMH{H=L$5L$MfI@1M4fDIyIEOMCHH=I$SE1`I]IMH1M;|HH9u1H9ItI9LHT$H $kHT$H $HIUH1M;tHH9uE1KtI9LH$9kwH$IL9uMMy oHH=^HʹH=M ff.AWHW IAVAUIATUSHHD$@HD$`HD$hHLQIMHt~HtgHH4HAAQH pL tH8H51޹XZ` H=苩1HĈ[]A\A]A^A_HtHT$@ID$N4H\$`N<3NLL$ I1L\$@Ll$HMMII\LHuffDHPHHtSH;uITH)L؋ t HHI9uLl$LL$ M J|@ Ld$@fHD$XHH9C( HL$XLHL\$LYHt$5SHt$L\$ t"HHH&H5-H81kH|$@HHvHHi_IL&A$tA$Ld$@HID$H9tA$MftA$H ~HH=L=  HL$HHT$;HH HXtLuHT$HEAHL$tAfE|ExHE@HEHE E0Ht tHMXHt tHUPMt AtAL}`Ht tH]hHHEpJIxHIuLRHD$`E|E|w L5H\$`HHL?KE|HT$`H HExHHEuHHT$HT$H;H;uaL9t\HHT$HT$yGA H}HHpE1HE11膭E11MHx HHL5H=SIVLwHHR tEHEH5FHHH IHEM xHHE1HH ID$H;0t H;G A$'A$E1HD$1HD$hH|$Ll$0HD$8ILt$H\$ID$H=I9|$ I9 ID$N4AtAIMtIExHIEL-HH8IUL:HHtHCH5:HHHIMZHx HHAtAHt$1H=HLL$ Lt$`HD$hڰLL$ HIx HIYHHI9A|Ht$8LLL$ HHD$`H\$h~LL$ IMHx HHWIx HI6MHEH;E AMtAMHML,HHEIExHIE~H|$MHD$LIH6Lt$H\$Ll$Ll$0_HT$HHt"H{H0H9 HT$%HT$I$xHI$ H)HSI9F, E1HfHnfInHLfl)D$`q}LI6)HExHHEX Ix HI MAEtAEfHD$p)D$`L|$hլIH HHPtHHt$hLLHHD$p语I$xHI$IUxHIU A HIExHIEE11E1A Ix HIHtHx HHHtHExHHEMtIx HIDH=t1MtBIx;HLd$@It4MHD$XITI ËtHTLd$@LHD$קHD$LHT$LL$辧LL$HT$HLL$袧LL$!HLL$苧LL$%Ly1LHD$gHD$HHD$PHD$LHD$9HD$ 1LA0IHL5AtA H=4Ix HIA E1HʦlHLL$ 踦LL$ L覦L虦HL\$ 臦L\$ HD$E1LdHMLt$I1IwHAA IHEx HHEtLMtI$x HI$t L|DLLD$HT$LL$LL$HT$LD$HLD$HT$LL$蹥LD$HT$LL$H-EtEHHt$hHHD$`HD$hvIHExHHEA M 11L`Ix HIA E1HL$XLHL\$L1Ht$;L\$Ht$HHH ֥H5-AQAL ˤHH815Y^LLL$LT$<IE1LT$LL$HLl$HMLLL$8fDtLIH)HD@IIEL9-HLH0L裬Hu)Ht$LuHLLL$ LL$ LA "E1A HSE1E1E1H5|A H8蝤E1E11bLLD$HT$LL$yLL$HT$LD$7`LxH9MHLt$IE1I9OtAeIKLH2WMLLt$E1E1A ԥLxIHtH@MAMYAtAAtAIx HIfInfHnHt$LflLD$(L\$ )D$`vLD$(L\$ II@HI3LL\$ %L\$ E1E1E11E1A MIE11E1A >ILl$LL$HM9EHD$HLl$PHl$HHD$PLt$X1LHLIH|$PLHtH;8tHBHHuHD$XHH9G0LwLLHOBtGHL$PLA E1Ll$LL$wLA ZE1E1E1E1E1A L苦IHH@HHD$HILL\$(LD$ 舠LD$ L\$(LLt$Ll$0H\$BLZ)HMH@LHD$.HD$+LGLLH6^LgLHT$HT$LHD$ϟHD$MfM~A$tA$AtAIx HIt(M1LE1E11E1A ?LMb1wHT$ VHT$HuE1E1E1A IE1E11H)E1A E1E11E1E1E11A fAWHOAVAUATIUSHH$HxH$H-H$HHDŽ$HDŽ$HDŽ$HDŽ$H$HDŽ$HLIIMH HJcHHVtH$HVtH$HVtH$HtH$IEN4H$N<3Ld$II1L$L@IM\LHuHPHHL;uIL)LЋ t HHH9uLd$L$ML$I\J6ID$ItBHĀID$It(HĀIItJH$L$HD$AEDHD$xHI9CJ LHL$xLLLLT$L$s=L$LT$t"LHHqH5lH81誢H$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH=E1ґHL[]A\A]A^A_DII4L~AtAL$HNHL$$tHD$LfH$A$tA$L.L$AE7AEL$M8tAEH\$$tA$tA$H5L?D$() H5L>D$(I$xHI$t$(AA$tA$H5L>Å JH5EL}>Å I$xHI$5$H-H=HUH+IHtAI@L$LH5 HHL$HD$H|$ Ix HI HD$HԵH9XmH$HHHDŽ$L$HlIHExHHE< MIExHIE IAL $LH5oHHL $IMH5LL $.L $I$xHI$T AtAL $舖L $HHD$HtHD$HHHHtHQfInH=J1D$H$L $H)$pL $IIx HIHt$Hx HHPMIx HIHL7HHHD$H(IEH5LHHIM1ҾL=IH*I$xHI$H5nLߺL$]:L$VIx HIH5H|$1耗IHH;HnI9HD$0L;LL$GL$Ix HI3L%A$tA$H-EtEH=hfHn1H$HD$)$uHHHD$ uH H\$ LH$HDŽ$H$gIHx HHI$xHI$&M&11LPIx HI%#HD$E111H$E1E1E1HD$ *fIHnH _HNHATH=L@HL LH5FH81dXZIHHwAL ATH HH8H51!_AXoI$xjHI$u`LHD$xII ‹tHE1HH\$0$tHD$0H$ID$( `5 I$HI$LГL$MHf H\$0ʉ $tAEHt$0H$IHD$E111E1E1E1E1H$HD$ HD$MtI$xHI$>@MtIx HIVMtIx HIhHtHExHHEnHtHx HHvMtIx HItH= E1؈H|$tHt$Hx HHOH\$ HtHx HH>MtIx HI2H$HtHx HH"MtIx HIHt$HtHx HHIExHIEHD$HxHt$HHH$HtHx HHH$HtHx HHH$HtHx HH_H$HHHH'L H L%H6LLD$@L\$8LT$0HT$(ҐHT$(LT$0L\$8LD$@LLD$8LT$0HT$(袐LD$8LT$0HT$(LLT$0HT$(|LT$0HT$(wHLT$0HT$([LT$0HT$(qHLT$(?LT$(sL-H HLHM=HL $L $HD$E111H$E1E1HD$ L螏LL$腏L$WHL $pL $L_LRbLEL $WLHL$xLLL]LT$L$ <$L$LL $L $lݎALL $lIE1L $HBL$$HMLM;tLIH)HIIL9HH0LٖHu_HtL=L $H5sH|$ĎIH+H;H;D$0TL;ϪGLL$蕒L$RIx HINH=TdIHH5HH$p L$HIIx HIH=L $
iL $LL $)iL $IH$1E1HD$1*LL$hL$1ff.@AWH/fAVfHnAUATUHSHH H)D$@fHnflH<$HD$PHD$pHD$x)D$`HpLQIM`H2HtH_HtHT$@ID$L,L|$`O4/ I1L\$@IMLLHuHPHHL; uITL)L؋ t HHI9uLl$HMCLd$PM]H\$@H7H|@HEHt"H|@HHt H|@L5.H5_H9st L9AEtAEL;%L;%ǃ M9 M9fH4$D$tL4$H=L|$`1HLHD$hLt$`lHIxH4$HHuHfH7HHfIHEMxHHEuHJfA$tA$H=1LLd$`HHD$hkHI$x$HI$xHI$uLeH1LHfIH HExHHE|MH|$@HtHx HH.H|$HHtHx HHH|$PHJH?HH2=e(HHVtHT$PHVtHT$HDHD$8H@I9ALLHL$8LLLgL\$LT$LL$LL$LT$L\$t"LH>HfH5mH81jH|$@HtHx HHMH|$HHtHx HHCH|$PHtHx HH, H=؄E1PZHĈL[]A\A]A^A_HH8HHHeH eAHNL bEHcLNODVHHL cAUH dH)HeH5~H81iXZH dAL aHULg…G[ H=dYL%H=IT$L=gHHtEHEH5\HHHIHEMxHHEH~I9D$ Ht$hLLl$hMHHD$`6HIx HIYHt=IExHIEIKH)bwxHHE\ H=ƂAXE1IENHIE@La3HD$8ITI ËtHxHHE^ H=ZWL%ѵH=IT$LeHHxtEHEH5HHHiIHEMmxHHEzH^}I9D$@HdHt$hLHHD$`HD$h4MHIx HIHHExHHEuH`L-AEtAEIHIL^`sL5:}AtALd$PLt$HMML%|A$tA$Ld$P``_HtL5|H\$@AtALt$HML%{|A$tA$Ld$PfLfA$tA$Ld$PLnAEtAEHLl$HtH\$@L5P|ME1S_I_^ H=E1pU~H2HLLE1L^H^>LT$0L\$ HLT$0L\$ >LT$0L\$ LLT$ =LT$ fH$@H~HDŽ$@HgHHZL$=L$HuvH$HHDŽ$HsHHfT=\f.93f.%HrH=VJL1fHfInHLHtCH0HLT$L $1L $LT$HuLT$L $c-L $LT$HtM9HD$(Ld$0H\$(HD$0Ll$81LHHL$R.IH|$0LL$HtfDH;8tHBHHuHD$8HFH9Gu4LL+LLL$L$tHL$0LL*LLL$[L$Hff.AW1AVAUATIUSHH|$H|$`HL$(H|$0HHT$ LD$tHD$H-xH=kǀHUH",HH& tHCH5 tHHH IHM x HHHCI9F fInfHDŽ$fl)$*IHHuHPE1IH|CLLH LL\$HD$8H$+L\$HMtIx HIIExHIEIx HIHI$xHI$HEH5vHHH IM H5{L9VIFH;[CIFHHHu,HBHD$H5Q{LLAą!IxHIuL%EH5xH}tH衣IHH@H;BAAIMx HIH'mL$8H$0HlH$@AG @u tDIGH$0HP3@IHIx HIaH$HHDŽ$L$ II$xHI$>Hx HHARM11LARIfDH@LLH$HHD$8H$(HT`fA.FfA/FH@HD$IxHIuL#HEH5vHHHIMHEH5vHHHIML'IHoIx HI[It$11LzIH>Ix HIJH5kxLVAąIx HIGH5vEHEHHHIMH5cgLN#HHIx HIL-/?H;p?L9gH;\$\H 'AƅHx HH EtCH5fH)wHHMHUxHHUHD$HǀHEH5uHHHHH111HIHHx HH H>I9FIFHDH)AFHHT$8H|$8Ix HI| HL$H; (>L9/H\$H9!H%i HL$ H; =L9 H;L$ADA uCHL$(H; =L9 Ht$H9 HF% EtEH=m1H$HH$HDŽ$%HI謟M HExHHE LDHfAQI|HIo1LH\HE1HHMtIx HIsMtIx HIHD$`H;D$t!HtP8HD$heHD$`DH=@AgHExHHEHD[]A\A]A^A_@DL&L*MME1!HHHHx;LANHD$ DLpH`JMH1;LANHD$IHIME1DLHWLiLAPE1f %I H:ANHD$LHE1M^M~AtAAtAIx HIfInfInL\$HDŽ$fl)$ L\$HItoHjHPM1Af.EH|$`HHD$`H|HHoeI;Hw9LANH\$HI1LjDLX#IH!9APHD$fHH=lH; H5TnHHD$יL\$HIIjx HI HD$H 81II9Fr fHnfHnÿHqflLD$(HDŽ$H$)$IHHgH pLD$(HPtHD$H$LLLHHHD$耚Ix HI Ix HI H|$ HL$ H; 7AHUL9D H;L$AD AƅxHHU Hl$EbjH|$8^Dd$Lt$0E1H$0LIH IHw H^LxtIT$ LHoIH' I$xHI$QH1D$LHL;|$HL$PH|$LMIH3  fo$0fo$@fo$Pfo$`fo$p)$fo$)$fo$)$ fo$)$0fo$)$@fo$)$Pfo$)$`fo$)$pfo$)$)$)$)$)$fo$fo$)$fo$ H$fo$`)l$`fo$0)t$pfo$@)$fo$P)$fo$p)$fo$)$fo$)$fo$)$fo$)$)$)$)$ H+ Ix HIWH$HL$hfL$ A$M<YALYYYXf(XXf. Qf(f.TNH׫fHne`5LAŰf)D$`EsIL;l$8Dd$H$HH$ H\$HCHt"H;D$tP8HCb fo$HD$fo$fo$ fo$0Xfo$@fo$P` fo$`fo$ph0fo$fo$H@fo$PPfo$x`fo$pp@A~HA2LLMH$L\$HD$8H$LL\$HA^DLL\$sL\$E1A_AaIxHA_I^QHWA_M@ ^ A $^A $A^A^DH0LwH;D$8L@IHH;}1AH;*1DHM1HD$I9L AIx HIEYE< H|$ ÅAcfLL$0fo$0fo$@fo$`fo$p)$fo$fo$P)$fo$fo$)$0fo$)$ fo$)$@fo$)$Pfo$)$`fo$)$pfo)$)$)$)$)$8fH…!A`aL IAX3DLLAX:DLhIAXE1H@DHiA\DcIbAQDIA\Lf.+IVLIHt8HHD$8ITHIGL:fDHqHD$8$@IE0HI#LD AeDHHH)HHHAFAVHH HD$8DMAQfMAefAYCDL-gAEtAEHXLH$HDŽ$H$IIExHIEBAfM11LAfI$HI$LLAHLmIMfDLLA_Cfo$@ffo$`fo$pfo$)$0)$fo$Pfo$fo$)$0fo$)$ fo$)$@fo$)$Pfo$)$`fo$)$pfo)$)$)$)$)$)$HHl$7f.MAegL'rH=51?LwHjL]L HD$8AFAVHH HHD$8I^M~tAtAIx HIHD$MAGAhfIAS,H;*LPXIIM)HASIMAS H`*APHD$~MIARAHD$HxHtH@Hx HHtRD ]L A\LM AHD$CE1AS6 HL$8H9uFLQXIrH=51\HD$(HL$ HD$(HL$ fH5OL IMMfAWH]AVAUATUSHHHnHD$`H-HD$hH-hHD$pHH|$HD$@HD$HHD$PHD$XHD$xHDŽ$Ht1HI IH~HDHmHcH@H-kHHE11HS tHsHT$HtHt$@HOML'AtALD$XcHwLC0AtALD$XHS0tHT$XHS(tHT$PHS tHT$HHStHT$@ID$Lt$`M,1LT$@@IUM\LHuZfHPHHGL;uHL)LЋ t HHI9uHT$HHHL$PHLD$XMZHt$@HMH|@HEHt8H|@HEHt"H|@HHt H|@H|$lH|$@AHtHx HHH|$HHtHx HHjH|$PHtHx HHBH|$XHtHx HHHĘD[]A\A]A^A_@HD$8Hh&I9CLHL$8LLLg LT$L\$L\$LT$t"LHp%H/ H5H810H|$@HtHx HHWH|$HHtHx HH/H|$PHtHx HHH|$XHtHx HHJH=)AaHHH$H P H5X#UL AHY H81aY^*HstH $Ht$@tHL$HE1HH AL HH1$H H5"UH81 XZE1HK(tHL$PJ@6,"dH #tHL$PHD$8HI ‹tHsLt#AtALD$XH #tHL$PbH #tHL$HH7HHH AHNL EHJLNOD@LHL$8LLLLT$L\$LT$L\$$LDIEL1Hu3m@tHHL)HD@HHI9qHt3H0LHL$#HL$HuHL$ HL$HtI90HD$(Hl$0H\$(HD$0L|$81HHL IEH|$0LHtDH98tHBHHuHD$8HV"H9Gu,LgLLLt.HL$0L;LLL诛`@AW1AVAUATUSHH8H|$H$`H|$ HtH- UH=yGHUHIH tAIBLT$LH5|PHH, LT$IIM x HIu HN E1II9F fInfHnLT$HDŽ$fl)$)LT$HI H qQHHtL%LLLL$LT$I4/L\$L$LT$L\$HMtIx HIIx HIIx HIH"Hx HHHEH5SSHHH@IMH5WL9IEH;IEHHHuL%aH5WL赥ÅIExHIEuLAH5ZULkYAtAL5IAtAHLT$LT$HIfHnfIn1LH=PflH)$/LI4IELT$xHIEJMLH$LT$HDŽ$L$LT$IIx HIsIx HIRE1AM11LyIExHIEAE1E1f8fA.E\fA/EPL%IExHIEuLHEH5SHHHaIM;HEH5SHHH}IMGLHHRIx HIHs11L^IHbIExHIEH5EULߺL\$3L\$LIx HIH5RHEHHHIMH5]DL(IHIExHIE L;OL; M9LLT$LT$D$(Ix HI L$(H5CHSIHhHLH$L$H$L$HD$H$H$HD$8M*IExHIED$(t$LLT$@HL$q&H$L$L$HT$0H$HT$`H$HMfo$H|$fo$HL$)$LT$@fo$fo$fo$)$)$fo$fo$fo$)$fo$0)$fo$)$ fo$@)$fo$ )$0fo$P)$@)$P)$`)$p)$O fInfHn1KLl$@H4 E1Hl$HflfIL|$0HD$.-NHl$8e^HD$HMA X^C  3LX^C f(\^A MH;T$M9IF88l)$`8sH$hL  H$hYH$pYH$HDŽ$XHY3XXM9tAF8+H$`L9t$Htx8HDŽ$hff.)$` XLl$@Hl$HH5AHHH8HH$`Ht$L9tP8HDŽ$hHDŽ$`DH=12M9tMtAF8TMtM9tAE8fHExHHEH8H[]A\A]A^A_L~LpTL`XHPeL@L\$ fDD$(@HsHLH$L$H$L$HD$H$H$HD$8MVE1At@E1AE1E1HD$ HD$IExHIEMIx HItxMtIx HItKHD$H|$MLt$ HD$HL$HHHHLL\$L\$@LL\$L\$qLL\$LT$LT$L\$6HIHr L%pE1HA~7)$`H8L%AA~Ix HIt+M Ix HIt"HE1E1@LfDLfDCLT$IfD A>A>zfD H$hA>L؃{A>s IHILL$H$L$H$L\$xLL$pHt$h)d$PD$88HD$8ffod$PHt$hfHnHLL$pL\$xH$L$H$fHnL$@ H$`H/HDŽ$`HHH L$H$L$H$L\$xLL$pHt$h)d$PD$8^HD$8ffod$PHt$hfHnHLL$pL\$xH$L$H$fHnL$pfMVInAtAEtEIx HIIA1fDMf L%HA~HD$HD$ IHILZDIEHIEzL(mH$`HHDŽ$`HHHL%E1E1HA~}DLLT$LT$KL%E1AKILplLl$@Hl$HHD$T$(D$dtHT$fInžJLLD$D$0)$`HD$`1LD$H"rH5 rHDŽ$H$pL$$($($($($($($($($($($($($($($($($($($($($($($($($($(^KHH$HH4H|$ J脌f)$`f)$)$H$BIH0HWCHPtHSH?H$IW tH0H|$LH$HH$HL$HHx HHIx HIHT$Hx HHAH@A}etHT$$1HoH5o$$$$$$$$$$$$$$$$$$$$$$$$$DIIHH=f)$)$H$KIHH`AHPtH\ H=H$IR tH9 H|$LH$HLT$H$LT$HIx HIIx HIHL$Hx HHAH HD$ E1AE1HD$>DLLT$IA1LT$fDL9L:IHH;w L%X H; M9zLL\$L\$Ix HImrQDLLL\$L\$fE1AfI.LAHD$ME1HD$ 2DHAE1$LLT$(HL$^LT$(HL$E1Af.{IADHD$ E1E1AHD$^D3I{IۅHILHD$ E1E1AHD$DMAf.E1A"fHMALGLT$wfJ1H=twsJ1H=^хpJH=J1軅wJ1H=2襅LLLT${pDKH=1ppEKH=1ZrH=@K1DLAE1E1p+Hc)LV0HI0HL$XHt$PLHIHExHHEI$xHI$M}A L0=L#OHaIHLA xHL-AEƒLl$HZL-AEtAELl$@LLnAEtAEHLl$HtH\$@HtH\$@L-M[MD$M|$AtAAtAI$xHI$uLLD$LD$fInfInHt$PLflLD$)D$P蘱LD$HIHILHH8HHH9t.HuH5H9tHHH9tHuH9IvVE1 H^uMfH=(LLIpMFIHILHt$X1ɺL>ILJLLHL$8LL4LT$LL$L\$sLT$LL$L\$HLL$)IEE1LL$LHu=:fDtHIL)HD@HCHHM9H0HLL$LL$HuLL$LL$HtIvVH9IF0HuHH5IH8IxHIuL H=E1HEA HHEHXLKA IA M9HD$(Ld$0H\$(HD$0Lt$81LHHLL$>IEH|$0LLL$HtH;8tHBHHuHD$8HH9Gu:LLLLLL${LL$}*HL$0LLLLLL$DqLL$C@AWH(AVAUATUHSHxHD$PH-(H<$HD$@HD$HHD$XHD$`HLyIMHHHHHH HNHL LNL@HH/UHH5H81XZH|$HHtHx HH H=E1zHxL[]A\A]A^A_HVtHT$HHtHT$@ID$L,LT$PO4*I1L\$@IMLLHuHPHHL; uITL)L؋ t HHI9uH\$HHLl$@H"H|@FHHt H|@0H-%H=JHUHnIHtA$HhI9D$H$HD$hHD$PHD$XLl$`[HHHH$HPtHt$XHLH\$hHM9IHExHHEKIx HIDMH|$@HtHx HH*H|$HHHHHDHD$8HPI9ALLHL$8LLhL\$LT$LL$wLL$LT$L\$t"LHNH&H5H81H|$@HH HHcfDHHH^tL.H\$HAEtAELl$@HHH OH5WUL AHqH81`Y^KHD$8ITI ËtH/L.AEtAEH Ll$@tH\$HC3H tH\$HbH說IH7+ H=E1zH-L LLHL$8LLL\$LT$LL$kL\$LT$LL$LLT$g1IE1LT$LHu>&tHIL)HD@HCHHM9H0LLT$LT$HuLT$ZLT$HtMD$Mt$AtAAtAI$xHI$5fInLD$$Ll$`HD$h)D$PZLD$HH8Ix HIt%I`HISLFLM9HD$(Hl$0H\$(HD$0Ll$81HHLL$IH|$0LL$HtH;8tHBHHuHD$8H^H9GuOLLLLL$sL$LHL$0#LLD$LD$LL6LLL$iL$3H HPtTL$Ht$PHLH\$hL$IIHIL8MrL$DAW1AVIAUATUSHL;H$H$H$HH$(H$MLD$p@L$$ˆT$ouA@8r1H$`AH$HH$0H$H$H$Ɖ$o$Do$Do$Do$ Do$0fH~Do$@)$0o$PfD$o$`o$po$D)$@o$o$D)$Po$D)$`D)$pD)$)$)$)$)$)$)$)$HH$8A)$fD)$HD$0H$@D)$HD$`H$HD)$HD$HH$D)$HD$@H$D)$HD$8Cx<)$DB)$H$)$)$ )$0)$@)$P)$0HD$8McE1L4$H$Lt$@LL,@HD$0J(LMIfcYEIjcYE4HH$LL)B"L9$uL4$HD$H;HǸG8fo$fo$fo$fo$fo$)$`fo$fo$)$pfo$fo$)$fo$ )$fo$0)$fo$@)$fo$P)$)$)$)$)$)$)$ Ht$F8E11D~|$~L$`~D$@fDo$fDo$D|$0fDo$L$HfDo$D$8fo$D)$`fo$fEofo$)$pfo$)$fo$fDofo$ fDoD)$)$D)$ D)$0D)$@)$PD)$`)$p)$)$)$)$)$@|$oHt$pF8fDo$`fDo$pfDo$fDo$fDo$fDo$fDo$fo$fo$fo$fo$fo$fo$ H$D)$D)$D)$D)$D)$D)$D)$)$)$)$ )$0)$@)$PFH$ L$HD$PLt$xL$H$H$H$$|$ouHL$pA8 HD$x$H$[H$H$H H$L$PH$H$H$H$H$H$XH$Cx<C$H$$H$Lc$H$H$LL4@H$J0Ld$ E1@^YEIr^YEL9HHD$ LL)L9$uH$H;; HA8? H $A811ۃ |$ouH|$pG8% H$AU$$$Lt$0AVt$pL$L$H$HT$pHt$PH$`3L$pH@MH$8HD$0H$@HD$`H$HHD$HH$HD$@H$HD$8uAF8 HD$HtH;tHA8 fo$0Ld$fo$@fo$Pfo$`fo$p)$)$fo$fo$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$ )$0)$@)$PHD$PH$ H$H$HL$xHD$PH;$=H\$10H?dfHnfo$fo$T$0~L$`fo$)$~D$@)$L$Hfo$)$D$8fo$)$fo$)$fo$ )$ fo$0)$0fo$@)$@fo$P)$)$)$)$)$P)$`)$p)$|$ouHt$pF8-HD$x$H$H$H$HH$L$PH$H$H$H$H$H$XH$Cx<C$H$$H$Lc$H$H$LL4@H$J0Ld$ E1YYEIYYELqHHD$ LL)L9$uH$H;HƸF8WH4$F81ۃ|$ouHL$pA8HMt$@t$Pt$`$t$Xt$@$Lt$@L$H$H$H$(L.H$H@HkH$hHD$0H$pHD$`H$xHD$HH$HD$@H$HD$8uAF8THD$HtH;tHǸG8Zfo$`Hl$fo$pfo$fo$fo$)$fo$)$fo$fo$)$fo$fo$)$fo$)$fo$)$fo$ )$)$)$)$ )$0)$@)$P;fL<$L;= M AG89H=n1HD$8HD$@HD$HHD$`HD$0HD$H;^H|$HA8~L$`~D$@L$HD$81H$fHnfo$fo$\$0fo$Pfo$`fo$fo$pHfo$ p fo$0x0fo$@X@fo$@PH`ppH[]A\A]A^A_H=I蜷|$o| E1H|$pG8kMA EbAG8N I=HI0L4$4$f.H=DIE1|$o`@fDL<$@Of~L$`~D$@L$HD$8 bHt$p$,HL$p$H4$H HHHۿhH $HHH H謿OH<$D$ /H4$D$ HL$pHHHH<jH|$pH[HHNDH<$H3HH&Ht$H/HH"H賾9H $HHHH脾}H|$HHHWyH$V/E1WH=gHD$0HD$`HD$HHD$8HD$@7L|$HD$)fo$A1fo$fo$)$fo$)$fo$)$fo$)$fo$ )$fo$0)$fo$@)$fo$P)$)$)$ hHt$p$unHt$H2HH%Hۼ~HL$$fo$fo$fo$)$`fo$fo$fo$)$pfo$)$fo$)$fo$)$fo$ )$fo$0)$fo$@)$fo$P)$)$)$)$)$ HD$pHGHL$pHH5H)L$PD)|$ )$蚻fo$fDo$`fDo$pfoL$PfDo$fDo$fo$fDo|$ fDo$fDo$fDo$fo$fo$fo$fo$fo$ H|$HHH)L$ )$ֺfo$foL$ HL$pMHA ąHBHHoHω4$茺4$\ypA0H=1(Sp`/H=1SpH/H=1RH\$10)L$PD)|$ H)$VfoL$Pfo$fo$fDo|$ fo$)$fo$)$fo$fo$0)$fo$)$fo$)$ fo$ )$0fo$@)$@fo$PD)$)$D)$)$)$)$P)$`)$p)$HHH5^)L$1)$H8fo$foL$p 0H=,1Qp/H=1Qp0H=1qQp/H=1[Qp"0H=1EQp/H=1/Qp 0H=1Qp/H=1Qp/H=|1Pp/H=f1PpK0H=P1Pp@0H=:1Pp?0H=$1PAW1AVAUATUHSHL5H|$0HL9.L.L.Lf`EtEL}MHEHD$8M9tAG8 H}  HE(L|$01ɿH5H54HDŽ$HD$@HEhH$$$$$$$$$$$$$$$$$$$$$$$$$$$UIHHM9tAG8ffInݿ)D$ fHnfl)D$CIHHXHPtHTHHD$ IT$ tH{H=LHt$LHHD$(ȺIHExHHEuH;IExHIEmI$xHI$GM} H=E1/dDoEtEH=Ht$1HHl$HD$IHExHHE+ MtHL[]A\A]A^A_@L-IAEtAELeMhH} 蟶IHfInH=fIn1flHt$H)D$cIIExHIEbI$xHI$t M-AtA}tEH}61H1H51uxupuhu`uXuPuHu@u8u0u(u uuA IHHffHnп)D$ fHnfl)D$HIHlH]HPtHYHHD$ IT$ tHH=QHt$LHHD$(ͷIHExHHEIExHIEI$xHI$M DL5AtAZeIHIEtEH=L|$1HLHl$HD$IHExHHEMLLHHIExHIEaI$xHI$;fHnfInL1H=flH)D$}IIx HInHExHHE MIDL%A$tA$HHt$LHD$HD$HI$x HI$t=Ht11HkHEx HHEtz PLHL8fDL( LH#LLH ӯfDLL谯H蠯H萯GL耯LpH`HH5ׯH8BHE'HHEIE1 LT$ T$AG8IHILŮ IHALIIExHIEMoI$cHI$U?HH5Ϯ H85HEHHEE1E1HT$MT$arLT$T$[f.HH5O H8赮E1 fE1L KHyH5* H8]M9"fI fDM9 u^A AI RuQIHI Lp,cH=1EpbH= 1zEpbH=1dE@AUIATIUHHHGH~H9tQHP`Ht H H9J(t;H5H9t/HXHtsHJH1 fHH9twH;tuH;=H˰Z.TA LL?H;xH]A\A]HH9tHuH;5tfDHG`Ht HH9P(tAu1HtH]A\A]E[fDH5HH@`HtH@(HtHLHL]A\A]@Hx HHtH}H5=I9}S먐HfDD$ D$ H H=1AWAVAUATUSHXG|G|bHo@HIIIHtqEtEHH0L9OHAHExHHEH{@HCHHtHHC@x HHExLLLneHT$01HHD$0GC|tMHl$0u(H;-t[HScHtHEx HHEtlE1HXL[]A\A]A^A_Ld$0fH舩5HH8QcE>GDHHfDHH5E1H8'ifLL$_HEH9IL$HH;L$H51ҹH虨L$HI2MIGLMH=L$|L$y1LLAI转MLd$(Ix HI7HEx HHEt1Ld$(Mt1C|mfDLLLHOHD$(HHt$(H8C|Hl$(HH;-L806IH EtEIm1LLޭIIExHIEWMt5;HH@hH8LLIx HIGHEvHHEhH[L E1HHL$IM(謥HH L8HB`Ht?HxI9t%IGLH$`]H$tHz`HB`&HExHHEF|HcH{@HCHH2HHC@HH)Ht$8LHHD$0Ld$8Ll$@Lt$HyHD$(1LL.IrLd$(שIHHH5=H8襦H5wL AtAH-EtELLL$LL$HIfHnH=9fHn1flH$H)$GHILI$LL$xHI$1MLH$LL$HDŽ$L$pLL$IIx HIIx HI1M11LZIx HI1E1fHH\$@H;D$ L耟IHtL9H;o|L;|$qLYIx HInS Ix HIIEH5|LHHIM IEH5PLHHIMLLT$芢LT$HHIx HIHs11LDIHhIx HIH5L@ÅIx HIH5IELHHIMvH5LڝIHIx HIJ M9L; zL;L$oLLL$蚡LL$$Ix HIR $CH5LLIHL$HLuzH$H$H$HD$H$HD$0H$HD$PH$HD$XHIx HIDŽ$Lt$0LDH$L$H$H$H$H$HD$`H$HD$8Mfo$fo$fo$fo$fo$)$fo$)$fo$)$fo$)$fo$ )$fo$0)$ fo$@)$0fo$P)$@fo$`)$P)$`)$p)$)$MHHLd$fHnHD$hH |$L$HD$pHHD$x1L$ILIL$HL|$)|$@ff(L$(T$ {L$(fT$ f.^ HD$8IYAB #YA HD$hYHD$pAf(9HD$xH\$XALt$`L;l$0fod$@)$pL9u8H$xHH+t$fHL$PHL$B H$xB `H$HDŽ$YYYXXf.@QH$pL9t$Htx8HDŽ$xm5M-m-f)$pYf/sYG-f(^K-\Y^ C-XufL蘘l1E1fDH$pHt&H;D$tP8HDŽ$x]HDŽ$pH=jE1rHtH;l$tE8L;|$tMtAG8IEx HIEtIHHL[]A\A]A^A_@HD$&fDH谗BL蠗L萗fDL耗1$fL$LLMuH$H$H$HD$H$HD$0H$HD$PH$HD$XHE1 sH3lIH HM1HD$<@3 uH$xufD! H$pH|HDŽ$pHeHHXL$ JL$ B胝LL$HfDHE1HD$HD$M1fDIx HIHt,E1Hx HHMtIx HItCH|$'HL$HHH Hωt$~t$DLt$dt$fDLωt$Lt$_H߉t$4t$cE11E1HD$E1Ix HItO1MtIx HItMf.LLL$ t$返t$LL$ @LLL$(LT$ t$蚔LL$(LT$ t$f.LUH]AtAtHExHHEfInfInLT$HDŽ$fl)$蝗LT$HI HHPLT$HPLHH$HD$ H$cLT$IIHIL蛓fDYH{H5-L$L$H8df. HE+HHEH( IHILDH$pHHDŽ$pHHHtt$謒t$bH1E1MHD$fHaHE1MHD$1HD$zfD1E1L$L$HD$$D$tH\$fInǾ@L$)$p.H$1HDŽ$HH5H$HD$8H$$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8,IHHH$@W*f)$pf)$)$L$IHH*HPtH&HH$IR tHH|$LH$HLT$H$返LT$IIx HIdIx HIbH\$Hx HH* MCLLL$賏LL$f1@LM腏Lx軖ILXtHL$$1HU H5> $$$$$$$$$$$$$$$$$$$$$$$$$IHH6f)$)$H$軑IHHHPtH̪HMH$IR tHH|$LH$HLT$H$eLT$IIx HIIx HIH\$Hx HH"M@1"LLL$'LЉLT$L辉$H豉0H褉L藉LT$L腉LxLL$LfHY>L1E1GLL$M "z^E1ɾ"LL$ HD$f(Yf(IgAWHOAVAUATUHSHxHD$PH-H<$HD$@HD$HHD$XHD$`HLyIMHHHHHH HNH9L LNL@HHUHH5`H81~XZH|$HHtHx HHH= ~1Hx[]A\A]A^A_HVtHT$HHtHT$@ID$L,LT$PO4*I1L\$@@IMLLHuHPHHL; uITL)L؋ t HHI9uHT$HH#Ht$@H"H|@zHHt H|@dH<$H|$@HtHxHHu H$贆H$H|$HHHHHH$聆H$HD$8HI9ALLHL$8LLۈL\$LT$LL$='LL$LT$L\$t"LHHH50H81nH|$@HHHHÅfDHHQHVtH6HT$HtHt$@HHH H5UL `AHH81ċY^OHD$8ITI ËtHH6tHáHt$@tHT$H HtHT$HLLHL$8LLTL\$LT$LL$L\$LT$LL$tLLT$%IE1LT$LHu8rtHIL)HD@HCHHtLIIM.HHHHHlHRL oNAUAH QH5ZkH81xVXZH|$hHtHx HHH=sE1FHĘL[]A\A]A^A_HVtHT$hHtHT$`ID$N4Hl$pN|5tLl$II1LT$`LIM\LHuvfDHPHHtcL;uIL)LЋ t HHH9uLl$H\$`I"J|`IIt J|`Hl$hHD$XHlI9C8LHL$XLLLJQLT$L\$L\$LT$t"LHkHQH5WH81TH|$`HLHAHH4%N*IHtHnH\$`EtEHl$hL-H=IULRIHtA$ID$H5LHHIM]I$xHI$ HiI9@LHt$xHl$xHLD$HD$p LD$HMI$xHI$) H5HEH5HHH^IMjH5%LMIHtI$xHI$uLLL;5iL;5Yi L;5wi~ LAQAąIx HI E HEH5ƜHHHIMH5^L9I@H;2iL5iA@LD5hIx HIL%H=IT$L PIHLtAIALL$LH5HHLL$IIMx HIHgI9GHt$xLHl$xMHHD$pII$xHI$aMHExHHEiH-H=HUHOIHMtAI@LD$LH5HHLD$IMIx HIHCLL$HH5CHHLL$IMHfI9ALHt$xHLL$HD$pL|$xL$LL$ILIx HI HExHHEg MAIRH;fH5IBHJH¸H)ARHHxLT$%LLT$IIMx HI HCH5HHH IM11LϹLL$NLL$HIIxHIuLLT$HLT$LֺLLT$vILT$HIIxHIuLLD$HLD$HĝLLLD$|FLD$XIxHIuLWHH=;IH H@LD$LH5 HH)LD$IM<Ix HIH=IHH5HHD$LL$HIGIx HIH5՜1LLT$>HLT$HI H5HLT$HD$TLL$LT$HImHLT$LL$HD$KLD$LL$HLT$HvIx HIuH}LT$LL$dILL$LT$HIHLLT$LL$HD$oGLD$LL$HLT$I Ix HIH=b1HI9zfInfHnHl$pLflHtLL$ L$L\$LT$HL$()D$pHL$(HD$HLL$ LD$LT$L\$Ix HIHIx HIZIx HIgMH=bE1HI9|$fInfInHtLflLD$LT$)D$p$LT$HD$LLD$LL$Ix HII$xHI$kML; bL; aL; aLLL$ILL$AIx HI]H5EZHIH8LHHD$觙LL$HHD$Ix HILd$LLPLIHI$xHI$H5HLL$LL$HILHLL$HD$LD$LL$HIEIx HILLLT$LL$LLL$LT$HHD$Ix HIrIx HIH5HfIHLHHD$jLD$HIIx HI5L NAtAH5HLT$LL$LL$LT$HIfLHLL$LT$HHI$xHI$\H5^H|$LT$ HT$LL$譗LL$HT$HLT$ IrHHLL$HT$BHT$LL$HLT$ HBHx HH)I$xHI$4fInfHn1HH=flLT$ HLL$)D$p`GLL$HD$L^HLD$LT$ x HHM LLLD$LT$BLT$LD$HHNIx HIIx HI0L;5X^L;5^L;5$^LE11HMIHrHx HHA$tA$IELLxfHHEMtIx HIMtIx HIHL$HtHx HHHtHx HHSH|$`HtHx HHBH|$hHiH^HHQ@GD? L?LLD$?LD$WHHq\H @H5[AUL >AHVBH81FY^DHD$XII ‹tHfLn?HLT$\?LT$LLT$E?LT$UL3?L1E1E1E1E1E1HD$@1MtI$xHI$MtIx HI3HtHx HHWMtIx HIqMtIx HItgMtIEx HIEtoMtIx HIt)H=8bE14HHEktL߉t$*>t$LL\$t$>L\$t$zLL\$t$=L\$t$rLLT$8L\$0HT$(LD$ LL$t$=LT$8L\$0HT$(LD$ LL$t$LLT$0L\$(HT$ LL$t$=LT$0L\$(HT$ LL$t$HLT$(L\$ LL$t$G=LT$(L\$ LL$t$vLLT$ L\$t$=LT$ L\$t$fH<9LD$IL1E1E1HD$LLL$1LL$~LLD$1LD$IL1E1E1E1E1E1HD$fLf1LAtALyAtAHLT$LD$LD$LT$HI11HLT$LD$HD$5L\$LD$HLT$IZIx HIH5HLT$LD$LL$蘮LL$LD$HLT$I HLT$ HLD$LL$HD$L\$LL$HLD$LT$ IzIx HIfInfIn1HH=N~flLD$ HLL$LT$)D$pL$W5LT$HD$LULL$L\$LD$ Ix HII$xHI$M_LHt$xL\$xL\$LD$HD$pL\$LD$IIx HI=Ix HIFM11LI$xHI$(HD$L1۾7LL.L._1E1E1E1E1E1E1E1HD$L1MžHD$E1E1|L1MžHD$E1^IJIjtEtEIx HII1ABARHH ABARHH HyMT$IT$AtAtI$xHI$]I1Lc0LLHfDbH|$LL$y-LL$1L1E1E1E1E1E1HD$@LLT$LL$6-LT$LL$MLLT$-LT$wE1LLLT$,LT$L,WL1E1E1E1E1E11E1E1Lp1E1LHD$U1E1LCL1E1E1E1E1YLLT$ HT$O,LT$ HT$LL$~L1E1E1E1E1E1HD$ LLL$,LT$LD$LL$-L+LL1+HD$L1E1HD$LLT$LD$LL$+LT$LD$LL$TL1E1E1HD$ZL1E1E1HD$E19IL'+H+(HLT$LL$+LT$LL$LLT$LL$*LT$LL$HLT$*LT$LD$LLD$*LD$-LLD$L1E1E1E1E1HD$b1E1E1E1L1E1E1LHD$L1E1E1HD$E1E1L*LD$LL\$LD$)L\$LD$+LL\$LD$)L\$LD$ IAB\LT$,LT$I"LE1E1E1E1E1kI~LLD$HT$LT$T)HT$LT$1LD$IԺI6LL\$LL$HL$)HL$I1LL$L\$1E1E1E1fAWHyAVIAUATUSHhHD$ HD$@HD$HHHLyHM8HHHH)H )HIHH5k(H?L &HLIL@HHDRH5CH*H81.XZ H=6LE1VHhL[]A\A]A^A_@HtHL$ HEHLL$@M,qL$1LT$ fDIUL\LHu f.HPHHwL;uIL)LЋ t HHI9uL|$ M1H>DI96L%wH=OjIT$Lr+HHtEHEH5|HHH3IHEM.xHHENP*HHEAtAH |L}tHU HBI9D$Ht$HLHl$HLHHD$@IHExHHEuHJ&HxHHuH2&MHb{H5kkL$$AtAfHD$P)D$@Ll$H_)HHHtvHPtHpBHLHt$HHHD$P9*IHExHHEIx HIMIExHIEM.@IHIL %HD$8HXBI9C:LLHL$8LL'LT$LL$L\$L\$LL$LT$t"LHVAHa'H5-H81+H|$ H^HSHHFk$AtAL|$ L1$H AtH\$ "IHH2ytIEHH ytHHH ytHHH xtHHIL#-H# H#I$xHI$ H=uGE1IHIr L+#H=:G]MFIEE1HD$8II ‹tHnL" H=F lLLHL$8LLi%LT$LL$L\$苹LT$LL$L\$%LHHMfHLL$"IEE1LL$LHu9GftHIL)HD HCHHM9H0HLL$n*LL$HuLL$%LL$Ht5)IMHHEIE1 eMD$I\$AtAtI$xHI$<fInfHnHt$@HflLD$)D$@LD$IIHIL! H=EI9M9HD$(Ld$0H\$(HD$0Lt$81LHHLL$&IEH|$0LLL$HtH98tHBHHuHD$8H=H9GuWLL#LLLL$^LL$vHL$0yfDLLD$ LD$LL"LLLL$LL$맾 H=CE1kE1y H=C H=CMf.AWHsAVAUATIUSHxHD$PH-H<$HD$@HD$HHD$XHD$`HLQIMHHHMHR H C HNHL ALNL@HH;ATH!H5:H81=%XZH|$HHtHx HHO H=BE1HxL[]A\A]A^A_HVtHT$HHtHT$@IEN4Hl$PN|5? I1L\$@IMLLHuHPHHL; uIH)L؋ t HHI9uLt$HML|$@M"J|@IIt J|@AtAL%7nH=`IT$L!IHtAI@LD$LH5iHH LD$HH Ix HIVHd9H9C Ht$XHL|$XIHHD$PII$xHI$M Ix HIIEH5mLHHIM H5qLǺLD$LD$HIz IxHIuL6H8L;=(9I9DL;=87L AąIx HIELsAtAL5YcAtAH5nLL$蓙L$HIfHnH=ifIn1flHt$PH)D$P LHؚI$L$xHI$VE1E1 HLHt$XL$HD$PHl$X[L$IHExHHE$Ix HI!Mt%11L)I$xHI$E1 H=>E1MtI$xHI$IExHIEH|$@HtHx HH?H|$HHHHHf.HD$8HP7I9ALHL$8LHLL\$LT$LL$ݺLL$LT$L\$t"LHN6HbH5"H81 H|$@HHHHcfDII1LvAtAL>Lt$HAAL|$@~HH5AL ATH <HH8H5:41[_AXEDLLLHD$8II ËtHL>AuAL|$@H5tAH\$HIIH4tH\$HIbIEH5DkLHH3 IMHL"IH Ix HIH5 mLADžI$xHI$EIEH5gLHH, IM H5lL9I@H;]4 I@uHH}1H94ID$Ix HIIx HI t$cLbHD$H H<$H5jHGHH4 IMi L;3I9u L;c3 DIx HIEtHD$H4$D$tL<$H=WbHl$P1HHHD$XL|$PxIIxH4$HHuH! M3L;%26 L;52I9L;52La JL$H=.fiHH5QeHH$ML$HHIx HI H1Ht$XE1HH9CfInfInHLl$`fl)D$PLIkHx HH M:' LIHNE1M LLL|$@HD$LLD$LD$AE1 E1Ix HIE1f.MtIx HIMVIKHI>Llj4$4$+2LaLLAxxD$L=0wLLD$4$uLD$4$aLlj4$]4$(LMeLHL$8LHLL\$LT$LL$L\$LT$LL$ML|$@LLT$OIE1LT$LHu;DtHIH)HD@HHM9HoH0LLT$LT$HuLT${LT$HtE1 ALAE>LD$).H HD$I>HI1L$H<$gHHHD$HMH]H9]LhAtAH-YEtEL$L$HH~ H|$L$HIt fHnH=}_fHn1flHt$PHD$`H)D$PHI葐HL$x HH I$xHI$ M LHt$XL$HD$PLt$X L$IIx HIt Ix HIq Mt%11LI$xHI$W E1 E11 LMIIE1Hx HHt>MIHILLD$4$LD$4$LD$4$4$LD$ME1 I* E1E1HIt%M LME1ME1YLljt$L $L $t$LD$H4LCLcAtAA$tA$Hx HHfInfInHt$PLflLD$)D$PLD$IIHILH<$H5bHGHH{IMcL;+I9EL;u+8LL$;L$Ix HI H|$H=^)HH5!\HH$ L$HIIx HIHJ*E1HI9YyH \LHtL $L|$PHL$XLd$`Ll$hZLIL $Ix HI(M3 IL_ tE1 E1E1!H=]+HH5`HHD$LD$HIyIx HI"H5J)E1HI9vNfo-^bfInfInLflHt)D$P)l$`YLHD$ILD$x HIML;[)I$xHI$ME1 IE1 xM9DHD$(Lt$0H\$(HD$0Ld$81LHL6PIH|$0LHtfDH98tHBHHuHD$8H(H9GLXLLH藬tHL$0IH;'JLǺLD$ LD$ HI_L;='(I@I9A@A L;='t$A ԅHI@ !IE1 H L i# H5NL)M! E1E1-H|$HLD$W LD$LE +HH5ZHH$L$HIIx HIL$L$HHH NtHSH H NtHJH NtHJH%I9B-M־E1IfInfInL $flLD$Ht$HD$hLl$`)D$P L $HI|H UHt$LD$HHtHLLLLL$H\$h LL$H$LeHL$x HHIx HIIx HIM11LǹL$ǮL$HIIHILWH5+MLS]IHgH;%dI$xHI$2MTfA.@YDLL$LLLD$LD$MLLD$$ MǾ$ 50 ME1 E1)) E1MyIYAtAtIx HII1HLL$L$ L{LsAtAAtAHx HHLHH5&JLLD$ILD$/$ E1NM~IFAtAtIx HIzIƺ1s) I}LL $&L $$HL$?LL$L$>LL$L$=LL$L$MyHL$LLL[LLHz@M1' 3 aLWHJL$HLL$5L$IL$L${LLE1M11۾ E1M M * H5/HHH$SL$}* E1YMME1MUL|I1M0 MJMrAtAAtAIx HIt1AM1Mо0 LL $L $1A~HLHLHD$HD$I10 rHMx Iؾ0 0 fAWAVAUIATUSH( H$h H$T$`H$ H$H$` HD$ 1H;% HH$pHH$L$p HH$@Ht$HHH\$HHH$ H|$pL$ HH$P HDŽ$HHDŽ$L$ HDŽ$uF8H'HD$HDŽ$HHDŽ$@HDŽ$HDŽ$HDŽ$HDŽ$HH;HH$ H$HHD$H11HD$XHD$PHD$@D$E1E11E1E1E1E1E1HD$0HD$(HD$H$ H;ft$HtH8HDŽ$ P&HDŽ$ H$ H;%t$HtH8HDŽ$ &HDŽ$ H;tHtB8&MtIx HI#MtIx HI#MtI$xHI$ $MtIx HI$$MtIx HI;$HtHx HHJ$MtIx HI#MtIx HI #Lp`HH@`M{"MfA$tA$M~(Mt AtAH$Ht"H#H9$F"H$HH$t"H"H9$1"H$H$t"H"H9$H"H$Mt M9~('H{`Ls`HtHx HH!MtI$xHI$,#MtIx HI##t$H=#1E1HD$hHD$xHD$pHD$@HtH;tH¸B8$HD$PH;vtHtHA8I%HD$XHtH;HtH¸B8X%H;-)tHtE8g%HL$HtHx HHI"Ht$(HtHx HH;"HD$HH;tHtHA82%H$H;t$HtP8HDŽ$-%HDŽ$H$pH;Zt$HtP8HDŽ$x4%HDŽ$pHT$0HtHx HH!HD$H;tHtH¸B8)%H$X~t$xLfInfo$Pl$pfo$`fo$pt$hAmfo$fo$A]fo$Ae fo$AU0fo$A]@fo$AuPfo$Ae`fo$ AmpAAAAAH( []A\A]A^A_@HTHDŽ$fHnHAH$fl$DL$`EHD$fHnD$ )$ H$HX8B&E1E1LLDŽ$LHjjjjjjjH$<PSH@&H$ fL$` HD$H$ )$ HD$ HD$H\$ H$ HH@ 3HH$AH$ L$ L$0 HD$@H*fo$ J;Hfo$ fo$ 0HD$fo$ )$`fo$ )$pfo$0 fo$` )$fo$@ )$fo$P )$fo$p )$fo$ )$fo$ )$fo$ )$)$)$)$)$ @H$ H$ H\$0H$0 HD$PH HD$Hfo$ fo$ fo$ fo$ L)$0fo$ fo$0 0)$@fo$@ )$Pfo$P fo$` )$`fo$p fo$ )$pfo$ )$fo$ H$)$)$)$)$)$)$)$?H$ L$0 H$ HD$XLL$(H HL$0LILL$0LH$0o$0o$@o$Po$`HD$Ho$p)$ o$o$)$ o$o$)$ o$)$ o$)$ o$)$ o$)$ )$ )$0 )$@ )$P )$` )$p H' LL$(H$ H$ MJT $IYAH;5YX$HYXD$xt-F8HDŽ$ !MAf)$ AY $CY4CYtf(f(XD$xX$H$ HH$ $(H$ H$ HD$(H$ HD$hH$ H$H$ HD$HHfo$ fHnfo$ fo$ |$(fo$ fo$ )$fo$ fo$ )$fo$ )$ H;-fo$ )$0fo$ )$@fo$ )$Pfo$0 )$`fo$@ )$)$p)$)$)$)$)$)$ tE8 HD$h1ҾHDŽ$@ H$ HD$HH$ $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $$$$$$$$$$$$$$$$$$$$$$$$$$KKHĠH$ H;=t$HtP8HDŽ$  HL$0ILLfL)$ H$0o$@o$Po$`o$p)|$0o$H$8L$H$ L$H$)$ H$H$ o$L$ o$L$ H$@ )$)$ )$)$ )$)$ )$)$ )$)$ )$)$0 H$H L$L$L$HD$L$H$L$P H$L$X L$` L$h H$p H$x HH;-tfH]8qHD$(1ҾH$H$P H$X HD$hHDŽ$ H$` HD$HH$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H $H GHĠH$ Ht(H;c tP8HDŽ$  fo$H;-2 )$ tE8H$ H\$(HD$(1ҾH$HDŽ$@ HXH$ HD$hH$ HD$HH$ $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $x $$$$$$$$$$$$$$$$$$$$$$$$$$tIRfHnfHn˿flL\$HLJLT$(?LT$(L\$HHHD$0H@fInfInH$flE1HLPH:I9GH\$0fInLfHnfl)$eLHD$((hHxHHu H|$0IxHIuLvH|$(L$H$ DmH$ H$ H$ H$ H\$pH$ HD$HHL$xHt$hHefo$ fo$ fo$ fo$ fo$ )$fo$ fo$ )$fo$ fo$ )$fo$ )$fo$ )$fo$0 )$ fo$@ )$0)$@)$P)$`)$p)$)$M=$fHnH?HDŽ$fHnH$T$pL$flfoHDŽ$HD$0)$)$H|$H1$)$ |H$H$<$H$ HD$hH$ H$ HDŽ$@ H=7ffo$ fo$ fo$ )$ fo$ fo$ )$pfo$ )$fo$ fo$ )$fo$p fo$0 )$fo$@ )$fo$P )$fo$` )$)$)$)$)$)$ )$0dIH0H593HIcIH%Ix HIH$IHIHH)LxR IT$ tIT$(H|$L9IH4I$xHI$HH$(E1HI9FNfInLL$0D$)$ LIcIExHIEIx HIxM7L;% H$L5]tL9$HL$L=fo$L$HfDŽ$$$8H|$03cH=\4藺IHH5l1L|aHHIx HIH5].H|$KaIHtAEH$ H= 1fIn1D$(HHD$0H)$ zLIbIExHIEMCH1E1HH9EfInfInHt$0HflL$0)$ BLIbIx HICHExHHE:MH$ LDH$ HfIExHIEH$${H$ fo$ fo$ fo$ )$fo$ H$)$H$fo$ fo$ HB)$fo$ f/u)$fo$ )$fo$ fo$ )$fo$0 fo$ )$fo$@ )$)$ )$0)$@)$P)$`H IufHnL$L$x{H$%suAL$xVuILf(fT uf(X$(\fTuf/f/~H$H$$HJH$JfW 8u#H$H$H$xH$AJL4pHJH$Ht|$`$AfHnHstfHnAAf/@L$xH$I FH$Ht$ L8 tf/w f/tv8Et3$(AXAf(X\\A sf/f/v \sAf/f/v \sf/Wf/v \st$`tAA EtH$Ht$xH$H$H9$fo$Ld$0DHD$H1E11HD$0E1E1E1HD$(E1E1E1HD$D$fDE1E1LLDŽ$LHjjjjjjjH$<P&6H@fHD$H11HD$XHD$PHD$@D$E1E1DHDŽ$HDŽ$HDŽ$H+fDLLT$ LT$ fLLLT$hL\$`LL$ LT$hL\$`LL$ DLLT$hL\$`LL$ LT$hL\$`LL$ DLLT$hL\$`LL$ yLT$hL\$`LL$ DLLT$hL\$`LL$ ILT$hL\$`LL$ DLLT$`L\$ LT$`L\$ HLT$`L\$ LT$`L\$ LLHHHqHD$H11E1HD$XE11E1HD$PE1E1E1HD$0E1HD$(HD$D$fHL$D$H$ HHDŽ$ HHHHT$xLT$pL\$hLL$`LD$ LD$ LL$`L\$hLT$pHT$xE5H$ HnHDŽ$ HWHHJHT$xLT$pL\$hLL$`LD$ 7LD$ LL$`L\$hLT$pHT$xfHHHHLT$pL\$hLL$`LD$ LD$ LL$`L\$hLT$pDHL$@HHHHHD$H11E1HD$XE11E1HD$0E1E1E1HD$(E1HD$D$HL$PHHHH HL$XHHHHx HEHHEyHl HL$HHHHHe H$HHDŽ$HHH  H$pHHDŽ$pHHH% HL$HHHHHD$H11E1D$E11E1E1E1E1E1HD$0HD$(HD$@LLHD$H11E1D$E11E1E1E1E1E1HD$0HD$(pDE1E1LLDŽ$LHjjjjjjjH$<P/H@xHD$H11E1HD$XE11E1HD$PE1E1E1HD$@E1HD$0HD$(HD$D$H@L0M~MfAtAA$tA$Ix HI fInH$LD$()$}HD$I0HI#LHD$01E11E1E1E1E1D$E1E1@HD$H1D$ HL$D$) H$ H%HDŽ$ HHHLL$(HT$HT$LL$(MAHD$H1E11E1E1E1E1HD$0E1E1HD$(D$ H\$H(HHHM EEfDLd$(L$HDŽ$ L$X Ld$hH$P L$` Ld$HL$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ SQASARAQAPWV$$$$AWAV$$$$$$$$$$R1Py*HĠfHD$HHD$ H$ H*HDŽ$ HHH0L hHD$H1D$A$ E}EufDL#HD$HHD$H1E11E1E1E1HD$0E1E1HD$(D$ HEHHEHX H$ HHDŽ$ HHH+ EEfD3IHD$H1E11HD$0E1E1E1HD$(E1HD$D$@HD$H1E11E1E1E1E1HD$0E1HD$D$fHD$H1E11E1E1E1E1H5H蹀" Ht$H$H$HBHD$t HHLD$11HD$HE1E1E1D$E1E1E1HDŽ$HHD$0HD$(HD$HD$H1E11E1E1E1E1HD$0E1HD$(D$fHD$H1E11E1E1E1E1HD$0HD$(D$hD;IHD$H1E11E1E1E1E1HD$0HD$(D$DIT$ fDHD$H1E11E1HD$0E1E1HD$(D$LH HD$H1E1E1DH$M1E1L$D$E11E1E1E1hDL$`E1E1Hf/smH$L$$H$N BA 9\8XH2bL$x$EfHnHbfHnf/H$I FHD$H1E1L$HDŽ$HLaL;%L$ LLL9$H$H$H$]HD$0H;FH=HLLߗ H$H$H$D$HDŽ$HDŽ$HDŽ$EwMD$1E1H$E11E1L$E1E1E1qHD$H1E1E1HD$0E1E1HD$(D$;L L{LZHD$H1E1뤍ps"H=1;dq'H=1%dHD$H1hq'H=1cp'H=x1cp'H=b1cp'H=L1cp'H=61cp'H= 1crH='1{cp'H=1ecp'H=1OcrH='19cHD$H11E1HD$(E1E1D$ }^_f(DD$I1E1H$E11E1L$E1E1E1uMgI_A$tA$tIx HIIH$HD$H1E11E1E1E1E1HD$0E1E1D$L{ X6^L]dX^lX^A:L-?H=y IHtH5YHFIHIx HIH 2E1HI9M]Ht$0H LL$ HH$(GLH HIExHIESHOHEHHEHKp"H=1`L(HH$MI1L$p"H=21`p"H=1`Ld$0MI1D$E1E11H$E1E1E1L$MD$I1H$E11E1L$E1E1p#H=1 `LAM~MfAtAA$tA$Ix HIMH$ iD$1E1E1H$1E1E1L$E1E13H$H$H$L88A\ X{H$H[AL$xfHnI FrH=(#1 _H5 LvH$L$L5fL9$HL$LHff/f/~p5#H=1^ILd$01E1E1D$1E1E1H$L$E1pA#H=12^rH=C#1^f/HEQH$LtUE1E1H$H$$H88\0 2XHY$AfHnHYfHn%pO#H=1]MIL$xAA:Ld$0I1E1D$E11E1H$L$E1E1fo$fHH$H$$8L}LmAtAAEtAEHExHHEL12LD$1E1E1D$1E1E1HD$HE1E1HD$0HD$(HD$Ld$0M1E1D$E11E1H$E1E1E1L$H$H$H$L88A\ X#L$xH$fWXHWI FfHnnLIH$ ~T$HHHD$0T$p)$'_H$fo$fo$~D$x)$fo$pfo$)$@D$hfo$H$H)$`fo$)$Pfo$)$fo$@)$pfo$0)$fo$`)$fo$P)$ )$fo$)$)$)$)$)$ t"HH9$4H$HH$t"HH9$H$H$$HH9$HH$Ld$HmL(BLLM H$ oE1E1HL$D$0tLt$Ht$H1HH=HDŽ$L$LE1H7E1HH5HH6IH%H5 HHD$0NLD$0Ak+IxHIuL Et2H5H IH,Hx HH,+LH=}踎IH$H5H5IHIx HI5$H;\$h+Mt$AtAHt$H1H=lHLT$0L$HDŽ$謼LE1I6MLT$0 L$@1DŽ$LHL;|$X"MMؾLT$0H$pH$HDLT$0,fo$@fo$Pfo$`fo$pfo$)$fo$fo$)$ fo$fo$)$0fo$)$@fo$)$Pfo$)$`fo$)$p)$fo)$)$)$)$)$fo$fo$ )$fo$@H$)$`fo$0fo$P)$pIfo$`)$fo$p)$fo$)$fo$)$fo$)$fo$)$fo$)$)$)$)$ H )Ix HI!LT$0H$ 1HH;l$8$($($($($($($($($($($($($($($($($($($($($($($($($($(tH$o$o$o$o$ )$Io$0o$@)$o$Po$`)$ o$p)$0o$)$@o$)$Po$)$`o$)$p)$)$)$)$)$HHLT$0 H|$(SLf1ɿ)$`H0H50$$$$$$$$$$$$$$$$$$$$$$$$$$[ L$IHHH|$ SLT$(E1yKLT$(fH1)$0H$HI9BO'fInfInLLT$(fl)$BLHD$ 1ILD$ LT$(x HIIx HIE1MUHt$HD$8H9H;t$@HL$H9HLD$ ̵LD$ $H=LD$ևLD$HI;%H5H.LD$HI*Ix HI$M*HE1HI9B*fInfInLHt$HflLD$ LT$LL$()$LL$(IL/LT$LD$ Ix HId$Mr$L/HD$M11LǹLD$VLD$HIfH$`Ht&H;D$tP8HDŽ$hHDŽ$`H$0Ht&H;D$tP8HDŽ$8HDŽ$0H$H;D$t$HtP8HDŽ$HDŽ$H=LD$E1/MLD$tIExHIEHtHExHHEHtHx HHkMtIx HIrMtIx HI)I$xHI$HL[]A\A]A^A_fDHIŃCBfDLH5Ht$@D$8tHHl$@HD$8I9H9D$@zLAtAH- EtEH=1H$H$ID$LD$HH$ܲHH,HLD$%LH$LD$HDŽ$H$z~LD$IHx HH Ix HI M%11LEhIx HI Hl$@E1E11f.L訬~L蘬H般}LxsHhHXpLHL8HLD$#LD$~fLLLD$LD$fHLD$ӫLD$f21LA0LT$HI;HtH\$I܉D$tE1E111E1HA11E1E1E1HD$IE1x HItGMfI[HINLLD$t$LD$t$/LLD$t$תt$LD$@HtH-EtEH$ID$1H$H=HH$HI)MuH$HHDŽ$L${HIExHIEHx HHH11HWeHExHHEuHݩH11E1E1E1HD$f.H$`HHDŽ$`HHHLD$t$gt$LD$fH$0HHDŽ$0HHHLD$t$t$LD$fLH$HHDŽ$HHHLD$t$觨t$LD$f苫H}IH:*HXE1E111HD$H1E1E111HD${ItHE1E11E1HD$?I]M}tAtAIExHIEuL§HH$LH$H$ID$H$ 9{HHBHH5HfI)1fDHE11Ix HIt>E1^fDHLE1E1Lljt$ܦt$E1˩H|HH(E1E1LLD$@蓦LD$@fLLT$@sLT$@+f1LA0IHH\$I߉D$tH=ObIx HIE1E11<@E1E1Hx HHt E11H߉t$1¥t$E1fDHL蘥!H5LI3H\$D$(tH\$Ht$H1HH=|HDŽ$H$蛪H1I$E1MMH5~L"HH@H5+H:ADž Hx HHEt2H5cLHH!Ix HIIH=1l{IH H5HQ"HH Ix HIL;t$ MD$AtAH='Ht$H1HL$LD$(HDŽ$`LD$(IL`#ML$@1DŽ$LHL;|$qMML\$(H$pH$HL\$("!fo$@fo$Pfo$`fo$pfo$)$fo$fo$)$ fo$fo$)$0fo$)$@fo$)$Pfo$)$`fo$)$fo)$p)$)$)$)$)$fo$fo$ )$fo$0fo$@)$H$fo$Pfo$`)$fo$pfo$)$ fo$)$0fo$)$@fo$)$Pfo$)$`)$p)$)$)$)$HlIx HIbH$H;l$8H$H$D$PL$HD$XH$H$L$PHD$(1HH$pH|$`HHtHD$H9tF8"HDŽ$HDŽ$L;t$HrH +HDŽ$fHnH$Hfl$8HLxH$H;l$8H$fInfHnfl)$pHHL$H9H8HD$hH L\$pE1E1LDŽ$jjjjjjjH$4PHL$hH$H$WL$H@HL$hH$pfL$L$x)$pH$APxBM1At$(PwH)CBx<B‰D$XA;D$(uAD+D$(A)ȉD+T$(L$pD)LDD$hHHHH?H?HHHH)ѺH?)IF L$`HH$H$HH$@H$H$H$H$H$H$Hfo$@LcD$hfo$PHcL$pfo$`)$fo$pfo$fo$)$fo$)$fo$fo$)$fo$)$fo$H$)$ fo$)$0fo$)$@)$P)$`)$p)$)$IK%1HHcD$(M$IH$L$PL$H$HH$HH$H6H„t=\1$fL$H$L$*t$`H$ILH$H$L$HIL$IHD$P$"\@1%@1fT1f/f(f(T$p\$h]\$hT$pD$`f(f(>d$`H$f(\XA H$A1L$(9L$Xt/H$$AY7A7E\0EA 0f/.f/f0v \0AEf/8f/@0v \^0EC7f/f/0v\70C7LHcH8IPLLD$`LD$`HHtHGH5jH|$`HH`H|$`IHM^x HH|H/I9AOHLL$`HDŽ$ HDŽ$H$LL$`HIAHH HPtLH$ LHH$LD$hLL$`ܞLL$`LD$hHMIx HIIx HIH HxHHHH;\$tC8H$HD$PL$HD$PHIH9$H$H$$t$(L)B LH$L) H$L)Y9t$Xf(f(\XX\H;\$tC8f(f($t$xT$h\$`؟T$h\$`D$pf(f(蹟d$pf(蚝J-T$hXt$x$f(fT -Ef/\$`f(f(T$p\$h?\$hT$pD$`f(f( d$`K7XA'E1E116fDLML}AtAAtAHExHHEHmL$LH$LL$8H$ID$H$ .kLL$8HIWHIJLV=K[fD9L(HD$-MHH5LD$HʙH81`LD$HaE1E11H5LT$H8譗LT$\f(f(T$h\$`u\$`T$hf(f(\K7XY$A* E1E11ۅH=S11LD$uQLD$FfDH9tLQAtAfInHt$HfIn1H=flLD$E1H)$LD$ILMH$HHDŽ$L$fIIx HI Hx HH E11۾McL11LD$rPLD$Ix HI E1E11'MAMǃAE1E1E1E11fDfo$PHD$fo$`fo$pfo$fo$H$@fo$@)$ fo$fo$)$0fo$)$fo$)$@fo$)$Pfo$)$`fo$)$p)$fo)$)$)$)$)$DX`(AfDXH(C7 DX0(EfDLLT$0KLT$0LE113E1fHLL$8LL$8SLLT$0LT$0E1E1(HɯE1E11HD$rH=T1t+rH=T1^+rH=ܟT1H+f(f(bE1LfLT$(LD$ LLD$ JLD$ H!E1E11E1HD$_E1L$H$AzH$L$L$H$pHt&H;D$tP8HDŽ$xHDŽ$pH$HD$H9HˆT$(uA8L\$`LT$hJH$D$pp')H=D1H$HHHHL\$(L\$(p3)H=1bHJ`L$GH$D$(p`)H=1p'H=1HHD$(LL$ *HD$(LL$ H1p_)H=J1rH=9L)1H^H 'HPL\$pHt$HLLD$hH$ LLT$`:L\$pLT$`HLD$hIQHIDLHT$pLT$hLD$`Y~HT$pLT$hLD$`MRIcpN)H=n1AԿp.(H=L1HHp>)H=.1p(H=1L\$pff.@AWH/fAVfHnAUATUHSHH-H)D$@fHnflH<$HD$PHD$pHD$x)D$`HLyIMHkHtHHtHT$@ID$L,LT$`O4*I1L\$@IMLLHuHPHHL; uITL)L؋ t HHI9uLD$@H8H|@HEHt"H|@HHt H|@HT$HHL$PH<$LH|$@HtHx HHQH|$HHtHx HH!H|$PHHHHH${H$Hu/HVtHT$PHVtHT$HuHHH%H?~L yUAH [|H5H81ЁXZH|$@HtHx HHRH|$HHtHx HH*H|$PHtHx HHH=Ƞ#q1HĈ[]A\A]A^A_HD$8HI9ALLHL$8LLb}L\$LT$LL$LL$LT$L\$LHH}H5H81€DHLAtAHVLD$@tHNHT$HtHL$PyyyH$yH$H$yH$HD$8ITI ËtHLLHL$8LLE|L\$LT$LL$XL\$LT$LL$LLT$yIE1LT$LHu:tf.tHIL)HD@HCHHtHqL%H=IT$L6wIHtAIGH5LHH^ HIH( x HI{HH9CE Ht$hHHl$hIHHD$`FIIx HI8MzHExHHEqID$H5LHH IMC H5=L9IGH; @ IGuHHIx HILAtAL=pAtAH5LLD$qLD$HH%fHnH=fIn1flHt$`LD$H)D$`vLHD$HELL$LD$xHHE4MLHt$hLL$hLL$LD$HD$`0BLL$LD$HIx HIIx HI/H11Hﻸ+HEHHEHjpLuÅI컳IxtHIukL3pa,p"ppL p^HD$8ITI ‹tH4I컳DH=f1I$x HI$trH|$@HtHx HHH|$HHtHx HHtkH|$PH?H4HH'HD$FoHD$LHD$/oHD$wLoxLoHD$oHD$HD$nHD$VqL)DIHI컶HnLnLHL$8LLLpLT$LL$L\$mLT$LL$L\$HfDHH9DHuH;\2L%oA$tA$HHt$hLHD$`HD$hX?II$xHI$ M6 11L:)IE HI컱IELLL$FnIE1LL$LHu=*fDtHIL)HD@HCHHM9H0LLL$uLL$HuLL$:qLL$HtftI!A6Ix HIe ID$H5 LHHTIM<11LIH6Ix HILLD$qLD$HH3 nLD$HHqLǺHlLD$HIE Ix HI}HExHHEZL;= L;=ML;=ֈ@LpŅ Ix HI%G IFH5LLHH ЅH=8sBIHH@LL$LH5HH LL$HH Ix HIH~H9E Ht$hHLd$hHHHD$`>IHx HHM3IFH5LLHH I9 xHBIHH=;vAH H5VHHD$YLD$HI Ix HI H5 LLL$ LL$H H5SHLL$HD$jLD$LL$HH Ix HI H+Ht$hE1HI9A fInfHnLLL$flLD$)D$`B=LD$ILHELL$xHHE+ Ix HI) M L;=CL;=.L;=!LmÅ Ix HIL  IEHPpH HRH H5VLIHy IFH5"LLHHu I^ xHBIH H5L\HH% tEH=gL|$`1HLHl$`HD$hmHHD$HELL$xHHE M IEHPpH HRH LL$H5]LLL$H LHLL$HD$%hLL$LD$HH_ Ix HI Ix HI EtEH=L1HHl$`HD$hlHIHExHHE` M IFH5LLHH$ IxHBIH" HfDLLD$fLD$I컶IHI)mHmI=LKL{AtAAtAHx HHfInfHnHt$`LflºLL$)D$`9LL$IIwHIjLe]HeLevLelIM9HD$(Hl$0H\$(HD$0Ll$81HHL{jIH|$0LHtH98tHBHHuHD$8H>H9GXLKgLLLt,HL$0I컱H;L9eHHoH;v@H;#@H;@H iHx HHIx HIeMfDLcE1E1E1ɻIx HItmMtIx HItoMtIx HIt/MtIx HIt$HHELlcLbcLLL$ScLL$|LAc뇻1E1E1E1ML"cHc3LcqI컴&HE{HHEmHLD$1E1bLD$E1-LbLb9LbxfLAtAL5AtALLD$fLD$HHdLD$HI#H5;LLD$HH11H)LD$HIHExHHE*fInH=fIn1flHt$`LD$HLL$pLL$)D$`fLHILL$LD$x HITIx HIaHLHt$hLD$HD$`Hl$hm2LD$IHExHHEOIx HI`M 11L﻽,IEHIEH@wHHjH`PLLL$w`LL$)LMH]AtAtHExHHEfInfInHt$`HflƺLL$)D$`3LL$IIHIL_HLL$LD$_LL$LD$cL_E1E11fLL$H41fA.G@E6LLL$F_LL$bH4_LL$L"_HLL$_LL$LLL$LD$^LL$LD$LLD$^LD$MAIYAtAtIx HIIHt$`L`LLLg3fE1E1i1E1E1ML"^LD$YHPLL$H5kuHzH81rdLL$KH]LL$LLD$]LD$DL]KH]L]HLL$]LL$LD$Lt]1E1E1ɻ1E1E1nE1E1ɻ^a"aHPHyH5stH81|c'L-0AEtAEHܧHt$hLHD$`HD$h.HIEx HIEtGH11HHELj\L]\HLL$N\LL$jE1E1C1E1E11E1ɻ1E1ɻ LLD$[LD$IHt$` _H[LD$E1E1E1ɻL[ff.AWHfAVfHnAUATIHPH8UHSH)D$@fHnflHD$pHD$PHD$x)D$`MM|$MHI+HtHTHtHT$@ID$L,LL$`O4)rI1LT$@fDIM\LHuHPHHL;uITL)LЋ t HHI9uLt$@H8H|@HEHt"H|@HHt H|@Ld$HLl$PAtAH-H=HUH^HH^ tHCH5HHHbIHM%x HHHuI9BLT$HD$pHD$`Lt$h\LT$HHHHPtLHt$hHLT$HxuHHD$HD$p]LT$HMHx HHPIx HIIHfIx HIL;%uL;%NuL;%luL6]IL%H=hIT$L\HHItHCH5HHHGIHM+x HHHGtI9B_LHt$hLT$HHD$`Hl$hk+LT$IMIx HIMHExHHE LH5L9IEH;tIEuHHHEH5HHHxIMdH5PLSYIx HIAHEH5HHHIMHLHH`Ix HILHWIHHx HHL;=EsAL;=rDr L;=se LZAą Ix HIEHEH5^HHHIMpH5LAƅIx HIIE ID$H5LHHtIMI H5LŅ Ix HIU cLXAtALVAtAH5LLT$L\$L\$LT$HIfInfHnH=1flHt$`L\$HLT$)D$`ZLT$HLIEL\$xHIEHLHt$hL\$HD$`Hl$h%L\$IHExHHEHIx HIM11LWIEHLA*IELSHu2HVtHT$PHVtHT$HHfDHH%pHNVL QUAH [TH5nH81YXZH|$@HtHx HH]H|$HHtHx HHSH|$PHtHx HH+H=@y1!IHĈH[]A\A]A^A_@HD$8HpI9CLLHL$8LLqULT$LL$L\$L\$LL$LT$LHoH+UH5[H81XDHL6AtALfLt$@A$tA$LnLd$HAEtAELl$PHLT$QLT$PQQQHD$8ITI ‹tHCA}HHEH5HHHHHeH5H9w HCH;dnDsAHx HH}EEtEHH= Ht$`1HHl$`HD$hPVIHExHHE M^HEA&HHEHP HPLsPiSH%HHLA@DH=v1wFHEx HHEtdH|$@HtHx HHtaH|$HHtHx HHtNH|$PHHHHOHOLOOOH5ݤLAąFIx HI EL%A$tA$HtH5]HIHfHnH=MfHn1flHt$`H)D$`aTHIfIExHIE MnHt$hLLt$hHD$`IIx HI I$xHI$ AM(11LA IE HIEkH5HHH H5VHAą Hx HHb EH5HIH{HE/HLM+HMvI$xwHI$tuA H'HHAH HLT$DMLT$MIHILMA LA LLLHL$8LLOLT$LL$L\$LT$LL$L\$FID$H5؟LHH0 IMHLHH Ix HIO LHLIH' Hx HHV L;=i@L;=h@CL;=h6LPŅAIx HI EHhL=htA"OHHA$tA$fInfInLflC8LAfDHHH RILLL$KIE1LL$LHu@zftHIL)HD@HCHH?M9H0LLL$>SLL$HuLL$NLL$HtMMZMzAtAAtAIx HIfInfInL\$HD$pfl)D$`ML\$HHtpH HP5L\$Ht$`HٺLHefHD$HD$pNL\$HIHILIIxJHIuAALIM LII1ۅHHItH1ALLT$[ILT$MLE1AHeL=e{yALIqHLT$ILT$KL9HHALH@EH;D$LKIIHtQH;eL;%:ecL;%XeVL"MI$ÅxHI$SA A1IE1҅HE1LA)H5HIH)A$@HHHHGA`L1A)iM9EHD$(Hl$0H\$(HD$0Ll$81HHLLL$LIH|$0LLL$Ht@H98tHBHHuHD$8HfdH9GFLLILLLL$LL$vHL$0qfH5AHHHH5HAąHx HHEH5HZHHHHIHtHx HH2H5^LߺL\$\L\$AXIx HIsEH5PHHH5HHD$^FL\$HIHIx HIL;=bL;=0bL;=NbLJAƅIx HI?IEHftLAtAH5,HLT$LT$HIdfInfHnH= 1flHt$`H)D$`&JLT$IL&IExHIEMHt$hHLd$hHD$`II$xHI$Hx HHM11LIEoHAIE1DLCa>KIL\$AqKILL\$CL\$DJILCLCMzMrAtAAtAIx HIfHnfInHt$`Lflº)D$`IIqHIdL CWLBA H7JHwHB LBIHBlLA-{H;D$@HBCIHtKH;_AH;0_D.L;%M_!LGAI$E A HHHHBI$؅uHI$gLALALAHAA"1D`fA.EVKfDHALA)>HIA A"HIoHIrAALA=LAL@tLA*L@CH@L\$LLCLLLL$LL$0f@L{@"LL\$i@L\$E1ff.CAADAI$EHI$L@LA)AL?L?WE1ArH?CAAgA\AE1IQHIDILE1Lm?HI$5E1AA1H5?L=iAtAHWtH5/HIH$fHnH=fHn1flHt$`H)D$`3DHI8IExHIEMHt$hLLd$hHD$`II$xHI$Ix HIM11LIEHAIECLA+nALIHL\$=L\$L=-AL=R1A{L=LE1A/L=/ALo=LE1A+LA AADAW1AVAUATIUSH HL$H$0HHt$ H$H|$pHHT$H$H|$`HH$LD$H|$hHDL$XHDŽ$hHDŽ$pHDŽ$xHDŽ$HDŽ$D$(tH\$D$(tH\$D$(tH-&YHD$ HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$xHDŽ$pH9HL$@HƺH$Lt.H9l$Ht$H$LHD$8E1E1E1HD$HHD$(HD$PD$ ~111E1E1E1I9tMtAG8'H$H9t$Htp8HDŽ$(HDŽ$I9tMtAE8o(MtI9tAC8(H$Ht$H9tp8HDŽ$(HDŽ$MtIx HI %MtIx HI$MtIx HI$HtHx HHH$HtHx HH$HtHx HH#H$H9t$HtP8HDŽ$(HDŽ$T8Lh`HH@`M!M}AtAMu(Mt AtAH$t"H\H9$!H$l8H$t"HZ\H9$X!H$?8H$xt"H-\H9$!H$x8H$t"H\H9$z!H$7Mt M9u((H{`Lk`HtHx HH#MtIx HIl#MtIx HIC#t$ H=^E11E1[.HD$0HD$@HD$PH9tHtHƸF8,'HD$(HtH9tHƸF8?'HD$HHtH9tHƸF8J'HD$8HtH9tHƸF8U'Ht$HtHx HH"HL$HtHx HH"HT$HtHx HH["L$HfHnfInLfo$@d$@l$0fo$Pfo$A$$fo$fo$At$fo$`A|$ fo$pAt$0fo$A|$@fo$Al$Pfo$A\$`fo$AT$pA$A$A$A$A$H []A\A]A^A_HL$@HDŽ$fHnHQYflH$$H9l$KfHg$fHnHYH$fl$H9l$t8L$Ht$LLH$P;fHHX$fHnH$Xfl$HHHD$(H9l$rHt$H$xL`|$XH$HD$H$hHD$H$p&HXH9$] H$4H$hH9tCHt>L$LL$`&H$hHD$KfHHt$$fHnHWH$flDŽ$`$H$xHDŽ$ht"HOWH9$H$x43H$pHt?H9t:L$xLL $`&H$pHD$G@fHHt$$xfHnHVH$flDŽ$`$HDŽ$p1LDŽ$HH9l$6L$pLL$MH$LHLz'H$@L$HH$HD$0H/1LDŽ$HH9l$L$pLL$MH$LHL+(L$@H$HL$M*/H$HLHH$TL$o$o$o$o$)$o$o$)$o$o$)$ o$)$0o$ )$@o$0)$Po$@)$`o$P)$p)$)$)$)$)$Mf"HD$0H9tHøC8'I9tAG8'E1fLH$DŽ$HD$PH$)$H$H$PHD$0LHH9l$ LL$ME1L$L$pLLLT$8HJLT$8A H$L$@H$HHD$8M/*LLLL$HMLHILDŽ$ H$L$@L$HHD$@M)1LDŽ$dHH9l$LL$MLT$HH$H$dL$HILT$HL$*fo$pfo$fo$fo$fo$)$@fo$fo$)$Pfo$)$`fo$)$pfo$)$fo$)$fo$ )$fo$0)$)$)$)$)$)$ fo$@fo$Pfo$`fo$)$fo$pfo$)$L$@fo$fo$)$fo$fo$)$fo$)$fo$)$ fo$ )$0)$@)$P)$`)$p)$)$Mn$H$AL\$HH$ L\$@YH$C Y H|$0HYHHH$XC ZY PH$HD$8YXXCYX1I9L\$H$tAE8&I9tAC8&H|$`2*Lf)$ff/$DŽ$L-;}H=oIUL0IHD%tAI@LD$0LH5WxHH%LD$0IM%Ix HIh$YLT$0H$H$-H$H$L$fHnYG.LT$0HIN'HT$(HD$0fHnH$LT$8Y.LD$0LT$8HHR'HT$(HD$@fHnH$YP-LD$0LT$8HHT$@HN'fInHT$8LT$0LD$(-LD$(LT$0HHT$8H'HT$@LT$8LD$0HD$H(LD$0LT$8HHD$(HT$@HL$H'H@fInfHnfHnflfHnfl@HFI9B(HD$(LH$HHLT$0HDŽ$@H$H LT$0IMH\$(Hx HHf!IExHIE0!M'1LDŽ$dHI9^H$MH$dHCLL$(MLL$(*fo$pfo$fo$fo$)$@fo$fo$)$fo$)$Pfo$)$fo$ )$`fo$)$fo$0)$pfo$)$)$fo$)$)$)$)$ fo$@fo$Pfo$`fo$pH$@fo$)$fo$)$fo$fo$)$ fo$fo$)$0fo$)$@fo$)$Pfo$ HD$()$`)$p)$)$)$)$)$H'Ix HI!H$fL)$H$H$H$H$PH$H$H$HD$ H@ HH$OH$HH$@L$XL$HL$@H$H\$HHL$0H'fo$@fo$Pfo$`fo$p)$pfo$fo$)$H$fo$fo$)$fo$)$fo$)$fo$)$fo$)$fo$ )$)$)$)$)$ )$0H$o$o$o$o$)$o$o$)$o$o$)$ o$)$0o$ )$@o$0)$Po$@)$`o$PHD$8)$p)$)$)$)$)$H%H$fH$L$)$H$H$H$PH$)T$XH[H$H$-/$@HD$0H$pЃHD$0H$xHD$@HD$0HD$XH$PH$L$HL$8Ld$pL$XMHt$XH|$ 11IH!H$HNL$o$o$o$o$o$)$o$)$o$o$)$o$o$ )$o$0)$o$@)$o$P)$)$)$ )$0)$@)$P)$`M Ix HILt$8H$fInfHnfl)t$pSP$@$$$L$H$ H$H$H|$X贁H0H|$hD+AH$fLfot$pZ+Lt$8)$8)$$@E1E1HDŽ$`LLjjjjjjjL$AUH$zH@ Ht$H$2L$o$o$o$o$)$o$)$o$)$o$)$o$)$o$)$ o$ )$0o$0)$@o$@)$Po$P)$`)$p)$)$M H$H$LH$ H$P 2D$D H$ro+$$D$ $(D$01H|$`fq+)$fot$pH|$8f}+)$)$-E1E1HDŽ$`LLjjjjjjjAUH$}xH@ Ht$H$' L$o$)$o$)$o$)$o$)$o$)$o$)$ o$)$0o$)$@o$)$Po$ )$`o$0)$po$@)$o$P)$MH$H$LH$ H$PY 2Y X rY H+X$OH|$`f+)$4fot$pH|$8f+)$)$KE1E1HDŽ$`LLjjjjjjjAUH$vH@ H$Lt$HL羴+H$H$PfIn$Y t$@H$Y$)$`$Y$ $(Y Y$0XX PH$YXf($Xd$p+Lfo$`)$*H$H+$PHDŽ$H$$H$IH$H$f($H$HD$0H$P#L$p$$#$f(!%[HD$0$XITf(fT f/2 \fTL4f/$f(H$:!$$D$p!H$pH$1$f(\XALH$xAD\$AMf/Wf/ _v\ }AMf/f/9v \WAf/f/v \2AUL5oH=_^IVLIH%tAEIEH5qoLHHIIEMxHIE H;7I9FHbHDŽ$HDŽ$H$(IHHnH oHPtH$H$LLHMIIExHIEpIx HIM3IxHI}H+L}$f)$tH$fW®HD$XH$XHD$XH$H9$8L$HL$8IH|$H+CL$fInfo$fo$`D$0fo$fo$fo$)$@fo$)$pfo$)$0fo$H$)$Pfo$)$`fo$)$pfo$ )$fo$0)$)$)$)$)$)$)$)$t"H;H9$NH$H$t"H;H9$X2H$sH$xt"Ha;H9$H$xFH$2H0;H9$H$H\$HfH=p$xfHnH:flH$$yE1E1,DHDŽ$6HDŽ$XKHDŽ$`HDŽ$uH|$IHH9AH$H1:t%H9$X!H$LL$(LL$(fH?oH$X$fHnDŽ$`fl$HHH\$HD$(Hx HHH$~RLL$$DŽ$fW$fWH$fWH$fWaHD$1E1HD$0@HHHL$0HL$0HHL$0HL$0fLHL$@HT$0~HL$@HT$0^LHL$XHT$@LT$0QHL$XHT$@LT$0DLHL$`HT$XLT$@LD$0HL$`HT$XLT$@LD$0L|$E1LLafDHHjH<L\$1E1L$pHD$8HD$@M@HDŽ$HDŽ$Ffo$HD$fo$H$pfo$p)$Pfo$)$@fo$)$pfo$)$`fo$)$fo$)$fo$)$fo$)$fo$)$fo$ )$fo$0)$)$)$ EIHILL\$pHL$hHT$`LT$XLD$@LL$0LL$0LD$@LT$XHT$`HL$hL\$pfH$HHDŽ$HHHL\$pHL$hHT$`LT$XLD$@LL$0rLL$0LD$@LT$XHT$`HL$hL\$pzyIEHIEqLL\$pHL$hHT$`LT$XLD$@LL$0LL$0LD$@LT$XHT$`HL$hL\$p(I.HI!LHL$hHT$`LT$XLD$@LL$0LL$0LD$@LT$XHT$`HL$hH$HHDŽ$HHHHL$hHT$`LT$XLD$@LL$0LL$0LD$@LT$XHT$`HL$hH$H`HDŽ$HIHH<2_HT$PHHHH=HT$(HHHHU#HL$HHHHH% HT$8HHHH{LLeZE1HD$8E1HD$HHD$(D$ sfLLT$0LT$0f$@f.HLL$0cLL$0f$f(H$&$$D$p HD$0$H$XL4IAU@HD$8H9l$0HD$HE11HD$(E111HD$PE1E1D$ bHt$0F8JiHt$0H4HH'HL$HL$pHT$hLT$`LD$XLL$@.LL$@LD$XLT$`HT$hHL$pL$Ht$NfDH$H$H$xsH9l$Ht$LLH$xH$H$H*H51H8mD$`HDŽ$HDŽ$HDŽ$xHD$8E1E1E1HD$HHD$(HD$PD$ H$H$H$h{H9l$Ht$LL H$h%H$H$ H)H51H8u D$`HDŽ$HDŽ$HDŽ$hfHd$fHnHa/H$fl$H$H$H$x sHD$8E1E1E1HD$HHD$(HD$PD$ _fDL$pfo$pfo$fo$fo$)$@fo$fo$)$Pfo$fo$)$`fo$)$pfo$)$fo$)$fo$ )$fo$0)$)$)$)$)$)$ fD$f(H$~D$p$jIH$XY$@AE^fDH9l$0HD$8E111D$ E1E11HD$HE1E1E1HD$(HD$P]fHub$xfHnH!-H$fl$H$H$H$hP+ H\$0H\HHOHm B IBHI5L: (DHD$8E111D$ 1E1E1HD$HHD$(fLLL$(LL$(fHLL$0LL$0fL$LL$(HDŽ$XLLL$(I9LLLLL$(LL$(‰$`H$PH$H$H$p H9l$LL$(<Ht$LLLL$(TLL$(GH$piH$\H$OH`$H5I,H8LL$(@$`HDŽ$HDŽ$HDŽ$pP HD$8E111D$ E1E11HD$HE1E1HD$(L8L$HD$0 LfLD$0HI HD$8E111D$ E1E11HD$HE1HD$(LH$HD$(fD LD$0IafDHD$8E111D$ E1E11HD$HE1HD$(&fD IEZHIELLL\$0#L\$05fE1HD$8E111D$ 1E1E1HD$HE1HD$(E IHILDX`A)fDXHX 0AMffo$ffo$fo$fo$)$pfo$)$Pfo$fo$)$`fo$)$pfo$)$fo$)$fo$ )$fo$0)$@)$)$)$)$)$)$ HD$8E111D$ E1E11HD$HE1HD$(fDHD$8E111HD$HE1E1E1HD$(D$ D$ E1E11HD$8E1E1HD$HHD$(f.HD$8E111D$ E1E11HD$HE1E1E1HD$(HD$P7HD$8E1E1E1HD$HE1HD$(D$ @H9l$0HD$8E111D$ E11E1HD$HE1E1HD$(HD$P@f.E1E1E1E1HD$8HD$HD$ uDD$ IE11L$8E1E111E1E1CMD$ M1L$8E1E11E11E1HD$8E1E1E1HD$HHD$(D$ 111E1E1IZMjtAEtAEIx HIufHnúLLD$()$@\IHOHHBHLL$0LL$0+f.HD$8E111D$ E1E11HD$HE1E1HD$(D$ E1E1E1L$8 LUIHfH=T&f.HD$8E1E1E1HD$HH5DHHD$(HH[]A\A]A^A_fHH|L~AtAL$HnEtEL6H$AAL$L$M1LHtAEtEH54DH9HH9EH9F7/HUH;V#HEHNH9@H@t HDM DF DD8A H}8A Hv8ȃ>!)!DA9H4H2D$ uwHEHD$HH HAHMEIHL zUHHH5eH81XZH 6AHHD$H5CH"D$ HExHHEt$ oEtEH5BCHژÅH5CH軘ÅHExHHE LHH5H-DH=)7HUHMIHptAIAL $LH5-@HHL $IIMx HIHI9EH$LHHDŽ$L$LH$HExHHElH<$7Ix HIH<$H5QFHGHH_IM'1LǹLD$.LD$HIIx HIH5HLÅsIExHIEH$H@H;H$HPHHHHL$@D$tH$Hp Ht$8D$tH$Lp(AtAH-BH=%5HUHIIHtAI@LD$LH5AHHLD$HHIx HItH$H=)BfHn1D$@HHH$)$HHxHHx HHWHH|$@HuIHHExHHEuHH\$@HxHHuHH=AHH8H@H5g@HHHIMrHxHHuHLD$LD$AtAfInH=@1LD$H$D$8H)$LD$IIx,HIoxHIuLLL$LL$M<H|$8LLL$4LL$HHD$*Ix HIHt$8Hx HHH=M@IHBH5-?HHD$hmLD$HIIx HI#AtAfInfIn1L\$H$flH=?H)$}L\$HD$8L{nL\$LD$8Ix HIMLLLD$8LD$8HHD$Ix HIIx HIH=2?mHH5E<HHD$8PlLL$8HIrIx HIpH H$1HI9CfInHD$fHnLflL\$8)$H$HH[mL\$8Ix HIHH5BHUIHHx HHH6 L;w @I9HD$8@hL;D$]LLD$@LD$@Ix HILH==HHH5:HjIHHx HHxH & E1HI9H!Ht$fInLLD$@H$D$H$H4)$*LHkLD$@Ix HIH!H5^AHIH!HExHHEL;  @L;L$8@L;L$LLL$@LL$@Ix HI Ht$0D$@tH\$0H$1HH=7HDŽ$H$HHD$@jL\$@MH5;LL\$@.iL\$@HLH5i@HL\$PHD$@LL$@L\$PDIx HIt
L11LD$0褊LD$0Ix HItAE1E1A 11E1E1E111A jHLD$0LD$0LE111E1A 7E111E1A "L4$A LLD$@LD$@MH5H|$L\$@L\$@OE1A 1E1H5LL\$@~L\$@ H5LL\$@~L\$@LL\$ L\$ LL4$E1E1E1A 3E111A 9E111A 'LL\$@L\$@cMqIiAtAEtEIx@HITLL\$ dL\$ =LL\$ ML\$ 111E1A LLL$ L\$8LL$ E11A fH5gH|$L\$@}L\$@hLsHkAtAEtEHx HHt#1;HL\$ L\$ HL\$@LD$ sLD$ L\$@1I^11A LL4$1E1A H'L\$ gMLH\$8LD$@L4$A3HD$E111HD$E1E1ALHH"IM"H5Lj9 [I$xHI$IGH5LHH'IM'IGH5^LHH(HH%(HHH#Hx HH|$ID$H}HXpH6%H{+%6IHZ+HLHHHD$PHD$IExHIE#Lt$M,LLSHIx HI%HQKI$xHI$#H5 HIHH*Hx HH#HI9@L;%@u L;d$l!@I$xHI$j$H5IGLHH#IMn#H5G L*HH6$I$xHI$8 H9H;-pH;l$eHD$h$HExHHE L$hH=HH*H5hHBIH+HExHHE&%,HHP,H L`@# HU tHU(HL|IH|,HExHHE!Ix HI D$hMH=IH%H@H5LHHm&HD$H|$%Ix HI~!HL$D$tLt$fInHt$@1H=<HfInfl)$IIx#HI"xHT$HH M%H=2HH6#H5HAIH;(HExHHE="H56LHD$HK)H4H$1HI9F)fHnLD$)$THIBHt$Hx HHp"Ix HIL"Mc"I9L;%u L;d$TI$xHI$H=*IHR0H5HHD$?LL$HHD$1IxHIuLHD$1H H$HH9H1H\$fInfHnHTflH)$H$ HI@HxHHu H|$KM1LL7HD$H`1I$xHI$uLH=HH'H5 H>IH02HExHHEV(H=oLL$襗LL$HI2H5H>LL$HI\3Ix HI.H=LD$ LL$JLL$LD$ HI3H5mHLD$0LL$(HD$ >L\$ LL$(HHD$LD$0A4Ix HIs/HD$1H ?H$HH9H4H\$HLD$(LL$ HH$H$MHI?HLL$ LD$(x HH/M4HE1HI9@4fIn¿LD$(D$LL$ LT$HDŽ$L$)$LT$LL$ HLD$(I/HO H HPtHD$@LHLL$(H$LH4LD$LT$ ELT$ HL>ILD$LL$(x HIH/I$xHI$.Ix HI/H6/HI9A4E1HfHnfInĿLL$flHT$ HDŽ$)$kLL$HI/H S H5HT$ HHtHD$@LLLL$ H$H49LHD$ =HELL$ xHHE"/Ix HI /Ix HI#/H|$J/H= !IH 1H5HHD$ ;LD$ HH0Ix HI0H|$bHD$ H5H5%E1HH9u 6Lt$ Ht$@fInHfInHfl)$6LH;Ix HIV1HExHHEO1H5111HzbHD$ H.6Hx HH1H|$ HR6H//H= ߒIH:H5 HHD$(9LD$(HH:Ix HIF6tIHO;Ht$ D$(tHD$ HI@4 IP tIP(LLLD$0KLD$0HHD$(~:Ix HIU6Lt$(Ht$@fHn1H=HfInfl)$LHHQ:Ix HI5Hx HH6H;HEH;<HUH;H]H\$(D$0tHu Ht$0D$8tHU(HT$8D$HtHExHHEJ7Ht$8H|$(HH;脽HHL>HT$ D$HtHD$ HCHVу5HC tHC(HHL誷a=Hx HH`8HExHHEs7H|$@1DŽ$HHMH$L;|$Q1HT$@H$@H$L藙 6H$H$H$@L$8H$H$HD$HH$H$0H$H$H5H$@H$@o$@o$`o$)$o$P)$0o$)$ o$p)$Po$)$@o$)$`o$)$po$)$o$)$o$)$o$HD$P)$)$)$H5H|$@H$fH$H$`)$H$H$H$L$8H$H$HD$@H$H$0H$H4fo$fo$fo$)$@fo$)$Pfo$ )$`fo$0)$pfo$@)$fo$P)$fo$`)$fo$p)$fo$)$fo$)$fo$)$)$)$HfHnK$H$K 6H$H$$L$H4H$LHXH$H$H H)LH$IH$H$LH$H)HD$pHDŽ$HD$xL$ML$I)$H$ND%L$H$BD%HD$pK:C J4 L$J&A BXD%L$XA f/H$Mf(ʹL$Af/kf/kL$IH1H$ALIHHIL$\XLHHXHHLL$L$H)C L$HMHLLHHT$pLI:LBXL$A LHHL$pIIA;BXAAB\H$ADfo$H|$@=)$|PH$H$fH$J 0H$L$`H$ J1YYJ42HDŽ$YYXf(XXf.9Qf(f.H|$X=LfH$HD$pH$HD$xHHt$xIHH$I)$H;$1L$L$HD$`T$hD$p(tHT$`H|$@=fHn$)$(OH$1L$`H_0H5H0HDŽ$H$ $$$$$$$$$$$$$$$$$$$$$$$$$$ IHHa5H|$X=Jf)$f)$)$ L$菴HH 5HHPtHH!H$ HU tH}H|$`H$HHH$(>IIx HIb1HExHHEc1HT$`Hx HH0ME1MME1E1E111T H5qLdSÅI$xHI$uL{HH5HD$H-EtELdAtALLT$-LT$HI"fInfHnHt$@1H=flLT$H)$˴LT$HD$L.IExHIEmH|$"H\$HH$HDŽ$H$NIHx HHHExHHEMN#11LjIExHIE^HD$@hE1E1HD$PE1E11HD$HE1HD$8HD$0HD$(HD$ HD$HD$5f.H(NL#HL"LLحfD$h@E1E1HLME1HD$@dE11HD$PE1E1E1HD$HHD$8HD$0HD$(HD$ HD$HD$HD$MtIxHIhHtHExHHEHtHx HHMtIx HIMtIx HIMtIx HI MtIx HIH$H;D$t$HtP8HDŽ$%HDŽ$H=J}E1MtIExHIEHL$HtHx HHH\$HtHx HHHT$ HtHx HHHL$(HtHx HHH\$0HtHx HHH|$8HtHx HHHD$HHt$H9tHtHA8aHD$PHt$H9tHtHA8wHD$@HtHT$H9tP8Ix HITHĸL[]A\A]A^A_LLD$xt$pL\$hLL$`LT$X蠪LD$xt$pL\$hLL$`LT$XcHLD$xt$pL\$hLL$`LT$X`LD$xt$pL\$hLL$`LT$X>HLD$xt$pL\$hLL$`LT$X LD$xt$pL\$hLL$`LT$XLLD$pt$hL\$`LL$XLD$pt$hL\$`LL$XDLLD$ht$`L\$X販LD$ht$`L\$XLljt$`L\$X臩t$`L\$XfL߉t$Xdt$XLLD$XKLD$X"HLD$X3LD$X(fHLD$LD$&fHLD$LD$$fHLD$ӨLD$"fHLD$賨LD$ fLD$薨LD$!@LLD${LD$kL}IH/H8E1E1E1HD$@E11MHD$PdHD$HHD$8HD$0HD$(HD$ HD$HD$HD$#IHE1E1E1HD$@E11MHD$PdHD$HHD$8HD$0HD$(HD$ HD$HD$HD$0HD$@fHD$PHD$HE1E1E1E11H1E1HD$8HD$0HD$(HD$ HD$HD$HD$MI$HI$LLD$xt$pL\$hLL$`LT$X蘦LT$XLL$`L\$ht$pLD$x[MuI]AtAtIExHIE^IA1fDH$HHDŽ$HHHt$Xt$XH\$HHHH|HLD$谥LD$efDsH\$PHsHHfHLD$pLD$OfDIH\$@HZHHMHLD$0LD$6fDL[IUHE1E1E1HD$@E11E1HD$PfHD$HHD$8HD$0HD$(HD$ HD$HD$HD$HxhL(ŅHD$@E111HD$PE1E1ɾgHD$HE1E1HD$8HD$0HD$(HD$ HD$HD$L訨ÅHD$@uHD$PHD$HHD$8E111HD$0E1E1E1HD$(HD$ HD$HD$LhLX(LMED$h H(gE1E1E1HD$@E1HD$PHD$HLAI1բHD$@E1E1E1HD$PHD$HHD$8E11۾HD$0HD$(HD$ HD$kHhwHXLHuL8H(HD$@E1E11HD$PE1E1E1HD$HnHD$8HD$0HD$(HD$ HD$HD$@I HPH=H5H81gHD$@HD$PHD$H/LPHU HD$@E1E11HD$PE1E1E1HD$HnHD$8HD$0HD$(HD$ HD$HD$@HLt$L諠I6H|$薠:HD$@nE1E1HD$PE1E11HD$HE1HD$8HD$0HD$(HD$ HD$HD$@LHHD$@E1E11HD$PE1E1ҾuHD$HHD$8HD$0HD$(HD$ HD$HD$H舟˦I)HQE1E1E1HD$@E11E1HD$PgHD$HHD$8HD$0HD$(HD$ HD$HD$HD$HѻE1E1E1HD$@E11E1HD$PgHD$HHD$8HD$0HD$(HD$ HD$HD$HD$軥HEHD$@E1E11HD$PE1E1E1HD$HtHD$8HD$0HD$(HD$ HD$HD$@HD$@E111HD$PE1E1E1HD$HE1tHD$8HD$0HD$(HD$ HD$JӤHD$fHD$@E1E11HD$PE1E1ҾtHD$HHD$8HD$0HD$(HD$ HD$HD$H|$X^ ^  ^ ^=Q6fH$HD$pH$HD$xHHT$xIHH$I)$H;$fDf/H$DC\'AEA\H$CD5B#\EADH$Y0XH$AD%Ht$pIE11fHD$@E1E1E1HD$PE1E1gHD$HHD$8HD$0HD$(HD$ HD$HD$afDHAE1E1E1HD$@E111HD$PgHD$HHD$8HD$0HD$(HD$ HD$HD$HD$fHD$@E1E11HD$PE1E1ҾuHD$HHD$8HD$0HD$(HD$ HD$HD$WHD$@E111HD$PE1E1E1HD$HE1gHD$8HD$0HD$(HD$ HD$0HD$@E1E11HD$PE1E1E1HD$HoHD$8HD$0HD$(HD$ HD$HD$@HD$@E111HD$PE1E1E1HD$HuHD$8HD$0HD$(HD$ HD$fDHD$@E1E11HD$PE1E1E1HD$HoHD$8HD$0HD$(HD$ HD$HD$@InMfEtEA$tA$Ix HIHt$@Mf.HLL$cLL$fHD$@E1E11HD$PE1E1E1HD$HoHD$8HD$0HD$(HD$ HD$HD$ HD$@E1E11HD$PE1E1ҾoHD$HHD$8HD$0HD$(HD$ HD$HD$[fnHHH5HKHHHExHHEH5jL՗HD$HH5h1HH9sBLt$Ht$@fHnHfInHfl)$zjHI?Ix HIkHx HHfM111L1)p>H=v1)p>H=`1)rH=O>1)H|$HHD$@E1E11HD$PE1Ҿ~HD$HHD$8HD$0HD$(HD$ HD$}LLD$(LL$ pLD$(LL$ lH|$WLD$(LL$ L@HD$@E1E1E1HD$PHD$HzHhHXEtEtHT$Hx HHH\$Ht$@'HD$@E111HD$PE1E1E1HD$H~HD$8HD$0HD$(HD$ HD$LLD$ LL$ULD$ LL$LLL$9LL$LLD$ LL$LD$ LL$E1E1E1HD$@E111HD$PHD$HHD$8HD$0HD$(HD$ HD$kHD$@E1E11HD$PE1ҾHD$HHD$8HD$0HD$(HD$ HD$/HGLL$ LLL$ 0LL$ LHD$@E1E1HD$PHD$HGE11E1HD$@E11HD$PE1E1HD$HHD$8HD$0HD$(HD$ HD$HD$@E1E11HD$PE1ɾiHD$HHD$8HD$0HD$(HD$ HD$HD$HD$@E111HD$PE1ҾHD$HHD$8HD$0HD$(HD$ HD$HD$8HD$0HD$(4HD$@HD$PHD$HHD$@E1E11HD$PE1E1E1HD$HiHD$8HD$0HD$(HD$ HD$ L!0E1E1E11HD$@HD$PHD$HHD$8HD$0HD$(HD$ HD$@E11۾HD$PHD$HHD$8HD$0HD$(HD$ uHD$@E1E11HD$PE1E1ҾhHD$HHD$8HD$0HD$(HD$ HD$HD$ H|$ HHhHXEtEtHt$Hx HHH\$Ht$@HD$@E1HD$PHD$HLM~Ht$@MPIXAtAtIx HIIؽ1H( MaIYA$tA$tIx HIIٺ1tHT$`$1HH5$$$$$$$$$$$$$$$$$$$$$$$$$FIHH- f)$)$ H$MHH HbHPtH^HH$ HU tH;H|$`H$HHH$(II$xHI$kHExHHElHt$`Hx HHME1MᾴE1E11L|$HE1HDŽ$HDŽ$HDŽ$HDŽ$H讇pE1E1E1E1HD$@1HD$PHD$HHD$8vHD$0HD$(HD$ HD$HD$;H|$6H)HH\$Ht$@fHD$@E1E11HD$PE1E1ҾHD$HHD$8HD$0HD$(L貆OIP ULeH]A$tA$tHExHHEH1HY$E1E1E1E1HD$@HD$PHD$H2LDD$DD$ Iv(I~8@HEHD$@E1E1E1HD$PE1ҾHD$HHD$8HD$0HD$(HD$@E1E1HD$PE1E11HD$HHD$8HD$0HD$(_L\A<$DD$XDD$HIEHD$@E1E11HD$PE1E1ҾxHD$HHD$8HD$0HD$(HD$ HD$HD$H|$(ĄL跄HC H衄HD$@E1E1E1HD$PE1ҾvHD$HHD$8HD$0HD$(HD$ HD$HD$L-;L yH:H|$mHvH|$HLD$(LL$ уH\$Ht$@LL$ LD$(HkLcEtEA$tA$Hx HHoL1{HD$@E1E1E1HD$PE1ҾvHD$HHD$8HD$0HD$(HD$ HD$ E1E1E1HD$@E11HD$PHD$HHׂHD$@E1E11HD$PE1E1ҾvHD$HHD$8HD$0HD$(HD$ HD$HD$LLL$ LT$RILT$1LL$ E1E1E1E11۾!E1E1E1E1HD$@1۾HLIٺ1HD$@E1HD$PHD$HE1E11۾HD$8HD$0HD$(E1E1E1E1HD$@HD$PHD$HD$qDD$H7HD$@vHD$PHD$HpH&HD$@E1E1HD$PHD$HHD$8E1ҾHD$0HD$(LLD$XˀLD$X~HLD$X贀LD$X}HD$@E1IE1HD$PHD$HHD$8HD$0eHLD$X]LD$X?HLD$XFLD$XHD$@E1IHD$PHD$HHD$@E1E11HD$PE1ҾyHD$HHD$8HD$0HD$(HD$ HD$HD$oH;ɜLL$LPXLL$HD$H|$HD$@E1E11HD$PE1ҾyHD$HHD$8HD$0HD$(HD$ HD$LLD$XLD$XHLD$XLD$XE1E1E1E1HD$@1۾HD$PHD$HHH~1HD$@E1E1HD$PHD$HH^Hx.HH|H k~HEHH5DH81ʄHD$@E1E1HD$PE1E11HD$HHD$8HD$0HD$(H;tH觃IHtHExHHEI@LD$0LHLD$0HHD$(?LD$8LLD$8HHD$0LD$HLLD$HHHD$8BLLD$HHHLD$HcTLD$HTIHIL}E11H4iHD$@E1E11HD$PE1E1ҾwHD$HHD$8HD$0HD$(HD$ HD$LT$E1E1E1HD$@1۾wHD$PHD$HHD$8HD$0HD$(HD$ HD$E1E1E1HD$@E1HD$PHD$HHL|1LD$`Ld$`E1E1E1E111LD$`LD$`E1E1E11۾E1E1E1E1HD$@HD$PHD$H[HUHHUHH\$(D$0tHrHt$0D$8tHZH\$8D$HHH5ĆH81肁HD$@E1E11HD$PE1E1E1HD$HgHD$8HD$0HD$(HD$ HD$HD$H;ulHLL$LPXLL$HD$HD$@E1E11HD$PE1ҾHD$HHD$8HD$0HD$(H5MLLL$xLL$HD$kHLD$(yLD$(LL$(H\$8E1E1Ld$01HD$@HD$PHD$HHD$8HD$0HD$(H$8H$0H$(H$ րH$8H$0fH$(H$ HLD$HAIx HI"Pu1IHJwLH xH5ҐHEHoH81MLL$(Ld$0E1E1HD$@E111HD$PHD$HHD$8HD$0HD$(LnxbACHD$0E12ff.fAWH'IAVIAUATUSHXHD$ HD$@HD$HHLyHMHtyHtbHHH=yL wAVAH xH5H811~XZH=m1HX[]A\A]A^A_DHtHT$ HEN$LT$@O,"=I1L\$ IUH|LHuUDHPHHtCH;:uIL)L؋ t HHI9uM J| TH\$ @HD$8H H9GlLHL$8LL\$LxLL$LT$H<$H<$LT$LL$L\$t"HHHwH5H81|H|$ HHHH.vzfI,HtH\$ HLzHA1HLECHxHHuHH$uH$HD$8II ËtHHH7H vH5ِAVL }uAHvH81{Y^LHL$8LL\$LvLL$LT$H<$ L\$LL$LT$H<$HLT$L $uIEE1L $LLT$Hu5DtHIL)HD HCHHtLM9H0HLT$L $}L $LT$HuLT$L $xL $LT$HtM9gHD$(Ld$0H\$(HD$0Lt$81LHHL$yIEH|$0LL$Ht@H98tHBHHuHD$8H>H9Gu4LLCuLLL$L$teHL$0LHD$PLD$HT$HL$Ix HI!.E1E1H-L|$ HHL$HT$LtrHT$HL$HI0Ix HI.Hx HH0H=LL$HL$ AHL$LL$HHD$XI/H5HHL$LL$HI(4Ix HI/H5-E1HI9p2HL$HL$HH5H|$`LL$ H$HL$@H$H4H$LH$LD$L$=LHD$LD$HT$HL$LL$ Ix HI0H3HLHL$HT$LL$pLL$HT$HHL$Id3Ix HIy0Hx HH0H=nL\$HL$?HL$L\$HHD$ I2H5HuHL$L\$HI1Ix HIG0H5E1HI9p1H5H|$HHL$HL$`L\$ H$Ht$8H$LH$H4H$LD$L$L$;LHD$JLD$HT$HL$L\$ Ix HI/H0HLHL$HT$L\$ooL\$HT$HHL$I%0Ix HI/Hx HH/HH9AJ;IϸE1HfInfInH4LflLD$LL$)$:LL$HD$LXLD$Ix HI.Ix HI.H|$f;H=H=HD$XIH;H5HcIHj;Ix HIr0H=LT$2=LT$HI[<H5JHLT$HD$L\$LT$HI;Ix HI6;H?I9@;MǸE1HfInH4LLT$D$LL$)$oպf)$;9LL$HD$XLILT$x HI;H|$X:H5uH|$LT$.LT$HI:1ҹHLT$HD$O LL$LT$HHb:Ix HI|:LT$HT$QhHT$LT$HI>HPH@tIP HI9B?M׸E1HfInH4LL$D$XLD$LL$)$7LL$HD$0LH|$XLD$Hx HH}>Ix HI>Ix HI>H|$0>Ht$Hx HH>H=y:IH=H5HHD$LL$HHD$Xa=Ix HI>H=&a:HH$=H5~HHD$AHT$HI<Hx HH5=H|$0L\$gL\$HHv<veL\$HH{<HD$ffL\$HT$HI<HPHUtIP H I9Cf;M߹E1HȺfInLH)H?D$0H4H L$LD$LT$)$ 6LT$HD$LLD$Ix HIP;Ix HI:H|$L:HD$XH=[~H9x9L|$XE1ҹfIn¿LT$D$HL$HDŽ$)$:eLT$HIJ9H"H5۶HL$HPtHȺLLL$H)H?LT$ H H$H4LeLT$ HD$LHt$LL$Hx HH9Ix HI9Ix HI9H|$8H|$8xeHH:8FcIH7H|$HMiHD$H7Ix HIM9H|$8!eHHM7bHD$XIH 7H|$H!dHD$H6Ix HI27H5L IHH-H}H |I9H$I9HL$ -L;|$(-Ld,Ix HI -u2Ht$LŴIH,IExHIE,MH5ѲLqIH,H;$L;|$ +L;|$(+Ld+Ix HI+u0Ht$L*IHQ+Ix HI[+MHLl_IH*LHU_IH*Ix HI*~*EtEAtAH=ê1HL$HLD$XHDŽ$cLD$XH$LL$LD$XM+11L߹L$L$RL$L$HHD$XN+Ix HIX+fHnſL$D$XHDŽ$)$0aL$HI1+H=HPtHD$ LHH=NHL$L$H$bHIH|$XL$L$Hx HH*Ix HI*M*Ix HI*H|$11IH+Ht$Hx HH*H\$11LT$HLT$HHD$X*Hx HH*HL$xH$H9H;L$ e*H\$(H9W*H|$xLT$`LT$**L;l$(*L;t$('LT$v_LT$HH/AtAALytAH|$XLQ D$tHD$XMLT$IHA(HD$HNHNtH$HNtH$wHDŽ$HxI9CLL^LHH$LT$L\$L\$LT$t"LHwH]H5dH81RaH$HtHxHHuZH$HtHxHHu ZfDH$HtHxHHu fZfD H=E1PHL[]A\A]A^A_Hg DH HL.AEtAEHvL$HD$(H DHH^H\$xD$tHD$xH$LvAtAL.L$AEtAEHmvH|$xL$HD$(rH5vHt$ D$tHD$ H$HD$xB@H rZAHHuL pWH5jtRH[H81_XZ'fI9L%A$tA$H=1H$HL$HDŽ$^LHD$LD$M.H\$(MHHHH\XEtELEM 1HPH59uxupuhu`uXuPuHu@u8u0u(u uuIHHffHnп)$fHnfl)$ZIH HHPtHtHH$HD$ IU tH$tH=H$LHH$H$c\IHExHHE> I$xHI$IExHIEM Ht$xH$H9H;t$ NHL$(H9@HLD$'[LD$LD$YLD$HI"AtAHL$(MGƒ IO D‰HIG(HD$M1E1HD$HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$pMtIx HIlMtI$xHI$^H\$pHtHx HHMHtHExHHE?Ht$hHtHx HH.H\$`HtHx HHHt$PHtHx HH H\$HHtHx HHHt$@HtHx HHH\$8HtHx HHHL$0HtHx HHH|$HtHx HHHt$HtHx HHH\$HtHx HHMtIExHIEMtIx HIH$HtHx HHH$HtHx HHtsH$H+H HHZS H$KI ‹tHL$SYSpSLSLRHRHRHRHRHRHRHR HRHR+zR?HmRPH`RaLSRoH=nH|$ D$H|$(D$tHD$(H$IH5nHt$(D$tHD$(H$IL%A$tA$H=1H$HL$HDŽ$VII$xHI$uLLD$mQLD$MH|$(MHHHvHH yRHjRIHII?IAHmHD$(D$tH\$(HD$(H$IHD$tHD$(H$ISHD$xAtAM HD$ 1E11HD$E1E1E1HD$HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$pDMtIx HIMtIx HIMtIx HItcHtHx HHtoHL$ HtHx HHt H=vLD$ E1ELD$ HLD$(uOLD$(LLD$XHT$(\OLD$XHT$(|HLD$(@OLD$(zLL$HT$xL\$XLL$(OHT$xL\$XL$LL$(LLD$xHT$XLL$(NLD$xHT$XLL$(HLD$NLD$jLNLLD$NLD$LLD$NLD$LvNHD$ M11HD$E1E1ۻ HD$E1E1HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$pHHHx.HH%LH MHEHTjH5eH81+THD$ 1E1HD$E1E1E1HD$HD$HD$0HD$8HD$@M8I-HI LL$L$HT$xL\$XLL$(MLL$(L\$XHT$xL$L$E11HD$ LM1HD$E1E1ۻ HD$E1E1E1HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$pHl$X1H|$XHtHx HHtlHHHHHL$L$HT$xL\$XLL$(KHT$xL\$XL$L$LL$(L$L$H$L$LL$xHL$(KL$L$H$L$LL$xHL$(6LL_NLHH$LT$L\$>LT$L\$= LLL$KNIE1LL$H2LHl$MHIL;fDtLIH)HIFIHL9H0L0SHuNHtHLD$JLD$IO HwLD$(E1M HgH5JH8SKHl$X1E1HD$ E111HD$LD$(E1HD$HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$ppLL IHHD$ 1E11HD$E1E1E1HD$ HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$puPHL$IHl$X1E1E1HD$ E111HD$E1M HD$HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$p/HD$ 1E11HD$E1E1E1HD$ HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$pIXMxtAtAIx HI HH$LH$H$VIHHHHGHD$ 1E11HD$E1E1E1HD$ HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$pHl$IHHl$M9L$H$HDŽ$HDŽ$L$1LHLKIH$LHtH98tHBHHuHDŽ$HcH9G L6ILLHDtUH$)f.HD$ 1E11HD$E1E1E1HD$M HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$poHD$ 1E11HD$E1E1E1HD$ HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hLEpHg Hx.HH:CH DHEHiaH5\H81@KHD$ 1E1HD$E1E1E1HD$HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hH;a>LIHHPIx HIHAHL$HLAHL$HHD$X{HAHL$HHD$`HAHL$HHHL$HL$3Ht$XHHt$hHHHvCHD$ 1E1E1HD$E1E1 HD$HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hH|$XHL$BHL$HD$ 1E11HD$E1E1E1HD$ HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$p>HD$ 1E11HD$E1E1E1HD$ HD$HD$0HD$8HD$@HD$HHD$PHD$`HD$hHD$pHD$ 1E1E1HD$E1E1 HD$HD$HD$0HD$8HD$@aHHx.HH?H ]AHEH]H56YH81GHD$ 1E1HD$E1E1E1HD$HD$HD$0HD$8HD$@HD$HHD$PzH;\^CL~FHHIx HIHAHL$HLAHL$HIHHD$AHL$LT$HHD$HHAHL$LT$HHLT$HL$ILT$HL$HLT$P HHH?DHD$ 1E1E1HD$E1E1 HD$HD$HD$0HD$8HD$@HD$HHD$PgHD$ 1HD$E1E1E1HD$E1 HD$HD$0LHL$-?HL$LLD$HL$?LD$HL$&HD$ 1HD$E1E1E1HD$ HD$HD$0HD$ 1E1E1HD$E1E1 HD$HD$HD$0cHD$ 1E1E1HD$ HD$HD$HD$0LLD$HL$*>LD$HL$QLHT$HL$ >HT$HL$IWHIWH:H|$hD$tHr5L=H;F[}LhCHH%Ix HIF HAHL$HHHL$HHD$X{HHL$HHD$8 HHL$HH HL$HHL$Y H\$XHH\$@yHHlH<_@H|$XHT$HL$E1H.LHL$.HL$IH$ LHL$.HL$LHL$.HL$I1>HD$ 1E1E1HD$E1E1 HD$HD$HD$0HD$8HD$@HD$H 1E1HD$ E1E1HD$XHD$HD$HD$HD$0HD$8HD$@HD$HHD$PWfHL$LT$xAHx HHLT$LT$ILLT$( H+H L-HEHIH5%EH813LT$(1E1HD$ E1E1HD$HD$HD$HD$0HD$8HD$@HD$HHD$PE1,HLT$,LT$)HD$ 1E1HD$E1E1HD$HD$HD$0HD$8HD$@HD$HHD$P(HD$XLT$1E1E1E1M HD$ HD$HoLHL$+HL$IH$+LILyAtAAtAHx HHt 1HLD$LL$+LL$LD$1i1E1E1E1HD$ HD$E1 HD$HD$HD$0HD$!HD$ 1E1E1HD$E1E1 HD$HD$0HD$ 1E1HD$E11E1HD$ HD$HD$0HD$_LLD$LT$*LD$LT$HD$ HD$ 1HD$ 1E1E1LHT$\*LT$HT$hMHMxAtAAtAIx HIts1KHD$1E1ɻ HD$ HD$HD$HD$0HD$HD$ 1E1XLLT$)LT$LLLT$LL$)LL$LT$1HD$ 1E11E1E1E1 1E1E1E1HD$ E1 HD$ 1E1E1HD$ E1E1HD$H|$X)1E1E1E1HD$ E1 HD${1E1E1E1HD$ E1 HD$HD$ 1E1E1HD$ E1E1HD$HD$VHD$E1E1L|$XLL$1E1HD$ HD$1E1HD$HD$LPLxAtAAtAH|$XHxrHHLT$HL$'HL$LT$HD$ 1E11E1E1E1 HD$HD$5L'f1Hr'LL$BL`'ILS'PLF'MSM{AtAAtAIxJHInLLD$HL$LT$<$HL$LD$CL&1/HD$ E11E1HD$ HD$HD$< 1E1E1HD$ 8HD$ E1E11E1 HD$HD$HD$HD$ E1E1HD$ 1E1E1HD$E1 HD$HD$HL\$%L\$HD$E1E11HD$ HD$HD$HD$0HD$G%LD$tMJMzAtAAtAIx HIt1LO%ALLD$LL$8%LL$LD$1L% H %8HD$1E1E1HD$ E1E1 HD$HD$HD$0HD$L$8DAWHyAVAUATUHSHxHD$0HD$PHD$XHLyIMHHHH%H %HIHH5;$H?L "HLIL@HH@RH5e?H'H81|*XZa H=fK)E1HxL[]A\A]A^A_@HtHL$0ID$HLT$PM4L,1LL$0DIM\LHu HPHHL;uITL)Lȋ t HHI9uLl$0MAEtAEH]HB H} L%sL;-?H=fIT$L%'IHctAICL\$LH5oHHrL\$IIMnx HI L=>M9|$[Ht$XLLl$XLHHD$PIHx HHQ MIExHIE IFH5rLHHHHH5"wH%AąHx HHOH5tE"IFLHHtIMN11LǹLD$LD$HHLIx HIH%HHI#IH"HHHD$!LD$HIHx HH Ix HI L;%=L;%y=u L;%=/ I$xHI$ L%5qH=cIT$L$IHtAIBLT$LH5(lHH'LT$IMIxHIuLLD$ LD$H54u1LLD$ LD$HIM9x LHt$XLD$HHD$PHD$XXLD$ILI$xHI$Hx HHML;c<AL;<D L;-< LL\$#L\$AIx HIEH->vEtEHlsHt$XHHD$PHD$X!HHExHHEAH?11HHx HHKE1E1佞 E1E1E11@HD$HH;I9C LLHL$HLLhHHLD$IIMxHIuLLT$&LT$ID$LT$LH5eHHLT$HHHLLT$ZLT$HHD$Hx HH Ht$XE1HM9zH\$fInLLT$LD$fHnLd$`fl)D$PLD$ILؘHLT$x HH Ix HI' M*H=iIHH5hHHD$LD$HH`Ix HItLT$PfInH=f1fHnLLT$Hfl)D$PHHD$HL\$LT$x HHMICH;4ISHI{H|$D$tI{ H|$D$tIx HIOEtEH5\H|$LT$lHHfHnfHnſHD$`fl)D$P*IH[H?hLT$HPtH64H=OdLLHLD$ HD$`HHD$˖HLT$LD$ x HHIx HIMI$I@L^HH4E1E1MH5L H8E1E1E1HD$HD$HtHx HHMtIx HIpMtIx HIxMtIx HI1H==^ E1MtI$xHI$MtIx HIt}H|$tHL$Hx HHtwHt$HtHx HHttMtIx HItvIEHIELLT$xLT$LLT$aLT$lHLT$JLT$rHLT$3LT$uLLT$LT$sLLT$LT$LLLT$ L\$LT$ L\$oLLT$LT$qHLT$(LD$ L\$LT$(LD$ L\$LiL6ÅME1E1佘 Ix HIBHD$HD$H+LD$;LBL YLLLLL/LLL$LL$MPIXAtAtIx HIfInfInHt$PHflĺLT$)D$PLT$IIHILL\$+L\$lLT$HLH-4jEtEHb[Ht$XHHD$PHD$XHHExHHEqH 11HHx HHUME1E1住 E1E1E11H_LLHL$HLL@LL$LT$L\$!LL$LT$L\$LLT$IE1LT$LHu6*tHIL)HD0HHM9HH0LLT$/LT$HuLT$LT$HtEaL{0HD$lLL\$HHE1E1ME1E1 L\$IE1M ML$I\$AtAtI$xHI$ fInfInHt$PHflLL$)D$PjLL$II_HIRLELE1E1E1E1E11M HcE1E1E1E1E1 E1E1E1E1۽ }Iؽ 1E1E1Ix HItLD$HHIDHD$LL\$HH E1E1ME1E1 LL\$ L\$HL\$p L\$ME1E1佒 E1E1E1E1ҽ 'H5 H( L aL\$HL E1E1M E1E1你 LD$HH LT$I1۽ H|$ LT$NE1E1ME1E1۽ LSLcAtAA$tA$Hx HHfInfInHt$PLflúLT$LD$)D$PLT$LD$II{HInLLD$ LD$WHbtLRAtAH5]LL\$菈L\$HI 11HL\$HD$賰LD$L\$HIGIx HIHLT$L\$L\$LT$HH L\$LT$HIfInfInH=,X1flHt$PL\$H)D$PHD$`HD$6L\$IL6LT$LD$Ix HIpIx HI~MHt$XHLd$XHD$PII$xHI$NHx HHQMNL11LD$yLD$Ix HI_E1E1余 E1E1E11L$IL$ M>Ix HI/HrE1II9G?fInfInԿL $HDŽ$`fl)$PNL $HH!0HLHPtH HLL $H$ H$`H$PH4HD$L $IMtIx HI /HExHHE.H$ Hx HH.HDŽ$ Ml/H=NIHT?H@L$LH5IHH@L$HH@Ix HID.HH9E.H$ IfHnfInݿL $HDŽ$`fl)$PIH9H!KL $HPtHHLLH$`HD$H4H$ H$HtHx HH-HDŽ$ Ix HI8HExHHE8H$8H=EMHCH5HHH$dzL$HH$ HDIx HI-HH$X1HH9E3FfInfHnHfl)$PHHD$xx{H$ Hx HH,H|$xHDŽ$ $FI$xHI$,H=WLHDŽ$ H]GH5GHH$jyL $HHHIxHIuLRHH9EJH$ H$XHfHnH$)$PH$ H$uzHEHDŽ$ xHHEuHH$IIExHIEuLH5MH|$xxIH!KHH谠IH>IExHIENAH5OLǺL$膝L$8LIx HIBH55M}MH$wHQHH$HL$HH$ HRIx HIFH5NHÅ(TH$ Hx HH4HHDŽ$ H5LYUH|$x7wH$ HHXH5TLH$wHQYH$ HH$L $HIZH$ Hx HH1?HDŽ$ Ix HI?L;-L;-X=L;-v<L@Å[IExHIEN\H|$xIHbHD$XH;H=HNHeH5DHH$uL$HH$ HfIx HIa\H,E1IH9EifInL $D$XHDŽ$`)$P L $HHcHUEHPtHHLL $H$ H$`HD$H4L $H$0LvHExHHE^H$ Hx HH^H$0HDŽ$ bH\$XHx HHbH50GH$0tIHjH5KHۙÅGlIExHIEcҏIH5zIH$05tIH11HhIHIExHIEVLL$jL$HILǺHL$HIIx HIIExHIEL; L; GcL; ebLL $+L $Ix HI՘H5rJH$01H$ HHtEHt$1H=@HH$PHDŽ$XLHH$PtH$ L $Hx HHhHDŽ$ MϦL; L; B>\L; `1\LL $&L $Ix HI"jH$0HD$XJH=DI\ H$ HHUH5VCHqH$HNH$ Hx HHQiH$H E1HDŽ$ HH9KH\$fInD$XH4H$)$PHLHrHx HHhHH=C#IH)H5FHqH$H$ HIExHIEfH$E1H *HH9K@H\$fHnfInH$flH4)$PBLH$rH$ Hx HHdfH$HDŽ$ H5GH$IHH;L; ^L; ^LL $L $Ix HIMRH5GH$莇gH\$H;H;BJeH;`=eH*\VH|$xH]FH$HHH$H9FH$HK11HGHL$PHH$LH$PL $o$Po$o$HH$)$po$`)$o$)$o$p)$o$)$o$)$o$)$o$)$o$)$o$)$ )$o$)$0)$PIx HIZH$H$x褎H$yfI~=f11H$)$p˕HHLH$H$PL $o$Po$`o$pHo$H$)$po$)$o$)$o$)$o$)$o$)$o$)$o$)$o$)$o$)$)$)$ )$0.Ix HIH$H$x0H$yfH~ɇfInfff.)$pz f/!fHnff.fInwHnH$HH$:L $HH$qIx HIH$Hx HHfHn HH$HH$L$HH$oIx HI^H$Hx HHOH== H$H$ HH5U:HjIHFH$ Hx HHH$11HDŽ$ H$H$ HH$11輒H$HHI9E!LE1H$ HL$H$L$PH$XH$`HH)H?H HL$H4谿L$H$LlkH$ Hx HHH$HDŽ$ Hx HHHx HHH$H$LH$4LH$pH$HHH$H$xH$yfH~讄f11H$)$pHH$BfHL $x HHMH$LL $L $HI֡Ix HIH=7L$IL$HH5]7HLT$H$$dL $LT$HIxIx HIOLLL$|L$HH$ Ix HIIExHIEH$Ht$1HH$ H= 4H$XH$PH$ IdHHDŽ$ x HHMdH$Hx HHDH=5IHH5$6HH$bL$HIҩIx HIH$LL $L $HH$Ix HIH$Hx HHtH$HcH$H'Hx HHH$L$H$H$H$H$H7H9YA$nIHAxL$fHn[L$HK1LHHD$lL$LL$HH$H$ $Ix HI6Ix HIH$ H;cAH;DH;-HAŅH$ Hx HHHDŽ$ H$EHkHDŽ$ H$HoH5'8H$uH$HH$ HSH@L 7H9ŪHAH`H$H¸H)ЋQHHxIM;H$ Hx HHڴH$L $HDŽ$ HL $HH$HH$ >H@H5>7H9HAگL $H7H)H$@HHkL $H$H$үH$ Hx HHH56H$hL $HDŽ$ HsL $HH$ IϰHx HHH$ LL $]L $HIPIx HI{H$ Hx HHH$LL$HDŽ$  L$HH$H$ Ix HIH$ H$_H$HDŽ$ H\$($tH\$(Ht$1HH=}.fHn$)$P[HH$__L$MJH$LL$>L$HH$Ix HIIHIHH|$xHH$v4L$HH$Ix HIHIHH$HH$%4L$HH$Ix HITHdIHH|$XHH$3L$HH$Ix HI%H$$tL$H=c*1HHt$fIn$)$PLHH$]HH=.H$ IHH5,H[IH'H$ Hx HHH=.L $HDŽ$ 豴L $HH$(IH5*H[L $HI}H$(Hx HHSHDŽ$(HI9FyM1H$fHnLH)$L $H$`HH?)$PH HL$H4諰HH$ k\IEL $xHIE{L$ LMHI9Y;ME1Hr+H$`LH$L$PH$XH$hHH)H?H HD$H4LH$[H$ Hx HHHDŽ$ IExHIE޽H$eH=,ֲH$ IHH5)HYIHںH$ Hx HHHDŽ$ HI9F=M1H$H=*LH$PH$`H$H$XH$hHH)H?H HL$H4ʮHH$ZIEL$xHIEMH=+L$˱L$HH$ I'H5(HXL$HIcH$ Hx HH9HDŽ$ HI9FM1H$H*)LLT$H$PH$`H$H$XH$hHH)H?H HL$H4貭HH$vYIEL$LT$xHIEpMYH=w*L\$L$詰L$L\$HH$ IH5'H}WL$L\$HIH$ Hx HHHDŽ$ HI9FM1H$H'LL\$LT$H$`H$H$XH$hHH)H?H$PH HL$H4聬HH$EXIEL$LT$L\$xHIEƲMLLLT$LD$L$L$LD$HLT$IIx HIIx HI)LLL$L$HH$Ix HI?IExHIEeH=(ӮIHH5h+HH$UL$HIIx HI#H$H$L$L$HIHI9C?Mݸ1HfInLH)H?fHnH HL$fl)$PH4ӪHH$VIL$x HIǬIExHIEMcHAI9@BLLD$rLD$$,$f.-jIx HIH=:'uIHTH5 *HHD$UTLT$HI\UIx HI;UH$H$IH1VHpI9EULE1ҸHfInHH)H?fInLT$H HL$fl)$PH4uLT$HD$L3UILD$x HI>UHx HHAVMsVHI9@WVLLD$LD$f(f. iVIx HIV$H\$($tIHXH$11H$.{L$HIQWLHHD$NL$L\$HIWIx HIWIx HItXH\$(fInHt$1H="HfHnfl)$PHH$SIx HI+H$*H$H$IHF*H\$X$tLl$XH=(!1HHt$HDŽ$XL$P.LH3SH])IH(HHAtAH=\Ht$fIn1$H)$PLIHD$(RM:H=#IH`,H5&HPIH+IExHIE;H=#L $ǩL $HHD$@HH$ D+H5K&PL $HHD$@H$(+H$ Hx HH*+H|$xL $Ht$(HDŽ$ IL $HHD$@HH$ *HH5v'LL$TLL$HH$ *H$ Hx HHq*L,$HLL$HDŽ$ LLL$HHD$@H$ ,)IExHIE)H$(H E1H9OH$ HL $H?L$PH$XH)H HL$H4LHD$pPH$ L $Hx HHvH$(HDŽ$ Hx HHH|$pHDŽ$(kH,I9AME1Ht$HLH?H)fInD$pH H4)$P:LHD$@OHL$pHx HHI$xHI$}H|$@HD$pH~AtAHD$pHL$@Lp$tHD$pHL$@HD$HD$0HH IHD$8HD$PHD$hHD$HHD$`HD$p LL$ j]fDHp.L`HH9E]DL@L0H$ :fD %fDLEHEH]H$ ttHUxHHU8)HA1$E1Ld$xE1A 1L$E1E11HD$E1E1HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$fMtIx HIMtIx HIH$ HtHx HH%MtIx HI<H$(HtHx HH;MtIx HIBH$eH$ eH$(eH $HtHx HHHT$ HtHx HHH$0HtHx HHHL$HtHx HHHt$HtHx HHDH=JE1MtIx HIH$HtHx HHHtHExHHEH$HtHx HH|H$HtHx HHkH$HtHx HHZH$HtHx HHIH$HtHx HH8H$HtHx HH'H$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHMtIx HIH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHtH$HtHx HHcHtHx HHZH\$(HtHx HHLH\$@HtHx HH>H\$pHtHx HH0H\$`HtHx HH"H\$HHtHx HHH\$hHtHx HHH\$PHtHx HHHT$8HtHx HHH\$0HtHx HHHL$HtHx HHHD$xHxH\$xHHtdH$HxH$HHtTHt$XHtHx HHtHL[]A\A]A^A_DH@fDH0fDH fDLL$@L$8L$0L$@L$8L$0LL$8L$0L$8L$0L$8L$0L$8L$0fDLL$0hL$0L$0KL$0fDL0H HfDH!H/LJH[HfHwHHHpH`HPH@H0#fDHLH*H;OfDH]HnHfDHHpH`HPH@H0H HH HH%H L1Ld$xIA 1L$E1E11HD$E1E1HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$fD+HsIH'&HD$E111HD$E1E1HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$Ld$xA DL$IAHD$E111HD$E1E1HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$Ld$xA fDMOIWAtAtIH$ HAILL $譾L $馿@HD$E111HD$E1E1HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$Ld$xA 8fDkL$HFH$E1E11HD$E1HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$Ld$xA HD$E111HD$E1E1E1HD$ A H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$MIEHIELL$HL$@L$8L$0ֹL$HL$@L$8L$0L訹蛹L $HD$E1E1A7HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(@LL$L$靾HD$E111HD$E1E1HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$Ld$xA f.LhOH$E1E11HD$E1HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$Ld$xA @H]HUttHEH$ xHHETHHt$郹fDHD$E111HD$E1E1HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$Ld$xA DfHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$L踲H$ H$E1E11HD$E1E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$fD3·fDHEH]H$ ttHUxHHUHt$Hݺ鷵fDHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L$HD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$1AHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HtLH$ AtALL$B*L$HH$(HHfInfHnHt$1H=ZflH)$PwL$HLx+H$(Hx HHHDŽ$(HFKH$ H$XHDŽ$PH$X|H$HExHHEH$ Hx HHH$HDŽ$ 'LH$11HfHHH\HD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$@L谩KHDŽ$ 臀HGH5oHH$k'L$HIKIx HI#LL $軫L $HHQHHI9Y1^H\$H$ LL $H$XH4H$P|H$ H$Y(HEL $HDŽ$ xHHE`Ix HI]H$NYHqH$HH\$XBHRHH.HU!HD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$fHH1sH$ AܧHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L 1AtAHoH$(tH$L $!L $HHaWH$(Ht$1HH=H$XH$PH$(H$"HEL $HDŽ$(xHHEH$XH$LH$XL $HDŽ$PH$XNtL $H$ Hx HHIx HIH$ HubH11 ^H$ Hx HH;HD$E111HD$E1E1A HDŽ$ HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$6H$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$vH\Ht$H$ "HD$E111HD$E1E1E1HD$ A H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$A HD$E111HD$E1E1E1HD$ E1H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$YLrH$ 銣HtLH$ AtAH5\LL$L$HH$(HdH51H$L$HHeH$(Ht$1HH=L$PH$XH$`L$H$LH$(Hx HHBDHDŽ$(HExHHE*DH$jH$H$ H$XHDŽ$PH$XmkHHx HHMH$ Hx HHLHDŽ$ Hk11H)UHEGHHEPHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$`HF24ME1HHLL$PH?H$XH)H HL$H4?LH$(xI$xHI$#L$(E1AWMH|$0L;lIHH$(Hx HHH=<HDŽ$(kBIH<H5@HPH$0HI$xHI$H5*H|$pIHH$0H eE1H9OHfInL$`H)H?D$pH HL$)$PH4q>LH$(1I$xHI$uLjH$0HxHHuzjL$(HDŽ$0M*LLiH$0IH IExHIEuL$jH$(HxHHujH$0H$ HDŽ$(fjH$(HH$ Hx HHH$0HDŽ$ Hx HHH$(H$8HDŽ$0HDŽ$(HD$H$@HDŽ$8H$HHDŽ$@H$H5vHDŽ$HHH$HHxH$HHuHhH$HH$HHxHHuHhHDŽ$HHL$(H$0$t~D$(Ht$1HH=ζD$P)$PmH$0H$ H$ HDŽ$0H$HH|$kH$HH$0H!H$ HL$@HC$tH$H\$@HX H\$$tH$H\$HDŽ$ HDŽ$0HX(IHD$(1E1HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$fLL$fL$pfLʽHDŽ$ AtALLAtAH5H$0L\$L$4L$L\$HH$(HZfInfHn1L$Ht$flH=?HLD$)$P[kL$H$LWH$(LD$Hx HH;>H$HDŽ$(QH$LL$H$XH$ H$XH$P6H$ HHL$HDŽ$ x HH=Ix HI=HC11Hj HE8HHEBH$0E1E11HD$A E11HD$XHD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$锖LzcqH$E11E1HD$A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$+LL $ bL $NlLL $aL $OlHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$頓L`8kH$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$4HD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$ߐHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$eLAtAHCH$(tH5cH$0L$L$HIov11HLD$H$@L$LD$HIYIx HI8LLT$L$6^L$LT$HHSH$(Ht$1LD$H=ΩL$XHL$H$PH$``H$(H$ L$LD$HDŽ$(Ix HIRHExHHERH$ HVLH$XH$XL$HDŽ$P.,H$ L$HHx HHaOHDŽ$ Ix HIOLHH$1VH$0A HD$XVHD$E111HD$E1E1E1HD$ A H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ${HA 1E1H1E1E1HD$HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$zLkHCAUtAUtH$H$ Hx HH%H$1jTH$0E1E11HD$E11A HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$XxH$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$mwH$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$vHD$E1E1E1HD$HD$ H$H$01E11HD$A HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$XvH$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$VsH$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$qL%HDŽ$ A$tA$H6LH$XHDŽ$PH$XH$ H I$HDŽ$ xHI$3HX11HHE.HHE -H$0E1E11HD$A E11HD$XHD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$oHD$E1E1A HD$E1HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@1E1HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$UnL%HDŽ$ A$tA$HLH$XHDŽ$PH$Xz H$ H$蕺I$HDŽ$ xHI$/H$PH$11H0H-HHy,H$E1E11HD$A E1HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$wl1AAH$0E1E11HD$E11A HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$XjHD$E1E1HD$HD$ H$H$0A HD$X黣H$E1E11HD$A E1HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$ciH$E11E1HD$A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$hH$E11E1HD$A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$fHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$JeH$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$cH$E1E11HD$E1E1E1HD$A HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$SuHD$E111HD$E1E1A HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$1aH$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$_I]ImtEtEIExHIEAI16Lw,H$ L$鳃Hn H$1U L$鑰LD L7 ?H$0E11E1HD$A HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$XH$E1E11HD$E1E1A@HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$5=H$0E1E11HD$E1A HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$X(H$E1E11HD$E1A HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$HDŽ$'H$E1E11HD$E1A HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$HDŽ$f&H$E1E11HD$E1E1A H$H$HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$HDŽ$$McI[A$tA$tIx HI7I1qhH$E1E11HD$E1E1E1HD$A HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$_6H$E1E11HD$E1ADHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$c"LL $EL $diH$E1E11HD$E1ADHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$!LhHXhH'H{('HH'L$H|$HL$HHX'HL$LH|$HS(L$hLibjClH$E11E1HD$ADHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$jHAH[AHHH 8L$0HEHH5 H81H$E1E11HD$AAE1L$0HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$LI1]SLL $L $LE~HDŽ$HDŽ$8H$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$)H;nKLL$L$HIKIx HIKIELHIHKH$LL $HHD$HJLL $HH$(HLL $HH[HL $苿L $FIEFHLL$`IE`L8`H$E1E11HD$E1AAHD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$E1E11HD$E1AAHD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$E1HD$HD$ H$H$0E1E11HD$E1A HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$X&H$E11E1HD$ADHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$LD$L $LD$L $\H$E1E11HD$E1E1ADHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$~LL$L$o[H$A 1E1qH$E1E1HD$HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$;H$E1E11HD$A E1HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$E1E11HD$E1A HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H=8.sIHH5,HX[IHnIExHIEmH|$X11L$oL$HHD$(YHnI9CMܸE1Ht$HLH?H)fInH D$(H4)$P|LH$@\HL$(L$Hx HHaI$xHI$ML;}AL;*DL;GLL$ L$Ax"Ix HI3EHD$E1E1A4HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(EGHD$E1E1A4HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$( LHD$E1E1E1HD$A4HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(< HD$E1E1A4HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$( H$E1E11HD$E1AXHD$HD$ HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$ LL$L$~HD$E1A4HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@T H:L$MkMcAEtAEA$tA$IxH$E1E11HD$E1AHHD$HD$ HD$HD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$LgHWA$tA$tHH$(xAHHt$H$(1/ILL$L$ JH$(1I1HHH$E1E11HD$E1AJHD$HD$ HD$HD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HHD$E1E1E1HD$HD$ H$HD$1E1AJHD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$+L$BL$GLD$L $+LD$L $(HH$E1E11HD$E1AFHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$LL $L $DH$E1E11HD$E1AFHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$LL$L$mBH$E11E1HD$AHHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ${H2L$H8FL$EL$H{HrHL$L$HH$ItH|$HLH2AH$E1E11HD$E1AEHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$E11E1HD$AHHD$HD$ HD$HD$0HD$8HD$PHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$E1E1AEHD$HD$ H$HD$HD$0HD$8HD$PHD$@HD$(1E1HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$L=HD$E1E1HD$HD$ H$LL $@L $@H$E1E11HD$E1AJHD$HD$ HD$HD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$ H$E1E11HD$E1AJHD$HD$ HD$HD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H$E1E11HD$E1AKHD$HD$ HD$HD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$Hվ>LhL`AEtAEA$tA$H$Hx1HH=H$耾=Ls/>1=H$E1E11HD$E1AKHD$HD$ HD$HD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$FH$E1E11HD$E1AKHD$HD$ HD$HD$0HD$8HD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$9LR;LL$L$SHD$E1E1A3HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(H$E1E11HD$A.HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(AH$E1E11HD$E1A+HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(L蔨ZHD$HD$HD$ HD$E1E1E1HD$0A9HD$8HD$PHD$hHD$HHD$`HD$pH<$LL$`HD$E1E1E1HD$A9HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@e耧LL$HD$HD$HD$ H$IL $HD$E1E1E1HD$A9HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$E1E1A9HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@EAWH$?fH$ )$p?fH$()$@o?H$0f)$F%LHDŽ$02%H$ %%LHDŽ$ %H$(%DH="HDŽ$(詛H$ H$0HH$(]H$ H$01H$(=IHL$HL?IIx HIIExHIEM]L;%AL;%nDL;%LUAI$xHI$EL$(EL#H$0HDŽ$(#H$ HDŽ$0#H{hH$HHDŽ$ H$@H$8[UHD$H;I$EjHI$\LǣFL躣L$ L$00LHLLXHDŽ$(HDŽ$0HDŽ$ H{hAU1H$HH$@H$8E1TH$E1E1HD$HD$HD$ HD$HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$QH$2FAWE1E1L5MuMeAtAA$tA$IUx5HIU5LH$ȡH$}5L跡51i5覡6L虡[6LL$舡L$-L $KL--0H$E1E11HD$E1E1E1HD$AHD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$rL',L$LpLhAtAAEtAEH$Hx2HHH$++L$1 ULD$/LD$HTA)RAH $TH$E1E11HD$E1A)HD$HD$ HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$]L*@THD$E11A)HD$HD$ H$HD$HD$0HD$8HD$PHD$hHD$HHD$`HD$pHD$@HD$(HDŽ$J]L0*L$(SI[MktAEtAEIxM C 9 / LFAtALD$XHNtHL$P&E1H (tHL$P3LLHL$8LLL\$LT$LL$觢L\$LT$LL$LLT$6 IE1LT$LHu9sftHIL)HD@HCHHtan integer is required__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsneeds an argumentkeywords must be stringsMissing type objectunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'buffer dtypeothercannot import name %SMemoryview is not initializedassignment(n)fortrangenerator already executingcompose_quatexactly__setstate____setstate_cython__tupleExpected %s, got %.200sat mostat leastas_euler_as_euler_from_matrix.0seqgenexpr__pyx_unpickle_Rotationname '%U' is not definedfloat divisionIndex out of bounds (axis 0)as_mrpas_rotvecsplit_rotation__getstate__as_matrixinv__reduce_cython__concatenatefrom_davenportapprox_equalmagnitudeas_quatfrom_quat__init__from_mrprandomcreate_groupthrowfrom_rotvecfrom_euler__call__identityapply_compute_euler_format_anglesas_davenportreducemeansensitivityalign_vectorsbuiltinscython_runtime__builtins__does not match__debug____len____mul____pow____getitem____setitem__numpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncscipy._cyutilitymemoryview_allocate_bufferarray_cwrappermemoryview_cwrappermemview_sliceslice_memviewslicepybuffer_indexint (__Pyx_memviewslice *)transpose_memslicememoryview_fromsliceget_slice_from_memviewslice_copymemoryview_copymemoryview_copy_from_sliceget_best_orderslice_get_sizefill_contig_strides_arraycopy_data_to_temp_err_extents_err_dimint (PyObject *, PyObject *)_errint (void)_err_no_memorymemoryview_copy_contentsbroadcast_leadingrefcount_copyingrefcount_objects_in_slice_slice_assign_scalarformat_from_typeinfonumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy.import_array_cython_3_1_6.generator__name__name of the generator__qualname__gi_frameFrame of the generatorgi_runninggi_yieldfromgi_code__module____weaklistoffset__sendclose__reduce_ex____reduce____dictoffset____vectorcalloffset__func_doc__doc__func_namefunc_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutinesingleconst ucharconst doublebase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base type%s() got an unexpected keyword argument '%U'__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)value too large to convert to intC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sInterpreter change detected - this module can only be loaded into one interpreter per process.Shared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompilingtoo many values to unpack (expected %zd)unbound method %.200S() needs an argument%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%.200s() keywords must be strings%s() got multiple values for keyword argument '%U'Unexpected format string character: '%c'Acquisition count is %d (line %d) while calling a Python objectNULL result without error in PyObject_Callinvalid vtable found for imported typejoin() result is too long for a Python string__annotations__ must be set to a dict objectCannot convert %.200s to %.200s__qualname__ must be set to a string object__name__ must be set to a string object__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function calls__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function callsfunction's dictionary may not be deletedsetting function's dictionary to a non-dictraise: arg 3 must be a traceback or Noneinstance exception may not have a separate valuecalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zd byte%s) does not match size of '%s' (%zd byte%s)Argument '%.200s' has incorrect type (expected %.200s, got %.200s)Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer is not indirectly contiguous in dimension %d.Buffer and memoryview are not contiguous in the same dimension.C-contiguous buffer is not contiguous in dimension %dC-contiguous buffer is not indirect in dimension %dBuffer exposes suboffsets but no stridesBuffer not compatible with direct access in dimension %d.Buffer is not indirectly accessible in dimension %d.memviewslice is already initialized!cannot fit '%.200s' into an index-sized integerscipy/spatial/transform/_rotation.pyx'%.200s' object is unsliceablescipy.spatial.transform._rotation._empty1scipy.spatial.transform._rotation.Rotation.__setstate__need more than %zd value%.1s to unpackscipy.spatial.transform._rotation.Rotation.__len__'%.200s' object does not support slice %.10sstrings are too large to concatscipy.spatial.transform._rotation.Rotation.__repr__'NoneType' object is not subscriptablehasattr(): attribute name must be stringscipy.spatial.transform._rotation.__pyx_unpickle_Rotation__set_statescipy.spatial.transform._rotation._cross3scipy.spatial.transform._rotation._empty2scipy.spatial.transform._rotation._zeros2scipy.spatial.transform._rotation._elementary_basis_vectorMemoryview return value is not initialized'%.200s' object is not subscriptablegenerator ignored GeneratorExitscipy.spatial.transform._rotation._compose_quat_singlescipy.spatial.transform._rotation._compose_quatscipy.spatial.transform._rotation.compose_quat%.200s() takes %.8s %zd positional argument%.1s (%zd given)scipy.spatial.transform._rotation.Rotation.__setstate_cython__scipy.spatial.transform._rotation.Rotation.__mul__scipy.spatial.transform._rotation.Rotation.as_eulerscipy.spatial.transform._rotation.Rotation._as_euler_from_matrixgenerator raised StopIterationlocal variable '%s' referenced before assignmentfree variable '%s' referenced before assignment in enclosing scopescipy.spatial.transform._rotation.__pyx_unpickle_RotationOut of bounds on buffer access (axis %d)scipy.spatial.transform._rotation.Rotation.as_mrpscipy.spatial.transform._rotation.Rotation.as_rotvecscipy.spatial.transform._rotation.Rotation.reduce.split_rotationscipy.spatial.transform._rotation.Rotation.__getstate__scipy.spatial.transform._rotation.Rotation.__getitem__scipy.spatial.transform._rotation._empty3scipy.spatial.transform._rotation.Rotation.as_matrixscipy.spatial.transform._rotation.Rotation.__setitem__Subscript deletion not supported by %.200sscipy.spatial.transform._rotation.Rotation.invscipy.spatial.transform._rotation.Rotation.__reduce_cython__scipy.spatial.transform._rotation.Rotation.concatenate.genexprscipy.spatial.transform._rotation.Rotation.concatenatescipy.spatial.transform._rotation.Rotation.from_davenportscipy.spatial.transform._rotation.Rotation.approx_equalscipy.spatial.transform._rotation.Rotation.magnitudescipy.spatial.transform._rotation.Rotation.as_quatscipy.spatial.transform._rotation.Rotation.from_quatscipy.spatial.transform._rotation.Rotation.__init__scipy.spatial.transform._rotation.Rotation.from_mrpscipy.spatial.transform._rotation.Rotation.randomscipy.spatial.transform._rotation.Rotation.create_groupscipy.spatial.transform._rotation._make_elementary_quatscipy.spatial.transform._rotation._elementary_quat_composescipy.spatial.transform._rotation.Rotation.__pow__scipy.spatial.transform._rotation.Rotation.from_rotvecscipy.spatial.transform._rotation.Rotation.from_euler.genexprscipy.spatial.transform._rotation.Rotation.from_eulerscipy.spatial.transform._rotation.Slerp.__call__scipy.spatial.transform._rotation.Rotation.identityscipy.spatial.transform._rotation.Rotation.applyBuffer acquisition failed on assignment; and then reacquiring the old buffer failed too!scipy.spatial.transform._rotation._compute_euler_from_matrixscipy.spatial.transform._rotation.Rotation._compute_euler.genexprscipy.spatial.transform._rotation._get_anglesscipy.spatial.transform._rotation._compute_euler_from_quatscipy.spatial.transform._rotation.Rotation._compute_eulerscipy.spatial.transform._rotation.Slerp.__init__scipy.spatial.transform._rotation._format_anglesscipy.spatial.transform._rotation._compute_davenport_from_quatscipy.spatial.transform._rotation.Rotation.as_davenportscipy.spatial.transform._rotation.Rotation.from_matrixscipy.spatial.transform._rotation.Rotation.reducescipy.spatial.transform._rotation.Rotation.meanscipy.spatial.transform._rotation.Rotation.align_vectorsModule '_rotation' has already been imported. Re-initialisation is not supported.scipy.spatial.transform._rotationcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%dUnable to initialize pickling for %.200sint (struct __pyx_array_obj *)struct __pyx_array_obj *(PyObject *, Py_ssize_t, char *, char const *, char *)PyObject *(PyObject *, int, int, __Pyx_TypeInfo const *)struct __pyx_memoryview_obj *(struct __pyx_memoryview_obj *, PyObject *)int (__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int)char *(Py_buffer *, char *, Py_ssize_t, Py_ssize_t)PyObject *(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int)__Pyx_memviewslice *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)void (struct __pyx_memoryview_obj *, __Pyx_memviewslice *)PyObject *(struct __pyx_memoryview_obj *)PyObject *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)char (__Pyx_memviewslice *, int)Py_ssize_t (__Pyx_memviewslice *, int)Py_ssize_t (Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char)void *(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int)int (int, Py_ssize_t, Py_ssize_t)int (PyObject *, PyObject *, int)int (__Pyx_memviewslice, __Pyx_memviewslice, int, int, int)void (__Pyx_memviewslice *, int, int)void (__Pyx_memviewslice *, int, int, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, int)void (__Pyx_memviewslice *, int, size_t, void *, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *)PyObject *(__Pyx_TypeInfo const *)_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtime../../tmp/build-env-99e64tom/lib/python3.12/site-packages/numpy/__init__.cython-30.pxdinit scipy.spatial.transform._rotationqualified name of the generatorobject being iterated by 'yield from', or Nonesend(arg) -> send 'arg' into generator, return next yielded value or raise StopIteration.throw(typ[,val[,tb]]) -> raise exception in generator, return next yielded value or raise StopIteration.close() -> raise GeneratorExit inside generator._cython_3_1_6.cython_function_or_method_cython_3_1_6._common_types_metatypescipy.spatial.transform._rotation.__pyx_scope_struct_4_genexprscipy.spatial.transform._rotation.__pyx_scope_struct_3_genexprscipy.spatial.transform._rotation.__pyx_scope_struct_2__compute_eulerscipy.spatial.transform._rotation.__pyx_scope_struct_1_genexprscipy.spatial.transform._rotation.__pyx_scope_struct__from_eulerscipy.spatial.transform._rotation.RotationRotation in 3 dimensions. This class provides an interface to initialize from and represent rotations with: - Quaternions - Rotation Matrices - Rotation Vectors - Modified Rodrigues Parameters - Euler Angles - Davenport Angles (Generalized Euler Angles) The following operations on rotations are supported: - Application on vectors - Rotation Composition - Rotation Inversion - Rotation Indexing Indexing within a rotation is supported since multiple rotation transforms can be stored within a single `Rotation` instance. To create `Rotation` objects use ``from_...`` methods (see examples below). ``Rotation(...)`` is not supposed to be instantiated directly. Attributes ---------- single Methods ------- __len__ from_quat from_matrix from_rotvec from_mrp from_euler from_davenport as_quat as_matrix as_rotvec as_mrp as_euler as_davenport concatenate apply __mul__ __pow__ inv magnitude approx_equal mean reduce create_group __getitem__ identity random align_vectors See Also -------- Slerp Notes ----- .. versionadded:: 1.2.0 Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np A `Rotation` instance can be initialized in any of the above formats and converted to any of the others. The underlying object is independent of the representation used for initialization. Consider a counter-clockwise rotation of 90 degrees about the z-axis. This corresponds to the following quaternion (in scalar-last format): >>> r = R.from_quat([0, 0, np.sin(np.pi/4), np.cos(np.pi/4)]) The rotation can be expressed in any of the other formats: >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_euler('zyx', degrees=True) array([90., 0., 0.]) The same rotation can be initialized using a rotation matrix: >>> r = R.from_matrix([[0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]) Representation in other formats: >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_euler('zyx', degrees=True) array([90., 0., 0.]) The rotation vector corresponding to this rotation is given by: >>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1])) Representation in other formats: >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_euler('zyx', degrees=True) array([90., 0., 0.]) The ``from_euler`` method is quite flexible in the range of input formats it supports. Here we initialize a single rotation about a single axis: >>> r = R.from_euler('z', 90, degrees=True) Again, the object is representation independent and can be converted to any other format: >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) It is also possible to initialize multiple rotations in a single instance using any of the ``from_...`` functions. Here we initialize a stack of 3 rotations using the ``from_euler`` method: >>> r = R.from_euler('zyx', [ ... [90, 0, 0], ... [0, 45, 0], ... [45, 60, 30]], degrees=True) The other representations also now return a stack of 3 rotations. For example: >>> r.as_quat() array([[0. , 0. , 0.70710678, 0.70710678], [0. , 0.38268343, 0. , 0.92387953], [0.39190384, 0.36042341, 0.43967974, 0.72331741]]) Applying the above rotations onto a vector: >>> v = [1, 2, 3] >>> r.apply(v) array([[-2. , 1. , 3. ], [ 2.82842712, 2. , 1.41421356], [ 2.24452282, 0.78093109, 2.89002836]]) A `Rotation` instance can be indexed and sliced as if it were a single 1D array or list: >>> r.as_quat() array([[0. , 0. , 0.70710678, 0.70710678], [0. , 0.38268343, 0. , 0.92387953], [0.39190384, 0.36042341, 0.43967974, 0.72331741]]) >>> p = r[0] >>> p.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> q = r[1:3] >>> q.as_quat() array([[0. , 0.38268343, 0. , 0.92387953], [0.39190384, 0.36042341, 0.43967974, 0.72331741]]) In fact it can be converted to numpy.array: >>> r_array = np.asarray(r) >>> r_array.shape (3,) >>> r_array[0].as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) Multiple rotations can be composed using the ``*`` operator: >>> r1 = R.from_euler('z', 90, degrees=True) >>> r2 = R.from_rotvec([np.pi/4, 0, 0]) >>> v = [1, 2, 3] >>> r2.apply(r1.apply(v)) array([-2. , -1.41421356, 2.82842712]) >>> r3 = r2 * r1 # Note the order >>> r3.apply(v) array([-2. , -1.41421356, 2.82842712]) A rotation can be composed with itself using the ``**`` operator: >>> p = R.from_rotvec([1, 0, 0]) >>> q = p ** 2 >>> q.as_rotvec() array([2., 0., 0.]) Finally, it is also possible to invert rotations: >>> r1 = R.from_euler('z', [90, 45], degrees=True) >>> r2 = r1.inv() >>> r2.as_euler('zyx', degrees=True) array([[-90., 0., 0.], [-45., 0., 0.]]) The following function can be used to plot rotations with Matplotlib by showing how they transform the standard x, y, z coordinate axes: >>> import matplotlib.pyplot as plt >>> def plot_rotated_axes(ax, r, name=None, offset=(0, 0, 0), scale=1): ... colors = ("#FF6666", "#005533", "#1199EE") # Colorblind-safe RGB ... loc = np.array([offset, offset]) ... for i, (axis, c) in enumerate(zip((ax.xaxis, ax.yaxis, ax.zaxis), ... colors)): ... axlabel = axis.axis_name ... axis.set_label_text(axlabel) ... axis.label.set_color(c) ... axis.line.set_color(c) ... axis.set_tick_params(colors=c) ... line = np.zeros((2, 3)) ... line[1, i] = scale ... line_rot = r.apply(line) ... line_plot = line_rot + loc ... ax.plot(line_plot[:, 0], line_plot[:, 1], line_plot[:, 2], c) ... text_loc = line[1]*1.2 ... text_loc_rot = r.apply(text_loc) ... text_plot = text_loc_rot + loc[0] ... ax.text(*text_plot, axlabel.upper(), color=c, ... va="center", ha="center") ... ax.text(*offset, name, color="k", va="center", ha="center", ... bbox={"fc": "w", "alpha": 0.8, "boxstyle": "circle"}) Create three rotations - the identity and two Euler rotations using intrinsic and extrinsic conventions: >>> r0 = R.identity() >>> r1 = R.from_euler("ZYX", [90, -30, 0], degrees=True) # intrinsic >>> r2 = R.from_euler("zyx", [90, -30, 0], degrees=True) # extrinsic Add all three rotations to a single plot: >>> ax = plt.figure().add_subplot(projection="3d", proj_type="ortho") >>> plot_rotated_axes(ax, r0, name="r0", offset=(0, 0, 0)) >>> plot_rotated_axes(ax, r1, name="r1", offset=(3, 0, 0)) >>> plot_rotated_axes(ax, r2, name="r2", offset=(6, 0, 0)) >>> _ = ax.annotate( ... "r0: Identity Rotation\n" ... "r1: Intrinsic Euler Rotation (ZYX)\n" ... "r2: Extrinsic Euler Rotation (zyx)", ... xy=(0.6, 0.7), xycoords="axes fraction", ha="left" ... ) >>> ax.set(xlim=(-1.25, 7.25), ylim=(-1.25, 1.25), zlim=(-1.25, 1.25)) >>> ax.set(xticks=range(-1, 8), yticks=[-1, 0, 1], zticks=[-1, 0, 1]) >>> ax.set_aspect("equal", adjustable="box") >>> ax.figure.set_size_inches(6, 5) >>> plt.tight_layout() Show the plot: >>> plt.show() These examples serve as an overview into the `Rotation` class and highlight major functionalities. For more thorough examples of the range of input and output formats supported, consult the individual method's examples. Whether this instance represents a single rotation.?p?p??p?p?p?p?p??`?p?p?P?p?p?P?P?P?p?p?p?p?p?p?p?p?p?p?p?p?p?p?p?p???P?p?`???`?p?p?P?p?p?p??P?p??fddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddgddfdddddffddfddf&f2fdd>fdddddddddddddJfgVfdpffffddfddddfddcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb&dbbcbbbbbddbbdbbcccbbcbbbbbbbbbbbbbc2d?cbVcpcc6cbbcbbb$ccb$c4f,e,e4f,e,e,e,e,e,gg,e,eg,e,e g g g,e,e,e,e,e,e,e,e,e,e,e,e,e,e,e,e4f4fjg,eWg6g,gg,e,eg,e,e,e4f g,e4ffscscfscscscscscffscscfscscfffscscscscscscscscscscscscscscscscfgfscffffscscfscscscffscfdccdccccc>> import numpy as np >>> from scipy.spatial.transform import Rotation as R Here we run the baseline Kabsch algorithm to best align two sets of vectors, where there is noise on the last two vector measurements of the ``b`` set: >>> a = [[0, 1, 0], [0, 1, 1], [0, 1, 1]] >>> b = [[1, 0, 0], [1, 1.1, 0], [1, 0.9, 0]] >>> rot, rssd, sens = R.align_vectors(a, b, return_sensitivity=True) >>> rot.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) When we apply the rotation to ``b``, we get vectors close to ``a``: >>> rot.apply(b) array([[0. , 1. , 0. ], [0. , 1. , 1.1], [0. , 1. , 0.9]]) The error for the first vector is 0, and for the last two the error is magnitude 0.1. The `rssd` is the square root of the sum of the weighted squared errors, and the default weights are all 1, so in this case the `rssd` is calculated as ``sqrt(1 * 0**2 + 1 * 0.1**2 + 1 * (-0.1)**2) = 0.141421356237308`` >>> a - rot.apply(b) array([[ 0., 0., 0. ], [ 0., 0., -0.1], [ 0., 0., 0.1]]) >>> np.sqrt(np.sum(np.ones(3) @ (a - rot.apply(b))**2)) 0.141421356237308 >>> rssd 0.141421356237308 The sensitivity matrix for this example is as follows: >>> sens array([[0.2, 0. , 0.], [0. , 1.5, 1.], [0. , 1. , 1.]]) Special case 1: Find a minimum rotation between single vectors: >>> a = [1, 0, 0] >>> b = [0, 1, 0] >>> rot, _ = R.align_vectors(a, b) >>> rot.as_matrix() array([[0., 1., 0.], [-1., 0., 0.], [0., 0., 1.]]) >>> rot.apply(b) array([1., 0., 0.]) Special case 2: One infinite weight. Here we find a rotation between primary and secondary vectors that can align exactly: >>> a = [[0, 1, 0], [0, 1, 1]] >>> b = [[1, 0, 0], [1, 1, 0]] >>> rot, _ = R.align_vectors(a, b, weights=[np.inf, 1]) >>> rot.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) >>> rot.apply(b) array([[0., 1., 0.], [0., 1., 1.]]) Here the secondary vectors must be best-fit: >>> a = [[0, 1, 0], [0, 1, 1]] >>> b = [[1, 0, 0], [1, 2, 0]] >>> rot, _ = R.align_vectors(a, b, weights=[np.inf, 1]) >>> rot.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) >>> rot.apply(b) array([[0., 1., 0.], [0., 1., 2.]])Rotation.random(cls, num=None, rng=None) Generate uniformly distributed rotations. Parameters ---------- num : int or None, optional Number of random rotations to generate. If None (default), then a single rotation is generated. rng : `numpy.random.Generator`, optional Pseudorandom number generator state. When `rng` is None, a new `numpy.random.Generator` is created using entropy from the operating system. Types other than `numpy.random.Generator` are passed to `numpy.random.default_rng` to instantiate a `Generator`. Returns ------- random_rotation : `Rotation` instance Contains a single rotation if `num` is None. Otherwise contains a stack of `num` rotations. Notes ----- This function is optimized for efficiently sampling random rotation matrices in three dimensions. For generating random rotation matrices in higher dimensions, see `scipy.stats.special_ortho_group`. Examples -------- >>> from scipy.spatial.transform import Rotation as R Sample a single rotation: >>> R.random().as_euler('zxy', degrees=True) array([-110.5976185 , 55.32758512, 76.3289269 ]) # random Sample a stack of rotations: >>> R.random(5).as_euler('zxy', degrees=True) array([[-110.5976185 , 55.32758512, 76.3289269 ], # random [ -91.59132005, -14.3629884 , -93.91933182], [ 25.23835501, 45.02035145, -121.67867086], [ -51.51414184, -15.29022692, -172.46870023], [ -81.63376847, -27.39521579, 2.60408416]]) See Also -------- scipy.stats.special_ortho_groupRotation.identity(cls, num=None) Get identity rotation(s). Composition with the identity rotation has no effect. Parameters ---------- num : int or None, optional Number of identity rotations to generate. If None (default), then a single rotation is generated. Returns ------- identity : Rotation object The identity rotation.Set rotation(s) at given index(es) from object. Parameters ---------- indexer : index, slice, or index array Specifies which rotation(s) to replace. A single indexer must be specified, i.e. as if indexing a 1 dimensional array or list. value : `Rotation` instance The rotations to set. Raises ------ TypeError if the instance was created as a single rotation. Notes ----- .. versionadded:: 1.8.0 Rotation.__getitem__(self, indexer) Extract rotation(s) at given index(es) from object. Create a new `Rotation` instance containing a subset of rotations stored in this object. Parameters ---------- indexer : index, slice, or index array Specifies which rotation(s) to extract. A single indexer must be specified, i.e. as if indexing a 1 dimensional array or list. Returns ------- rotation : `Rotation` instance Contains - a single rotation, if `indexer` is a single index - a stack of rotation(s), if `indexer` is a slice, or and index array. Raises ------ TypeError if the instance was created as a single rotation. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> rs = R.from_quat([ ... [1, 1, 0, 0], ... [0, 1, 0, 1], ... [1, 1, -1, 0]]) # These quats are normalized >>> rs.as_quat() array([[ 0.70710678, 0.70710678, 0. , 0. ], [ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]]) Indexing using a single index: >>> a = rs[0] >>> a.as_quat() array([0.70710678, 0.70710678, 0. , 0. ]) Array slicing: >>> b = rs[1:3] >>> b.as_quat() array([[ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]]) List comprehension to split each rotation into its own object: >>> c = [r for r in rs] >>> print([r.as_quat() for r in c]) [array([ 0.70710678, 0.70710678, 0. , 0. ]), array([ 0. , 0.70710678, 0. , 0.70710678]), array([ 0.57735027, 0.57735027, -0.57735027, 0. ])] Concatenation of split rotations will recover the original object: >>> R.concatenate([a, b]).as_quat() array([[ 0.70710678, 0.70710678, 0. , 0. ], [ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]])Rotation.create_group(cls, group, axis='Z') Create a 3D rotation group. Parameters ---------- group : string The name of the group. Must be one of 'I', 'O', 'T', 'Dn', 'Cn', where `n` is a positive integer. The groups are: * I: Icosahedral group * O: Octahedral group * T: Tetrahedral group * D: Dicyclic group * C: Cyclic group axis : integer The cyclic rotation axis. Must be one of ['X', 'Y', 'Z'] (or lowercase). Default is 'Z'. Ignored for groups 'I', 'O', and 'T'. Returns ------- rotation : `Rotation` instance Object containing the elements of the rotation group. Notes ----- This method generates rotation groups only. The full 3-dimensional point groups [PointGroups]_ also contain reflections. References ---------- .. [PointGroups] `Point groups `_ on Wikipedia.Rotation.reduce(self, left=None, right=None, return_indices=False) Reduce this rotation with the provided rotation groups. Reduction of a rotation ``p`` is a transformation of the form ``q = l * p * r``, where ``l`` and ``r`` are chosen from `left` and `right` respectively, such that rotation ``q`` has the smallest magnitude. If `left` and `right` are rotation groups representing symmetries of two objects rotated by ``p``, then ``q`` is the rotation of the smallest magnitude to align these objects considering their symmetries. Parameters ---------- left : `Rotation` instance, optional Object containing the left rotation(s). Default value (None) corresponds to the identity rotation. right : `Rotation` instance, optional Object containing the right rotation(s). Default value (None) corresponds to the identity rotation. return_indices : bool, optional Whether to return the indices of the rotations from `left` and `right` used for reduction. Returns ------- reduced : `Rotation` instance Object containing reduced rotations. left_best, right_best: integer ndarray Indices of elements from `left` and `right` used for reduction.Rotation.mean(self, weights=None) Get the mean of the rotations. The mean used is the chordal L2 mean (also called the projected or induced arithmetic mean) [1]_. If ``A`` is a set of rotation matrices, then the mean ``M`` is the rotation matrix that minimizes the following loss function: .. math:: L(M) = \sum_{i = 1}^{n} w_i \lVert \mathbf{A}_i - \mathbf{M} \rVert^2 , where :math:`w_i`'s are the `weights` corresponding to each matrix. Parameters ---------- weights : array_like shape (N,), optional Weights describing the relative importance of the rotations. If None (default), then all values in `weights` are assumed to be equal. Returns ------- mean : `Rotation` instance Object containing the mean of the rotations in the current instance. References ---------- .. [1] Hartley, Richard, et al., "Rotation Averaging", International Journal of Computer Vision 103, 2013, pp. 267-305. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> r = R.from_euler('zyx', [[0, 0, 0], ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1]], degrees=True) >>> r.mean().as_euler('zyx', degrees=True) array([0.24945696, 0.25054542, 0.24945696])Rotation.approx_equal(self, Rotation other, atol=None, degrees=False) Determine if another rotation is approximately equal to this one. Equality is measured by calculating the smallest angle between the rotations, and checking to see if it is smaller than `atol`. Parameters ---------- other : `Rotation` instance Object containing the rotations to measure against this one. atol : float, optional The absolute angular tolerance, below which the rotations are considered equal. If not given, then set to 1e-8 radians by default. degrees : bool, optional If True and `atol` is given, then `atol` is measured in degrees. If False (default), then atol is measured in radians. Returns ------- approx_equal : ndarray or bool Whether the rotations are approximately equal, bool if object contains a single rotation and ndarray if object contains multiple rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np >>> p = R.from_quat([0, 0, 0, 1]) >>> q = R.from_quat(np.eye(4)) >>> p.approx_equal(q) array([False, False, False, True]) Approximate equality for a single rotation: >>> p.approx_equal(q[0]) FalseRotation.magnitude(self) Get the magnitude(s) of the rotation(s). Returns ------- magnitude : ndarray or float Angle(s) in radians, float if object contains a single rotation and ndarray if object contains multiple rotations. The magnitude will always be in the range [0, pi]. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np >>> r = R.from_quat(np.eye(4)) >>> r.as_quat() array([[ 1., 0., 0., 0.], [ 0., 1., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.]]) >>> r.magnitude() array([3.14159265, 3.14159265, 3.14159265, 0. ]) Magnitude of a single rotation: >>> r[0].magnitude() 3.141592653589793Rotation.inv(self) Invert this rotation. Composition of a rotation with its inverse results in an identity transformation. Returns ------- inverse : `Rotation` instance Object containing inverse of the rotations in the current instance. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Inverting a single rotation: >>> p = R.from_euler('z', 45, degrees=True) >>> q = p.inv() >>> q.as_euler('zyx', degrees=True) array([-45., 0., 0.]) Inverting multiple rotations: >>> p = R.from_rotvec([[0, 0, np.pi/3], [-np.pi/4, 0, 0]]) >>> q = p.inv() >>> q.as_rotvec() array([[-0. , -0. , -1.04719755], [ 0.78539816, -0. , -0. ]])Rotation.__pow__(self, float n, modulus) Compose this rotation with itself `n` times. Composition of a rotation ``p`` with itself can be extended to non-integer ``n`` by considering the power ``n`` to be a scale factor applied to the angle of rotation about the rotation's fixed axis. The expression ``q = p ** n`` can also be expressed as ``q = Rotation.from_rotvec(n * p.as_rotvec())``. If ``n`` is negative, then the rotation is inverted before the power is applied. In other words, ``p ** -abs(n) == p.inv() ** abs(n)``. Parameters ---------- n : float The number of times to compose the rotation with itself. modulus : None This overridden argument is not applicable to Rotations and must be ``None``. Returns ------- power : `Rotation` instance If the input Rotation ``p`` contains ``N`` multiple rotations, then the output will contain ``N`` rotations where the ``i`` th rotation is equal to ``p[i] ** n`` Notes ----- For example, a power of 2 will double the angle of rotation, and a power of 0.5 will halve the angle. There are three notable cases: if ``n == 1`` then the original rotation is returned, if ``n == 0`` then the identity rotation is returned, and if ``n == -1`` then ``p.inv()`` is returned. Note that fractional powers ``n`` which effectively take a root of rotation, do so using the shortest path smallest representation of that angle (the principal root). This means that powers of ``n`` and ``1/n`` are not necessarily inverses of each other. For example, a 0.5 power of a +240 degree rotation will be calculated as the 0.5 power of a -120 degree rotation, with the result being a rotation of -60 rather than +120 degrees. Examples -------- >>> from scipy.spatial.transform import Rotation as R Raising a rotation to a power: >>> p = R.from_rotvec([1, 0, 0]) >>> q = p ** 2 >>> q.as_rotvec() array([2., 0., 0.]) >>> r = p ** 0.5 >>> r.as_rotvec() array([0.5, 0., 0.]) Inverse powers do not necessarily cancel out: >>> p = R.from_rotvec([0, 0, 120], degrees=True) >>> ((p ** 2) ** 0.5).as_rotvec(degrees=True) array([ -0., -0., -60.])Rotation.__mul__(self, Rotation other) Compose this rotation with the other. If `p` and `q` are two rotations, then the composition of 'q followed by p' is equivalent to `p * q`. In terms of rotation matrices, the composition can be expressed as ``p.as_matrix() @ q.as_matrix()``. Parameters ---------- other : `Rotation` instance Object containing the rotations to be composed with this one. Note that rotation compositions are not commutative, so ``p * q`` is generally different from ``q * p``. Returns ------- composition : `Rotation` instance This function supports composition of multiple rotations at a time. The following cases are possible: - Either ``p`` or ``q`` contains a single rotation. In this case `composition` contains the result of composing each rotation in the other object with the single rotation. - Both ``p`` and ``q`` contain ``N`` rotations. In this case each rotation ``p[i]`` is composed with the corresponding rotation ``q[i]`` and `output` contains ``N`` rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Composition of two single rotations: >>> p = R.from_quat([0, 0, 1, 1]) >>> q = R.from_quat([1, 0, 0, 1]) >>> p.as_matrix() array([[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]) >>> q.as_matrix() array([[ 1., 0., 0.], [ 0., 0., -1.], [ 0., 1., 0.]]) >>> r = p * q >>> r.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) Composition of two objects containing equal number of rotations: >>> p = R.from_quat([[0, 0, 1, 1], [1, 0, 0, 1]]) >>> q = R.from_rotvec([[np.pi/4, 0, 0], [-np.pi/4, 0, np.pi/4]]) >>> p.as_quat() array([[0. , 0. , 0.70710678, 0.70710678], [0.70710678, 0. , 0. , 0.70710678]]) >>> q.as_quat() array([[ 0.38268343, 0. , 0. , 0.92387953], [-0.37282173, 0. , 0.37282173, 0.84971049]]) >>> r = p * q >>> r.as_quat() array([[ 0.27059805, 0.27059805, 0.65328148, 0.65328148], [ 0.33721128, -0.26362477, 0.26362477, 0.86446082]])Rotation.apply(self, vectors, inverse=False) Apply this rotation to a set of vectors. If the original frame rotates to the final frame by this rotation, then its application to a vector can be seen in two ways: - As a projection of vector components expressed in the final frame to the original frame. - As the physical rotation of a vector being glued to the original frame as it rotates. In this case the vector components are expressed in the original frame before and after the rotation. In terms of rotation matrices, this application is the same as ``self.as_matrix() @ vectors``. Parameters ---------- vectors : array_like, shape (3,) or (N, 3) Each `vectors[i]` represents a vector in 3D space. A single vector can either be specified with shape `(3, )` or `(1, 3)`. The number of rotations and number of vectors given must follow standard numpy broadcasting rules: either one of them equals unity or they both equal each other. inverse : boolean, optional If True then the inverse of the rotation(s) is applied to the input vectors. Default is False. Returns ------- rotated_vectors : ndarray, shape (3,) or (N, 3) Result of applying rotation on input vectors. Shape depends on the following cases: - If object contains a single rotation (as opposed to a stack with a single rotation) and a single vector is specified with shape ``(3,)``, then `rotated_vectors` has shape ``(3,)``. - In all other cases, `rotated_vectors` has shape ``(N, 3)``, where ``N`` is either the number of rotations or vectors. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Single rotation applied on a single vector: >>> vector = np.array([1, 0, 0]) >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.apply(vector) array([2.22044605e-16, 1.00000000e+00, 0.00000000e+00]) >>> r.apply(vector).shape (3,) Single rotation applied on multiple vectors: >>> vectors = np.array([ ... [1, 0, 0], ... [1, 2, 3]]) >>> r = R.from_rotvec([0, 0, np.pi/4]) >>> r.as_matrix() array([[ 0.70710678, -0.70710678, 0. ], [ 0.70710678, 0.70710678, 0. ], [ 0. , 0. , 1. ]]) >>> r.apply(vectors) array([[ 0.70710678, 0.70710678, 0. ], [-0.70710678, 2.12132034, 3. ]]) >>> r.apply(vectors).shape (2, 3) Multiple rotations on a single vector: >>> r = R.from_rotvec([[0, 0, np.pi/4], [np.pi/2, 0, 0]]) >>> vector = np.array([1,2,3]) >>> r.as_matrix() array([[[ 7.07106781e-01, -7.07106781e-01, 0.00000000e+00], [ 7.07106781e-01, 7.07106781e-01, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], [[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]]]) >>> r.apply(vector) array([[-0.70710678, 2.12132034, 3. ], [ 1. , -3. , 2. ]]) >>> r.apply(vector).shape (2, 3) Multiple rotations on multiple vectors. Each rotation is applied on the corresponding vector: >>> r = R.from_euler('zxy', [ ... [0, 0, 90], ... [45, 30, 60]], degrees=True) >>> vectors = [ ... [1, 2, 3], ... [1, 0, -1]] >>> r.apply(vectors) array([[ 3. , 2. , -1. ], [-0.09026039, 1.11237244, -0.86860844]]) >>> r.apply(vectors).shape (2, 3) It is also possible to apply the inverse rotation: >>> r = R.from_euler('zxy', [ ... [0, 0, 90], ... [45, 30, 60]], degrees=True) >>> vectors = [ ... [1, 2, 3], ... [1, 0, -1]] >>> r.apply(vectors, inverse=True) array([[-3. , 2. , 1. ], [ 1.09533535, -0.8365163 , 0.3169873 ]])Rotation.concatenate(cls, rotations) Concatenate a sequence of `Rotation` objects into a single object. This is useful if you want to, for example, take the mean of a set of rotations and need to pack them into a single object to do so. Parameters ---------- rotations : sequence of `Rotation` objects The rotations to concatenate. If a single `Rotation` object is passed in, a copy is returned. Returns ------- concatenated : `Rotation` instance The concatenated rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> r1 = R.from_rotvec([0, 0, 1]) >>> r2 = R.from_rotvec([0, 0, 2]) >>> rc = R.concatenate([r1, r2]) >>> rc.as_rotvec() array([[0., 0., 1.], [0., 0., 2.]]) >>> rc.mean().as_rotvec() array([0., 0., 1.5]) Concatenation of a split rotation recovers the original object. >>> rs = [r for r in rc] >>> R.concatenate(rs).as_rotvec() array([[0., 0., 1.], [0., 0., 2.]]) Note that it may be simpler to create the desired rotations by passing in a single list of the data during initialization, rather then by concatenating: >>> R.from_rotvec([[0, 0, 1], [0, 0, 2]]).as_rotvec() array([[0., 0., 1.], [0., 0., 2.]]) Notes ----- .. versionadded:: 1.8.0Rotation.as_mrp(self) Represent as Modified Rodrigues Parameters (MRPs). MRPs are a 3 dimensional vector co-directional to the axis of rotation and whose magnitude is equal to ``tan(theta / 4)``, where ``theta`` is the angle of rotation (in radians) [1]_. MRPs have a singularity at 360 degrees which can be avoided by ensuring the angle of rotation does not exceed 180 degrees, i.e. switching the direction of the rotation when it is past 180 degrees. This function will always return MRPs corresponding to a rotation of less than or equal to 180 degrees. Returns ------- mrps : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] Shuster, M. D. "A Survey of Attitude Representations", The Journal of Astronautical Sciences, Vol. 41, No.4, 1993, pp. 475-476 Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi]) >>> r.as_mrp() array([0. , 0. , 1. ]) >>> r.as_mrp().shape (3,) Represent a stack with a single rotation: >>> r = R.from_euler('xyz', [[180, 0, 0]], degrees=True) >>> r.as_mrp() array([[1. , 0. , 0. ]]) >>> r.as_mrp().shape (1, 3) Represent multiple rotations: >>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]]) >>> r.as_mrp() array([[0.41421356, 0. , 0. ], [0. , 0. , 0.41421356]]) >>> r.as_mrp().shape (2, 3) Notes ----- .. versionadded:: 1.6.0Rotation.as_davenport(self, axes, order, degrees=False) Represent as Davenport angles. Any orientation can be expressed as a composition of 3 elementary rotations. For both Euler angles and Davenport angles, consecutive axes must be are orthogonal (``axis2`` is orthogonal to both ``axis1`` and ``axis3``). For Euler angles, there is an additional relationship between ``axis1`` or ``axis3``, with two possibilities: - ``axis1`` and ``axis3`` are also orthogonal (asymmetric sequence) - ``axis1 == axis3`` (symmetric sequence) For Davenport angles, this last relationship is relaxed [1]_, and only the consecutive orthogonal axes requirement is maintained. A slightly modified version of the algorithm from [2]_ has been used to calculate Davenport angles for the rotation about a given sequence of axes. Davenport angles, just like Euler angles, suffer from the problem of gimbal lock [3]_, where the representation loses a degree of freedom and it is not possible to determine the first and third angles uniquely. In this case, a warning is raised, and the third angle is set to zero. Note however that the returned angles still represent the correct rotation. Parameters ---------- axes : array_like, shape (3,) or ([1 or 2 or 3], 3) Axis of rotation, if one dimensional. If two dimensional, describes the sequence of axes for rotations, where each axes[i, :] is the ith axis. If more than one axis is given, then the second axis must be orthogonal to both the first and third axes. order : string If it belongs to the set {'e', 'extrinsic'}, the sequence will be extrinsic. If if belongs to the set {'i', 'intrinsic'}, sequence will be treated as intrinsic. degrees : boolean, optional Returned angles are in degrees if this flag is True, else they are in radians. Default is False. Returns ------- angles : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used to initialize object. The returned angles are in the range: - First angle belongs to [-180, 180] degrees (both inclusive) - Third angle belongs to [-180, 180] degrees (both inclusive) - Second angle belongs to a set of size 180 degrees, given by: ``[-abs(lambda), 180 - abs(lambda)]``, where ``lambda`` is the angle between the first and third axes. References ---------- .. [1] Shuster, Malcolm & Markley, Landis. (2003). Generalization of the Euler Angles. Journal of the Astronautical Sciences. 51. 123-132. 10.1007/BF03546304. .. [2] Bernardes E, Viollet S (2022) Quaternion to Euler angles conversion: A direct, general and computationally efficient method. PLoS ONE 17(11): e0276302. 10.1371/journal.pone.0276302 .. [3] https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematics Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Davenport angles are a generalization of Euler angles, when we use the canonical basis axes: >>> ex = [1, 0, 0] >>> ey = [0, 1, 0] >>> ez = [0, 0, 1] Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True) array([90., 0., 0.]) >>> r.as_euler('zxy', degrees=True) array([90., 0., 0.]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True).shape (3,) Represent a stack of single rotation: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True) array([[90., 0., 0.]]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True).shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_rotvec([ ... [0, 0, 90], ... [45, 0, 0]], degrees=True) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True) array([[90., 0., 0.], [ 0., 45., 0.]]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True).shape (2, 3)Rotation.as_euler(self, seq, degrees=False) Represent as Euler angles. Any orientation can be expressed as a composition of 3 elementary rotations. Once the axis sequence has been chosen, Euler angles define the angle of rotation around each respective axis [1]_. The algorithm from [2]_ has been used to calculate Euler angles for the rotation about a given sequence of axes. Euler angles suffer from the problem of gimbal lock [3]_, where the representation loses a degree of freedom and it is not possible to determine the first and third angles uniquely. In this case, a warning is raised, and the third angle is set to zero. Note however that the returned angles still represent the correct rotation. Parameters ---------- seq : string, length 3 3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or {'x', 'y', 'z'} for extrinsic rotations [1]_. Adjacent axes cannot be the same. Extrinsic and intrinsic rotations cannot be mixed in one function call. degrees : boolean, optional Returned angles are in degrees if this flag is True, else they are in radians. Default is False. Returns ------- angles : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used to initialize object. The returned angles are in the range: - First angle belongs to [-180, 180] degrees (both inclusive) - Third angle belongs to [-180, 180] degrees (both inclusive) - Second angle belongs to: - [-90, 90] degrees if all axes are different (like xyz) - [0, 180] degrees if first and third axes are the same (like zxz) References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations .. [2] Bernardes E, Viollet S (2022) Quaternion to Euler angles conversion: A direct, general and computationally efficient method. PLoS ONE 17(11): e0276302. https://doi.org/10.1371/journal.pone.0276302 .. [3] https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematics Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_euler('zxy', degrees=True) array([90., 0., 0.]) >>> r.as_euler('zxy', degrees=True).shape (3,) Represent a stack of single rotation: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_euler('zxy', degrees=True) array([[90., 0., 0.]]) >>> r.as_euler('zxy', degrees=True).shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_rotvec([ ... [0, 0, np.pi/2], ... [0, -np.pi/3, 0], ... [np.pi/4, 0, 0]]) >>> r.as_euler('zxy', degrees=True) array([[ 90., 0., 0.], [ 0., 0., -60.], [ 0., 45., 0.]]) >>> r.as_euler('zxy', degrees=True).shape (3, 3)Rotation._as_euler_from_matrix(self, seq, degrees=False) Represent as Euler angles. Any orientation can be expressed as a composition of 3 elementary rotations. Once the axis sequence has been chosen, Euler angles define the angle of rotation around each respective axis [1]_. The algorithm from [2]_ has been used to calculate Euler angles for the rotation about a given sequence of axes. Euler angles suffer from the problem of gimbal lock [3]_, where the representation loses a degree of freedom and it is not possible to determine the first and third angles uniquely. In this case, a warning is raised, and the third angle is set to zero. Note however that the returned angles still represent the correct rotation. Parameters ---------- seq : string, length 3 3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or {'x', 'y', 'z'} for extrinsic rotations [1]_. Adjacent axes cannot be the same. Extrinsic and intrinsic rotations cannot be mixed in one function call. degrees : boolean, optional Returned angles are in degrees if this flag is True, else they are in radians. Default is False. Returns ------- angles : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used to initialize object. The returned angles are in the range: - First angle belongs to [-180, 180] degrees (both inclusive) - Third angle belongs to [-180, 180] degrees (both inclusive) - Second angle belongs to: - [-90, 90] degrees if all axes are different (like xyz) - [0, 180] degrees if first and third axes are the same (like zxz) References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations .. [2] Malcolm D. Shuster, F. Landis Markley, "General formula for extraction the Euler angles", Journal of guidance, control, and dynamics, vol. 29.1, pp. 215-221. 2006 .. [3] https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematicsRotation._compute_euler(self, seq, degrees, algorithm)Rotation.as_rotvec(self, degrees=False) Represent as rotation vectors. A rotation vector is a 3 dimensional vector which is co-directional to the axis of rotation and whose norm gives the angle of rotation [1]_. Parameters ---------- degrees : boolean, optional Returned magnitudes are in degrees if this flag is True, else they are in radians. Default is False. .. versionadded:: 1.7.0 Returns ------- rotvec : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_euler('z', 90, degrees=True) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_rotvec().shape (3,) Represent a rotation in degrees: >>> r = R.from_euler('YX', (-90, -90), degrees=True) >>> s = r.as_rotvec(degrees=True) >>> s array([-69.2820323, -69.2820323, -69.2820323]) >>> np.linalg.norm(s) 120.00000000000001 Represent a stack with a single rotation: >>> r = R.from_quat([[0, 0, 1, 1]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633]]) >>> r.as_rotvec().shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_quat([[0, 0, 1, 1], [1, 1, 0, 1]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633], [1.35102172, 1.35102172, 0. ]]) >>> r.as_rotvec().shape (2, 3)Rotation.as_matrix(self) Represent as rotation matrix. 3D rotations can be represented using rotation matrices, which are 3 x 3 real orthogonal matrices with determinant equal to +1 [1]_. Returns ------- matrix : ndarray, shape (3, 3) or (N, 3, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_matrix().shape (3, 3) Represent a stack with a single rotation: >>> r = R.from_quat([[1, 1, 0, 0]]) >>> r.as_matrix() array([[[ 0., 1., 0.], [ 1., 0., 0.], [ 0., 0., -1.]]]) >>> r.as_matrix().shape (1, 3, 3) Represent multiple rotations: >>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]]) >>> r.as_matrix() array([[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]], [[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]]) >>> r.as_matrix().shape (2, 3, 3) Notes ----- This function was called as_dcm before. .. versionadded:: 1.4.0Rotation.as_quat(self, canonical=False, *, scalar_first=False) Represent as quaternions. Rotations in 3 dimensions can be represented using unit norm quaternions [1]_. The 4 components of a quaternion are divided into a scalar part ``w`` and a vector part ``(x, y, z)`` and can be expressed from the angle ``theta`` and the axis ``n`` of a rotation as follows:: w = cos(theta / 2) x = sin(theta / 2) * n_x y = sin(theta / 2) * n_y z = sin(theta / 2) * n_z There are 2 conventions to order the components in a quaternion: - scalar-first order -- ``(w, x, y, z)`` - scalar-last order -- ``(x, y, z, w)`` The choice is controlled by `scalar_first` argument. By default, it is False and the scalar-last order is used. The mapping from quaternions to rotations is two-to-one, i.e. quaternions ``q`` and ``-q``, where ``-q`` simply reverses the sign of each component, represent the same spatial rotation. Parameters ---------- canonical : `bool`, default False Whether to map the redundant double cover of rotation space to a unique "canonical" single cover. If True, then the quaternion is chosen from {q, -q} such that the w term is positive. If the w term is 0, then the quaternion is chosen such that the first nonzero term of the x, y, and z terms is positive. scalar_first : bool, optional Whether the scalar component goes first or last. Default is False, i.e. the scalar-last order is used. Returns ------- quat : `numpy.ndarray`, shape (4,) or (N, 4) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np A rotation can be represented as a quaternion with either scalar-last (default) or scalar-first component order. This is shown for a single rotation: >>> r = R.from_matrix(np.eye(3)) >>> r.as_quat() array([0., 0., 0., 1.]) >>> r.as_quat(scalar_first=True) array([1., 0., 0., 0.]) When multiple rotations are stored in a single Rotation object, the result will be a 2-dimensional array: >>> r = R.from_rotvec([[np.pi, 0, 0], [0, 0, np.pi/2]]) >>> r.as_quat().shape (2, 4) Quaternions can be mapped from a redundant double cover of the rotation space to a canonical representation with a positive w term. >>> r = R.from_quat([0, 0, 0, -1]) >>> r.as_quat() array([0. , 0. , 0. , -1.]) >>> r.as_quat(canonical=True) array([0. , 0. , 0. , 1.])Rotation.from_mrp(cls, mrp) Initialize from Modified Rodrigues Parameters (MRPs). MRPs are a 3 dimensional vector co-directional to the axis of rotation and whose magnitude is equal to ``tan(theta / 4)``, where ``theta`` is the angle of rotation (in radians) [1]_. MRPs have a singularity at 360 degrees which can be avoided by ensuring the angle of rotation does not exceed 180 degrees, i.e. switching the direction of the rotation when it is past 180 degrees. Parameters ---------- mrp : array_like, shape (N, 3) or (3,) A single vector or a stack of vectors, where `mrp[i]` gives the ith set of MRPs. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input MRPs. References ---------- .. [1] Shuster, M. D. "A Survey of Attitude Representations", The Journal of Astronautical Sciences, Vol. 41, No.4, 1993, pp. 475-476 Notes ----- .. versionadded:: 1.6.0 Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Initialize a single rotation: >>> r = R.from_mrp([0, 0, 1]) >>> r.as_euler('xyz', degrees=True) array([0. , 0. , 180. ]) >>> r.as_euler('xyz').shape (3,) Initialize multiple rotations in one object: >>> r = R.from_mrp([ ... [0, 0, 1], ... [1, 0, 0]]) >>> r.as_euler('xyz', degrees=True) array([[0. , 0. , 180. ], [180.0 , 0. , 0. ]]) >>> r.as_euler('xyz').shape (2, 3) It is also possible to have a stack of a single rotation: >>> r = R.from_mrp([[0, 0, np.pi/2]]) >>> r.as_euler('xyz').shape (1, 3)Rotation.from_davenport(cls, axes, order, angles, degrees=False) Initialize from Davenport angles. Rotations in 3-D can be represented by a sequence of 3 rotations around a sequence of axes. The three rotations can either be in a global frame of reference (extrinsic) or in a body centred frame of reference (intrinsic), which is attached to, and moves with, the object under rotation [1]_. For both Euler angles and Davenport angles, consecutive axes must be are orthogonal (``axis2`` is orthogonal to both ``axis1`` and ``axis3``). For Euler angles, there is an additional relationship between ``axis1`` or ``axis3``, with two possibilities: - ``axis1`` and ``axis3`` are also orthogonal (asymmetric sequence) - ``axis1 == axis3`` (symmetric sequence) For Davenport angles, this last relationship is relaxed [2]_, and only the consecutive orthogonal axes requirement is maintained. Parameters ---------- axes : array_like, shape (3,) or ([1 or 2 or 3], 3) Axis of rotation, if one dimensional. If two dimensional, describes the sequence of axes for rotations, where each axes[i, :] is the ith axis. If more than one axis is given, then the second axis must be orthogonal to both the first and third axes. order : string If it is equal to 'e' or 'extrinsic', the sequence will be extrinsic. If it is equal to 'i' or 'intrinsic', sequence will be treated as intrinsic. angles : float or array_like, shape (N,) or (N, [1 or 2 or 3]) Euler angles specified in radians (`degrees` is False) or degrees (`degrees` is True). For a single axis, `angles` can be: - a single value - array_like with shape (N,), where each `angle[i]` corresponds to a single rotation - array_like with shape (N, 1), where each `angle[i, 0]` corresponds to a single rotation For 2 and 3 axes, `angles` can be: - array_like with shape (W,) where `W` is the number of rows of `axes`, which corresponds to a single rotation with `W` axes - array_like with shape (N, W) where each `angle[i]` corresponds to a sequence of Davenport angles describing a single rotation degrees : bool, optional If True, then the given angles are assumed to be in degrees. Default is False. Returns ------- rotation : `Rotation` instance Object containing the rotation represented by the sequence of rotations around given axes with given angles. References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations .. [2] Shuster, Malcolm & Markley, Landis. (2003). Generalization of the Euler Angles. Journal of the Astronautical Sciences. 51. 123-132. 10.1007/BF03546304. Examples -------- >>> from scipy.spatial.transform import Rotation as R Davenport angles are a generalization of Euler angles, when we use the canonical basis axes: >>> ex = [1, 0, 0] >>> ey = [0, 1, 0] >>> ez = [0, 0, 1] Initialize a single rotation with a given axis sequence: >>> axes = [ez, ey, ex] >>> r = R.from_davenport(axes, 'extrinsic', [90, 0, 0], degrees=True) >>> r.as_quat().shape (4,) It is equivalent to Euler angles in this case: >>> r.as_euler('zyx', degrees=True) array([90., 0., -0.]) Initialize multiple rotations in one object: >>> r = R.from_davenport(axes, 'extrinsic', [[90, 45, 30], [35, 45, 90]], degrees=True) >>> r.as_quat().shape (2, 4) Using only one or two axes is also possible: >>> r = R.from_davenport([ez, ex], 'extrinsic', [[90, 45], [35, 45]], degrees=True) >>> r.as_quat().shape (2, 4) Non-canonical axes are possible, and they do not need to be normalized, as long as consecutive axes are orthogonal: >>> e1 = [2, 0, 0] >>> e2 = [0, 1, 0] >>> e3 = [1, 0, 1] >>> axes = [e1, e2, e3] >>> r = R.from_davenport(axes, 'extrinsic', [90, 45, 30], degrees=True) >>> r.as_quat() [ 0.701057, 0.430459, -0.092296, 0.560986]Rotation.from_euler(cls, seq, angles, degrees=False) Initialize from Euler angles. Rotations in 3-D can be represented by a sequence of 3 rotations around a sequence of axes. In theory, any three axes spanning the 3-D Euclidean space are enough. In practice, the axes of rotation are chosen to be the basis vectors. The three rotations can either be in a global frame of reference (extrinsic) or in a body centred frame of reference (intrinsic), which is attached to, and moves with, the object under rotation [1]_. Parameters ---------- seq : string Specifies sequence of axes for rotations. Up to 3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or {'x', 'y', 'z'} for extrinsic rotations. Extrinsic and intrinsic rotations cannot be mixed in one function call. angles : float or array_like, shape (N,) or (N, [1 or 2 or 3]) Euler angles specified in radians (`degrees` is False) or degrees (`degrees` is True). For a single character `seq`, `angles` can be: - a single value - array_like with shape (N,), where each `angle[i]` corresponds to a single rotation - array_like with shape (N, 1), where each `angle[i, 0]` corresponds to a single rotation For 2- and 3-character wide `seq`, `angles` can be: - array_like with shape (W,) where `W` is the width of `seq`, which corresponds to a single rotation with `W` axes - array_like with shape (N, W) where each `angle[i]` corresponds to a sequence of Euler angles describing a single rotation degrees : bool, optional If True, then the given angles are assumed to be in degrees. Default is False. Returns ------- rotation : `Rotation` instance Object containing the rotation represented by the sequence of rotations around given axes with given angles. References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations Examples -------- >>> from scipy.spatial.transform import Rotation as R Initialize a single rotation along a single axis: >>> r = R.from_euler('x', 90, degrees=True) >>> r.as_quat().shape (4,) Initialize a single rotation with a given axis sequence: >>> r = R.from_euler('zyx', [90, 45, 30], degrees=True) >>> r.as_quat().shape (4,) Initialize a stack with a single rotation around a single axis: >>> r = R.from_euler('x', [90], degrees=True) >>> r.as_quat().shape (1, 4) Initialize a stack with a single rotation with an axis sequence: >>> r = R.from_euler('zyx', [[90, 45, 30]], degrees=True) >>> r.as_quat().shape (1, 4) Initialize multiple elementary rotations in one object: >>> r = R.from_euler('x', [90, 45, 30], degrees=True) >>> r.as_quat().shape (3, 4) Initialize multiple rotations in one object: >>> r = R.from_euler('zyx', [[90, 45, 30], [35, 45, 90]], degrees=True) >>> r.as_quat().shape (2, 4)Rotation.from_rotvec(cls, rotvec, degrees=False) Initialize from rotation vectors. A rotation vector is a 3 dimensional vector which is co-directional to the axis of rotation and whose norm gives the angle of rotation [1]_. Parameters ---------- rotvec : array_like, shape (N, 3) or (3,) A single vector or a stack of vectors, where `rot_vec[i]` gives the ith rotation vector. degrees : bool, optional If True, then the given magnitudes are assumed to be in degrees. Default is False. .. versionadded:: 1.7.0 Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input rotation vectors. References ---------- .. [1] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Initialize a single rotation: >>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1])) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_rotvec().shape (3,) Initialize a rotation in degrees, and view it in degrees: >>> r = R.from_rotvec(45 * np.array([0, 1, 0]), degrees=True) >>> r.as_rotvec(degrees=True) array([ 0., 45., 0.]) Initialize multiple rotations in one object: >>> r = R.from_rotvec([ ... [0, 0, np.pi/2], ... [np.pi/2, 0, 0]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633], [1.57079633, 0. , 0. ]]) >>> r.as_rotvec().shape (2, 3) It is also possible to have a stack of a single rotation: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_rotvec().shape (1, 3)Rotation.from_matrix(cls, matrix) Initialize from rotation matrix. Rotations in 3 dimensions can be represented with 3 x 3 orthogonal matrices [1]_. If the input is not orthogonal, an approximation is created by orthogonalizing the input matrix using the method described in [2]_, and then converting the orthogonal rotation matrices to quaternions using the algorithm described in [3]_. Matrices must be right-handed. Parameters ---------- matrix : array_like, shape (N, 3, 3) or (3, 3) A single matrix or a stack of matrices, where ``matrix[i]`` is the i-th matrix. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by the rotation matrices. References ---------- .. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions .. [2] https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem .. [3] F. Landis Markley, "Unit Quaternion from Rotation Matrix", Journal of guidance, control, and dynamics vol. 31.2, pp. 440-442, 2008. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Initialize a single rotation: >>> r = R.from_matrix([ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]) >>> r.single True >>> r.as_matrix().shape (3, 3) Initialize multiple rotations in a single object: >>> r = R.from_matrix([ ... [ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1], ... ], ... [ ... [1, 0, 0], ... [0, 0, -1], ... [0, 1, 0], ... ]]) >>> r.as_matrix().shape (2, 3, 3) >>> r.single False >>> len(r) 2 If input matrices are not special orthogonal (orthogonal with determinant equal to +1), then a special orthogonal estimate is stored: >>> a = np.array([ ... [0, -0.5, 0], ... [0.5, 0, 0], ... [0, 0, 0.5]]) >>> np.linalg.det(a) 0.125 >>> r = R.from_matrix(a) >>> matrix = r.as_matrix() >>> matrix array([[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]) >>> np.linalg.det(matrix) 1.0 It is also possible to have a stack containing a single rotation: >>> r = R.from_matrix([[ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]]) >>> r.as_matrix() array([[[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]]) >>> r.as_matrix().shape (1, 3, 3) Notes ----- This function was called from_dcm before. .. versionadded:: 1.4.0Rotation.from_quat(cls, quat, *, scalar_first=False) Initialize from quaternions. Rotations in 3 dimensions can be represented using unit norm quaternions [1]_. The 4 components of a quaternion are divided into a scalar part ``w`` and a vector part ``(x, y, z)`` and can be expressed from the angle ``theta`` and the axis ``n`` of a rotation as follows:: w = cos(theta / 2) x = sin(theta / 2) * n_x y = sin(theta / 2) * n_y z = sin(theta / 2) * n_z There are 2 conventions to order the components in a quaternion: - scalar-first order -- ``(w, x, y, z)`` - scalar-last order -- ``(x, y, z, w)`` The choice is controlled by `scalar_first` argument. By default, it is False and the scalar-last order is assumed. Advanced users may be interested in the "double cover" of 3D space by the quaternion representation [2]_. As of version 1.11.0, the following subset (and only this subset) of operations on a `Rotation` ``r`` corresponding to a quaternion ``q`` are guaranteed to preserve the double cover property: ``r = Rotation.from_quat(q)``, ``r.as_quat(canonical=False)``, ``r.inv()``, and composition using the ``*`` operator such as ``r*r``. Parameters ---------- quat : array_like, shape (N, 4) or (4,) Each row is a (possibly non-unit norm) quaternion representing an active rotation. Each quaternion will be normalized to unit norm. scalar_first : bool, optional Whether the scalar component goes first or last. Default is False, i.e. the scalar-last order is assumed. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input quaternions. References ---------- .. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation .. [2] Hanson, Andrew J. "Visualizing quaternions." Morgan Kaufmann Publishers Inc., San Francisco, CA. 2006. Examples -------- >>> from scipy.spatial.transform import Rotation as R A rotation can be initialzied from a quaternion with the scalar-last (default) or scalar-first component order as shown below: >>> r = R.from_quat([0, 0, 0, 1]) >>> r.as_matrix() array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> r = R.from_quat([1, 0, 0, 0], scalar_first=True) >>> r.as_matrix() array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) It is possible to initialize multiple rotations in a single object by passing a 2-dimensional array: >>> r = R.from_quat([ ... [1, 0, 0, 0], ... [0, 0, 0, 1] ... ]) >>> r.as_quat() array([[1., 0., 0., 0.], [0., 0., 0., 1.]]) >>> r.as_quat().shape (2, 4) It is also possible to have a stack of a single rotation: >>> r = R.from_quat([[0, 0, 0, 1]]) >>> r.as_quat() array([[0., 0., 0., 1.]]) >>> r.as_quat().shape (1, 4) Quaternions are normalized before initialization. >>> r = R.from_quat([0, 0, 1, 1]) >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678])Rotation.__len__(self) Number of rotations contained in this object. Multiple rotations can be stored in a single instance. Returns ------- length : int Number of rotations stored in object. Raises ------ TypeError if the instance was created as a single rotation.Composition of quaternions.scipy/spatial/transform/_rotation.pyxExpected `weights` to have number of values equal to number of input vectors, got {} values and {} vectors.scipy.spatial.transform._rotationnumpy._core.umath failed to importnumpy._core.multiarray failed to importinput must contain Rotation objects onlyatol must be set to use the degrees flag, defaulting to 1e-8 radians.Times must be in strictly increasing order.Spherical Linear Interpolation of Rotations. The interpolation between consecutive rotations is performed as a rotation around a fixed axis with a constant angular velocity [1]_. This ensures that the interpolated rotations follow the shortest path between initial and final orientations. Parameters ---------- times : array_like, shape (N,) Times of the known rotations. At least 2 times must be specified. rotations : `Rotation` instance Rotations to perform the interpolation between. Must contain N rotations. Methods ------- __call__ See Also -------- Rotation Notes ----- .. versionadded:: 1.2.0 References ---------- .. [1] https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> from scipy.spatial.transform import Slerp Setup the fixed keyframe rotations and times: >>> key_rots = R.random(5, random_state=2342345) >>> key_times = [0, 1, 2, 3, 4] Create the interpolator object: >>> slerp = Slerp(key_times, key_rots) Interpolate the rotations at the given times: >>> times = [0, 0.5, 0.25, 1, 1.5, 2, 2.75, 3, 3.25, 3.60, 4] >>> interp_rots = slerp(times) The keyframe rotations expressed as Euler angles: >>> key_rots.as_euler('xyz', degrees=True) array([[ 14.31443779, -27.50095894, -3.7275787 ], [ -1.79924227, -24.69421529, 164.57701743], [146.15020772, 43.22849451, -31.34891088], [ 46.39959442, 11.62126073, -45.99719267], [-88.94647804, -49.64400082, -65.80546984]]) The interpolated rotations expressed as Euler angles. These agree with the keyframe rotations at both endpoints of the range of keyframe times. >>> interp_rots.as_euler('xyz', degrees=True) array([[ 14.31443779, -27.50095894, -3.7275787 ], [ 4.74588574, -32.44683966, 81.25139984], [ 10.71094749, -31.56690154, 38.06896408], [ -1.79924227, -24.69421529, 164.57701743], [ 11.72796022, 51.64207311, -171.7374683 ], [ 146.15020772, 43.22849451, -31.34891088], [ 68.10921869, 20.67625074, -48.74886034], [ 46.39959442, 11.62126073, -45.99719267], [ 12.35552615, 4.21525086, -64.89288124], [ -30.08117143, -19.90769513, -78.98121326], [ -88.94647804, -49.64400082, -65.80546984]]) Single rotation is not subscriptable.Rotation.from_davenport (line 1437)Rotation.align_vectors (line 3304)Represent as quaternions. Rotations in 3 dimensions can be represented using unit norm quaternions [1]_. The 4 components of a quaternion are divided into a scalar part ``w`` and a vector part ``(x, y, z)`` and can be expressed from the angle ``theta`` and the axis ``n`` of a rotation as follows:: w = cos(theta / 2) x = sin(theta / 2) * n_x y = sin(theta / 2) * n_y z = sin(theta / 2) * n_z There are 2 conventions to order the components in a quaternion: - scalar-first order -- ``(w, x, y, z)`` - scalar-last order -- ``(x, y, z, w)`` The choice is controlled by `scalar_first` argument. By default, it is False and the scalar-last order is used. The mapping from quaternions to rotations is two-to-one, i.e. quaternions ``q`` and ``-q``, where ``-q`` simply reverses the sign of each component, represent the same spatial rotation. Parameters ---------- canonical : `bool`, default False Whether to map the redundant double cover of rotation space to a unique "canonical" single cover. If True, then the quaternion is chosen from {q, -q} such that the w term is positive. If the w term is 0, then the quaternion is chosen such that the first nonzero term of the x, y, and z terms is positive. scalar_first : bool, optional Whether the scalar component goes first or last. Default is False, i.e. the scalar-last order is used. Returns ------- quat : `numpy.ndarray`, shape (4,) or (N, 4) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np A rotation can be represented as a quaternion with either scalar-last (default) or scalar-first component order. This is shown for a single rotation: >>> r = R.from_matrix(np.eye(3)) >>> r.as_quat() array([0., 0., 0., 1.]) >>> r.as_quat(scalar_first=True) array([1., 0., 0., 0.]) When multiple rotations are stored in a single Rotation object, the result will be a 2-dimensional array: >>> r = R.from_rotvec([[np.pi, 0, 0], [0, 0, np.pi/2]]) >>> r.as_quat().shape (2, 4) Quaternions can be mapped from a redundant double cover of the rotation space to a canonical representation with a positive w term. >>> r = R.from_quat([0, 0, 0, -1]) >>> r.as_quat() array([0. , 0. , 0. , -1.]) >>> r.as_quat(canonical=True) array([0. , 0. , 0. , 1.]) Represent as Euler angles. Any orientation can be expressed as a composition of 3 elementary rotations. Once the axis sequence has been chosen, Euler angles define the angle of rotation around each respective axis [1]_. The algorithm from [2]_ has been used to calculate Euler angles for the rotation about a given sequence of axes. Euler angles suffer from the problem of gimbal lock [3]_, where the representation loses a degree of freedom and it is not possible to determine the first and third angles uniquely. In this case, a warning is raised, and the third angle is set to zero. Note however that the returned angles still represent the correct rotation. Parameters ---------- seq : string, length 3 3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or {'x', 'y', 'z'} for extrinsic rotations [1]_. Adjacent axes cannot be the same. Extrinsic and intrinsic rotations cannot be mixed in one function call. degrees : boolean, optional Returned angles are in degrees if this flag is True, else they are in radians. Default is False. Returns ------- angles : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used to initialize object. The returned angles are in the range: - First angle belongs to [-180, 180] degrees (both inclusive) - Third angle belongs to [-180, 180] degrees (both inclusive) - Second angle belongs to: - [-90, 90] degrees if all axes are different (like xyz) - [0, 180] degrees if first and third axes are the same (like zxz) References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations .. [2] Bernardes E, Viollet S (2022) Quaternion to Euler angles conversion: A direct, general and computationally efficient method. PLoS ONE 17(11): e0276302. https://doi.org/10.1371/journal.pone.0276302 .. [3] https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematics Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_euler('zxy', degrees=True) array([90., 0., 0.]) >>> r.as_euler('zxy', degrees=True).shape (3,) Represent a stack of single rotation: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_euler('zxy', degrees=True) array([[90., 0., 0.]]) >>> r.as_euler('zxy', degrees=True).shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_rotvec([ ... [0, 0, np.pi/2], ... [0, -np.pi/3, 0], ... [np.pi/4, 0, 0]]) >>> r.as_euler('zxy', degrees=True) array([[ 90., 0., 0.], [ 0., 0., -60.], [ 0., 45., 0.]]) >>> r.as_euler('zxy', degrees=True).shape (3, 3) Represent as Davenport angles. Any orientation can be expressed as a composition of 3 elementary rotations. For both Euler angles and Davenport angles, consecutive axes must be are orthogonal (``axis2`` is orthogonal to both ``axis1`` and ``axis3``). For Euler angles, there is an additional relationship between ``axis1`` or ``axis3``, with two possibilities: - ``axis1`` and ``axis3`` are also orthogonal (asymmetric sequence) - ``axis1 == axis3`` (symmetric sequence) For Davenport angles, this last relationship is relaxed [1]_, and only the consecutive orthogonal axes requirement is maintained. A slightly modified version of the algorithm from [2]_ has been used to calculate Davenport angles for the rotation about a given sequence of axes. Davenport angles, just like Euler angles, suffer from the problem of gimbal lock [3]_, where the representation loses a degree of freedom and it is not possible to determine the first and third angles uniquely. In this case, a warning is raised, and the third angle is set to zero. Note however that the returned angles still represent the correct rotation. Parameters ---------- axes : array_like, shape (3,) or ([1 or 2 or 3], 3) Axis of rotation, if one dimensional. If two dimensional, describes the sequence of axes for rotations, where each axes[i, :] is the ith axis. If more than one axis is given, then the second axis must be orthogonal to both the first and third axes. order : string If it belongs to the set {'e', 'extrinsic'}, the sequence will be extrinsic. If if belongs to the set {'i', 'intrinsic'}, sequence will be treated as intrinsic. degrees : boolean, optional Returned angles are in degrees if this flag is True, else they are in radians. Default is False. Returns ------- angles : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used to initialize object. The returned angles are in the range: - First angle belongs to [-180, 180] degrees (both inclusive) - Third angle belongs to [-180, 180] degrees (both inclusive) - Second angle belongs to a set of size 180 degrees, given by: ``[-abs(lambda), 180 - abs(lambda)]``, where ``lambda`` is the angle between the first and third axes. References ---------- .. [1] Shuster, Malcolm & Markley, Landis. (2003). Generalization of the Euler Angles. Journal of the Astronautical Sciences. 51. 123-132. 10.1007/BF03546304. .. [2] Bernardes E, Viollet S (2022) Quaternion to Euler angles conversion: A direct, general and computationally efficient method. PLoS ONE 17(11): e0276302. 10.1371/journal.pone.0276302 .. [3] https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematics Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Davenport angles are a generalization of Euler angles, when we use the canonical basis axes: >>> ex = [1, 0, 0] >>> ey = [0, 1, 0] >>> ez = [0, 0, 1] Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True) array([90., 0., 0.]) >>> r.as_euler('zxy', degrees=True) array([90., 0., 0.]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True).shape (3,) Represent a stack of single rotation: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True) array([[90., 0., 0.]]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True).shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_rotvec([ ... [0, 0, 90], ... [45, 0, 0]], degrees=True) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True) array([[90., 0., 0.], [ 0., 45., 0.]]) >>> r.as_davenport([ez, ex, ey], 'extrinsic', degrees=True).shape (2, 3) Optimal rotation is not uniquely or poorly defined for the given sets of vectors.Only one infinite weight is allowedNote that Cython is deliberately stricter than PEP-484 and rejects subclasses of builtin types. If you need to pass subclasses then set the 'annotation_typing' directive to False.Non-positive determinant (left-handed or null coordinate frame) in rotation matrix Mean of an empty rotation set is undefined.Invert this rotation. Composition of a rotation with its inverse results in an identity transformation. Returns ------- inverse : `Rotation` instance Object containing inverse of the rotations in the current instance. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Inverting a single rotation: >>> p = R.from_euler('z', 45, degrees=True) >>> q = p.inv() >>> q.as_euler('zyx', degrees=True) array([-45., 0., 0.]) Inverting multiple rotations: >>> p = R.from_rotvec([[0, 0, np.pi/3], [-np.pi/4, 0, 0]]) >>> q = p.inv() >>> q.as_rotvec() array([[-0. , -0. , -1.04719755], [ 0.78539816, -0. , -0. ]]) Interpolation times must be within the range [{}, {}], both inclusive.Initialize from rotation vectors. A rotation vector is a 3 dimensional vector which is co-directional to the axis of rotation and whose norm gives the angle of rotation [1]_. Parameters ---------- rotvec : array_like, shape (N, 3) or (3,) A single vector or a stack of vectors, where `rot_vec[i]` gives the ith rotation vector. degrees : bool, optional If True, then the given magnitudes are assumed to be in degrees. Default is False. .. versionadded:: 1.7.0 Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input rotation vectors. References ---------- .. [1] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Initialize a single rotation: >>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1])) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_rotvec().shape (3,) Initialize a rotation in degrees, and view it in degrees: >>> r = R.from_rotvec(45 * np.array([0, 1, 0]), degrees=True) >>> r.as_rotvec(degrees=True) array([ 0., 45., 0.]) Initialize multiple rotations in one object: >>> r = R.from_rotvec([ ... [0, 0, np.pi/2], ... [np.pi/2, 0, 0]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633], [1.57079633, 0. , 0. ]]) >>> r.as_rotvec().shape (2, 3) It is also possible to have a stack of a single rotation: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_rotvec().shape (1, 3) Initialize from quaternions. Rotations in 3 dimensions can be represented using unit norm quaternions [1]_. The 4 components of a quaternion are divided into a scalar part ``w`` and a vector part ``(x, y, z)`` and can be expressed from the angle ``theta`` and the axis ``n`` of a rotation as follows:: w = cos(theta / 2) x = sin(theta / 2) * n_x y = sin(theta / 2) * n_y z = sin(theta / 2) * n_z There are 2 conventions to order the components in a quaternion: - scalar-first order -- ``(w, x, y, z)`` - scalar-last order -- ``(x, y, z, w)`` The choice is controlled by `scalar_first` argument. By default, it is False and the scalar-last order is assumed. Advanced users may be interested in the "double cover" of 3D space by the quaternion representation [2]_. As of version 1.11.0, the following subset (and only this subset) of operations on a `Rotation` ``r`` corresponding to a quaternion ``q`` are guaranteed to preserve the double cover property: ``r = Rotation.from_quat(q)``, ``r.as_quat(canonical=False)``, ``r.inv()``, and composition using the ``*`` operator such as ``r*r``. Parameters ---------- quat : array_like, shape (N, 4) or (4,) Each row is a (possibly non-unit norm) quaternion representing an active rotation. Each quaternion will be normalized to unit norm. scalar_first : bool, optional Whether the scalar component goes first or last. Default is False, i.e. the scalar-last order is assumed. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input quaternions. References ---------- .. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation .. [2] Hanson, Andrew J. "Visualizing quaternions." Morgan Kaufmann Publishers Inc., San Francisco, CA. 2006. Examples -------- >>> from scipy.spatial.transform import Rotation as R A rotation can be initialzied from a quaternion with the scalar-last (default) or scalar-first component order as shown below: >>> r = R.from_quat([0, 0, 0, 1]) >>> r.as_matrix() array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> r = R.from_quat([1, 0, 0, 0], scalar_first=True) >>> r.as_matrix() array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) It is possible to initialize multiple rotations in a single object by passing a 2-dimensional array: >>> r = R.from_quat([ ... [1, 0, 0, 0], ... [0, 0, 0, 1] ... ]) >>> r.as_quat() array([[1., 0., 0., 0.], [0., 0., 0., 1.]]) >>> r.as_quat().shape (2, 4) It is also possible to have a stack of a single rotation: >>> r = R.from_quat([[0, 0, 0, 1]]) >>> r.as_quat() array([[0., 0., 0., 1.]]) >>> r.as_quat().shape (1, 4) Quaternions are normalized before initialization. >>> r = R.from_quat([0, 0, 1, 1]) >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) Initialize from Modified Rodrigues Parameters (MRPs). MRPs are a 3 dimensional vector co-directional to the axis of rotation and whose magnitude is equal to ``tan(theta / 4)``, where ``theta`` is the angle of rotation (in radians) [1]_. MRPs have a singularity at 360 degrees which can be avoided by ensuring the angle of rotation does not exceed 180 degrees, i.e. switching the direction of the rotation when it is past 180 degrees. Parameters ---------- mrp : array_like, shape (N, 3) or (3,) A single vector or a stack of vectors, where `mrp[i]` gives the ith set of MRPs. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input MRPs. References ---------- .. [1] Shuster, M. D. "A Survey of Attitude Representations", The Journal of Astronautical Sciences, Vol. 41, No.4, 1993, pp. 475-476 Notes ----- .. versionadded:: 1.6.0 Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Initialize a single rotation: >>> r = R.from_mrp([0, 0, 1]) >>> r.as_euler('xyz', degrees=True) array([0. , 0. , 180. ]) >>> r.as_euler('xyz').shape (3,) Initialize multiple rotations in one object: >>> r = R.from_mrp([ ... [0, 0, 1], ... [1, 0, 0]]) >>> r.as_euler('xyz', degrees=True) array([[0. , 0. , 180. ], [180.0 , 0. , 0. ]]) >>> r.as_euler('xyz').shape (2, 3) It is also possible to have a stack of a single rotation: >>> r = R.from_mrp([[0, 0, np.pi/2]]) >>> r.as_euler('xyz').shape (1, 3) Initialize from Euler angles. Rotations in 3-D can be represented by a sequence of 3 rotations around a sequence of axes. In theory, any three axes spanning the 3-D Euclidean space are enough. In practice, the axes of rotation are chosen to be the basis vectors. The three rotations can either be in a global frame of reference (extrinsic) or in a body centred frame of reference (intrinsic), which is attached to, and moves with, the object under rotation [1]_. Parameters ---------- seq : string Specifies sequence of axes for rotations. Up to 3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or {'x', 'y', 'z'} for extrinsic rotations. Extrinsic and intrinsic rotations cannot be mixed in one function call. angles : float or array_like, shape (N,) or (N, [1 or 2 or 3]) Euler angles specified in radians (`degrees` is False) or degrees (`degrees` is True). For a single character `seq`, `angles` can be: - a single value - array_like with shape (N,), where each `angle[i]` corresponds to a single rotation - array_like with shape (N, 1), where each `angle[i, 0]` corresponds to a single rotation For 2- and 3-character wide `seq`, `angles` can be: - array_like with shape (W,) where `W` is the width of `seq`, which corresponds to a single rotation with `W` axes - array_like with shape (N, W) where each `angle[i]` corresponds to a sequence of Euler angles describing a single rotation degrees : bool, optional If True, then the given angles are assumed to be in degrees. Default is False. Returns ------- rotation : `Rotation` instance Object containing the rotation represented by the sequence of rotations around given axes with given angles. References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations Examples -------- >>> from scipy.spatial.transform import Rotation as R Initialize a single rotation along a single axis: >>> r = R.from_euler('x', 90, degrees=True) >>> r.as_quat().shape (4,) Initialize a single rotation with a given axis sequence: >>> r = R.from_euler('zyx', [90, 45, 30], degrees=True) >>> r.as_quat().shape (4,) Initialize a stack with a single rotation around a single axis: >>> r = R.from_euler('x', [90], degrees=True) >>> r.as_quat().shape (1, 4) Initialize a stack with a single rotation with an axis sequence: >>> r = R.from_euler('zyx', [[90, 45, 30]], degrees=True) >>> r.as_quat().shape (1, 4) Initialize multiple elementary rotations in one object: >>> r = R.from_euler('x', [90, 45, 30], degrees=True) >>> r.as_quat().shape (3, 4) Initialize multiple rotations in one object: >>> r = R.from_euler('zyx', [[90, 45, 30], [35, 45, 90]], degrees=True) >>> r.as_quat().shape (2, 4) Initialize from Davenport angles. Rotations in 3-D can be represented by a sequence of 3 rotations around a sequence of axes. The three rotations can either be in a global frame of reference (extrinsic) or in a body centred frame of reference (intrinsic), which is attached to, and moves with, the object under rotation [1]_. For both Euler angles and Davenport angles, consecutive axes must be are orthogonal (``axis2`` is orthogonal to both ``axis1`` and ``axis3``). For Euler angles, there is an additional relationship between ``axis1`` or ``axis3``, with two possibilities: - ``axis1`` and ``axis3`` are also orthogonal (asymmetric sequence) - ``axis1 == axis3`` (symmetric sequence) For Davenport angles, this last relationship is relaxed [2]_, and only the consecutive orthogonal axes requirement is maintained. Parameters ---------- axes : array_like, shape (3,) or ([1 or 2 or 3], 3) Axis of rotation, if one dimensional. If two dimensional, describes the sequence of axes for rotations, where each axes[i, :] is the ith axis. If more than one axis is given, then the second axis must be orthogonal to both the first and third axes. order : string If it is equal to 'e' or 'extrinsic', the sequence will be extrinsic. If it is equal to 'i' or 'intrinsic', sequence will be treated as intrinsic. angles : float or array_like, shape (N,) or (N, [1 or 2 or 3]) Euler angles specified in radians (`degrees` is False) or degrees (`degrees` is True). For a single axis, `angles` can be: - a single value - array_like with shape (N,), where each `angle[i]` corresponds to a single rotation - array_like with shape (N, 1), where each `angle[i, 0]` corresponds to a single rotation For 2 and 3 axes, `angles` can be: - array_like with shape (W,) where `W` is the number of rows of `axes`, which corresponds to a single rotation with `W` axes - array_like with shape (N, W) where each `angle[i]` corresponds to a sequence of Davenport angles describing a single rotation degrees : bool, optional If True, then the given angles are assumed to be in degrees. Default is False. Returns ------- rotation : `Rotation` instance Object containing the rotation represented by the sequence of rotations around given axes with given angles. References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations .. [2] Shuster, Malcolm & Markley, Landis. (2003). Generalization of the Euler Angles. Journal of the Astronautical Sciences. 51. 123-132. 10.1007/BF03546304. Examples -------- >>> from scipy.spatial.transform import Rotation as R Davenport angles are a generalization of Euler angles, when we use the canonical basis axes: >>> ex = [1, 0, 0] >>> ey = [0, 1, 0] >>> ez = [0, 0, 1] Initialize a single rotation with a given axis sequence: >>> axes = [ez, ey, ex] >>> r = R.from_davenport(axes, 'extrinsic', [90, 0, 0], degrees=True) >>> r.as_quat().shape (4,) It is equivalent to Euler angles in this case: >>> r.as_euler('zyx', degrees=True) array([90., 0., -0.]) Initialize multiple rotations in one object: >>> r = R.from_davenport(axes, 'extrinsic', [[90, 45, 30], [35, 45, 90]], degrees=True) >>> r.as_quat().shape (2, 4) Using only one or two axes is also possible: >>> r = R.from_davenport([ez, ex], 'extrinsic', [[90, 45], [35, 45]], degrees=True) >>> r.as_quat().shape (2, 4) Non-canonical axes are possible, and they do not need to be normalized, as long as consecutive axes are orthogonal: >>> e1 = [2, 0, 0] >>> e2 = [0, 1, 0] >>> e3 = [1, 0, 1] >>> axes = [e1, e2, e3] >>> r = R.from_davenport(axes, 'extrinsic', [90, 45, 30], degrees=True) >>> r.as_quat() [ 0.701057, 0.430459, -0.092296, 0.560986] Incompatible checksums (0x%x vs (0x0fbb6f7, 0x22c69a8, 0x14ed78b) = (_quat, _single))Gimbal lock detected. Setting third angle to zero since it is not possible to uniquely determine all angles.Get the mean of the rotations. The mean used is the chordal L2 mean (also called the projected or induced arithmetic mean) [1]_. If ``A`` is a set of rotation matrices, then the mean ``M`` is the rotation matrix that minimizes the following loss function: .. math:: L(M) = \sum_{i = 1}^{n} w_i \lVert \mathbf{A}_i - \mathbf{M} \rVert^2 , where :math:`w_i`'s are the `weights` corresponding to each matrix. Parameters ---------- weights : array_like shape (N,), optional Weights describing the relative importance of the rotations. If None (default), then all values in `weights` are assumed to be equal. Returns ------- mean : `Rotation` instance Object containing the mean of the rotations in the current instance. References ---------- .. [1] Hartley, Richard, et al., "Rotation Averaging", International Journal of Computer Vision 103, 2013, pp. 267-305. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> r = R.from_euler('zyx', [[0, 0, 0], ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1]], degrees=True) >>> r.mean().as_euler('zyx', degrees=True) array([0.24945696, 0.25054542, 0.24945696]) Get the magnitude(s) of the rotation(s). Returns ------- magnitude : ndarray or float Angle(s) in radians, float if object contains a single rotation and ndarray if object contains multiple rotations. The magnitude will always be in the range [0, pi]. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np >>> r = R.from_quat(np.eye(4)) >>> r.as_quat() array([[ 1., 0., 0., 0.], [ 0., 1., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.]]) >>> r.magnitude() array([3.14159265, 3.14159265, 3.14159265, 0. ]) Magnitude of a single rotation: >>> r[0].magnitude() 3.141592653589793 Generate uniformly distributed rotations. Parameters ---------- num : int or None, optional Number of random rotations to generate. If None (default), then a single rotation is generated. rng : `numpy.random.Generator`, optional Pseudorandom number generator state. When `rng` is None, a new `numpy.random.Generator` is created using entropy from the operating system. Types other than `numpy.random.Generator` are passed to `numpy.random.default_rng` to instantiate a `Generator`. Returns ------- random_rotation : `Rotation` instance Contains a single rotation if `num` is None. Otherwise contains a stack of `num` rotations. Notes ----- This function is optimized for efficiently sampling random rotation matrices in three dimensions. For generating random rotation matrices in higher dimensions, see `scipy.stats.special_ortho_group`. Examples -------- >>> from scipy.spatial.transform import Rotation as R Sample a single rotation: >>> R.random().as_euler('zxy', degrees=True) array([-110.5976185 , 55.32758512, 76.3289269 ]) # random Sample a stack of rotations: >>> R.random(5).as_euler('zxy', degrees=True) array([[-110.5976185 , 55.32758512, 76.3289269 ], # random [ -91.59132005, -14.3629884 , -93.91933182], [ 25.23835501, 45.02035145, -121.67867086], [ -51.51414184, -15.29022692, -172.46870023], [ -81.63376847, -27.39521579, 2.60408416]]) See Also -------- scipy.stats.special_ortho_group Found zero norm quaternions in `quat`.Extract rotation(s) at given index(es) from object. Create a new `Rotation` instance containing a subset of rotations stored in this object. Parameters ---------- indexer : index, slice, or index array Specifies which rotation(s) to extract. A single indexer must be specified, i.e. as if indexing a 1 dimensional array or list. Returns ------- rotation : `Rotation` instance Contains - a single rotation, if `indexer` is a single index - a stack of rotation(s), if `indexer` is a slice, or and index array. Raises ------ TypeError if the instance was created as a single rotation. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> rs = R.from_quat([ ... [1, 1, 0, 0], ... [0, 1, 0, 1], ... [1, 1, -1, 0]]) # These quats are normalized >>> rs.as_quat() array([[ 0.70710678, 0.70710678, 0. , 0. ], [ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]]) Indexing using a single index: >>> a = rs[0] >>> a.as_quat() array([0.70710678, 0.70710678, 0. , 0. ]) Array slicing: >>> b = rs[1:3] >>> b.as_quat() array([[ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]]) List comprehension to split each rotation into its own object: >>> c = [r for r in rs] >>> print([r.as_quat() for r in c]) [array([ 0.70710678, 0.70710678, 0. , 0. ]), array([ 0. , 0.70710678, 0. , 0.70710678]), array([ 0.57735027, 0.57735027, -0.57735027, 0. ])] Concatenation of split rotations will recover the original object: >>> R.concatenate([a, b]).as_quat() array([[ 0.70710678, 0.70710678, 0. , 0. ], [ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]]) Expected `weights` to be 1 dimensional, got shape {}.Expected times to be specified in a 1 dimensional array, got {} dimensions.Expected `rot_vec` to have shape (3,) or (N, 3), got {}Expected `quat` to have shape (4,) or (N, 4), got Expected input of shape (3,) or (P, 3), got {}.Expected input `b` to have shape (3,) or (N, 3), got {}Expected input `a` to have shape (3,) or (N, 3), got {}Expected float, 1D array, or 2D array for parameter `angles` corresponding to `seq`, got shape {}.Expected equal numbers of rotations and vectors , or a single rotation, or a single vector, got {} rotations and {} vectors.Expected equal number of rotations in both or a single rotation in either object, got {} rotations in first and {} rotations in second object.Expected axis specification to be a non-empty string of upto 3 characters, got {}Expected axes from `seq` to be from ['x', 'y', 'z'] or ['X', 'Y', 'Z'], got {}Expected angles to have shape (num_rotations, num_axes), got {}.Expected `angles` parameter to have shape (N, 1), got {}.Estimate a rotation to optimally align two sets of vectors. Find a rotation between frames A and B which best aligns a set of vectors `a` and `b` observed in these frames. The following loss function is minimized to solve for the rotation matrix :math:`C`: .. math:: L(C) = \frac{1}{2} \sum_{i = 1}^{n} w_i \lVert \mathbf{a}_i - C \mathbf{b}_i \rVert^2 , where :math:`w_i`'s are the `weights` corresponding to each vector. The rotation is estimated with Kabsch algorithm [1]_, and solves what is known as the "pointing problem", or "Wahba's problem" [2]_. There are two special cases. The first is if a single vector is given for `a` and `b`, in which the shortest distance rotation that aligns `b` to `a` is returned. The second is when one of the weights is infinity. In this case, the shortest distance rotation between the primary infinite weight vectors is calculated as above. Then, the rotation about the aligned primary vectors is calculated such that the secondary vectors are optimally aligned per the above loss function. The result is the composition of these two rotations. The result via this process is the same as the Kabsch algorithm as the corresponding weight approaches infinity in the limit. For a single secondary vector this is known as the "align-constrain" algorithm [3]_. For both special cases (single vectors or an infinite weight), the sensitivity matrix does not have physical meaning and an error will be raised if it is requested. For an infinite weight, the primary vectors act as a constraint with perfect alignment, so their contribution to `rssd` will be forced to 0 even if they are of different lengths. Parameters ---------- a : array_like, shape (3,) or (N, 3) Vector components observed in initial frame A. Each row of `a` denotes a vector. b : array_like, shape (3,) or (N, 3) Vector components observed in another frame B. Each row of `b` denotes a vector. weights : array_like shape (N,), optional Weights describing the relative importance of the vector observations. If None (default), then all values in `weights` are assumed to be 1. One and only one weight may be infinity, and weights must be positive. return_sensitivity : bool, optional Whether to return the sensitivity matrix. See Notes for details. Default is False. Returns ------- rotation : `Rotation` instance Best estimate of the rotation that transforms `b` to `a`. rssd : float Stands for "root sum squared distance". Square root of the weighted sum of the squared distances between the given sets of vectors after alignment. It is equal to ``sqrt(2 * minimum_loss)``, where ``minimum_loss`` is the loss function evaluated for the found optimal rotation. Note that the result will also be weighted by the vectors' magnitudes, so perfectly aligned vector pairs will have nonzero `rssd` if they are not of the same length. So, depending on the use case it may be desirable to normalize the input vectors to unit length before calling this method. sensitivity_matrix : ndarray, shape (3, 3) Sensitivity matrix of the estimated rotation estimate as explained in Notes. Returned only when `return_sensitivity` is True. Not valid if aligning a single pair of vectors or if there is an infinite weight, in which cases an error will be raised. Notes ----- The sensitivity matrix gives the sensitivity of the estimated rotation to small perturbations of the vector measurements. Specifically we consider the rotation estimate error as a small rotation vector of frame A. The sensitivity matrix is proportional to the covariance of this rotation vector assuming that the vectors in `a` was measured with errors significantly less than their lengths. To get the true covariance matrix, the returned sensitivity matrix must be multiplied by harmonic mean [4]_ of variance in each observation. Note that `weights` are supposed to be inversely proportional to the observation variances to get consistent results. For example, if all vectors are measured with the same accuracy of 0.01 (`weights` must be all equal), then you should multiple the sensitivity matrix by 0.01**2 to get the covariance. Refer to [5]_ for more rigorous discussion of the covariance estimation. See [6]_ for more discussion of the pointing problem and minimal proper pointing. References ---------- .. [1] https://en.wikipedia.org/wiki/Kabsch_algorithm .. [2] https://en.wikipedia.org/wiki/Wahba%27s_problem .. [3] Magner, Robert, "Extending target tracking capabilities through trajectory and momentum setpoint optimization." Small Satellite Conference, 2018. .. [4] https://en.wikipedia.org/wiki/Harmonic_mean .. [5] F. Landis Markley, "Attitude determination using vector observations: a fast optimal matrix algorithm", Journal of Astronautical Sciences, Vol. 41, No.2, 1993, pp. 261-280. .. [6] Bar-Itzhack, Itzhack Y., Daniel Hershkowitz, and Leiba Rodman, "Pointing in Real Euclidean Space", Journal of Guidance, Control, and Dynamics, Vol. 20, No. 5, 1997, pp. 916-922. Examples -------- >>> import numpy as np >>> from scipy.spatial.transform import Rotation as R Here we run the baseline Kabsch algorithm to best align two sets of vectors, where there is noise on the last two vector measurements of the ``b`` set: >>> a = [[0, 1, 0], [0, 1, 1], [0, 1, 1]] >>> b = [[1, 0, 0], [1, 1.1, 0], [1, 0.9, 0]] >>> rot, rssd, sens = R.align_vectors(a, b, return_sensitivity=True) >>> rot.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) When we apply the rotation to ``b``, we get vectors close to ``a``: >>> rot.apply(b) array([[0. , 1. , 0. ], [0. , 1. , 1.1], [0. , 1. , 0.9]]) The error for the first vector is 0, and for the last two the error is magnitude 0.1. The `rssd` is the square root of the sum of the weighted squared errors, and the default weights are all 1, so in this case the `rssd` is calculated as ``sqrt(1 * 0**2 + 1 * 0.1**2 + 1 * (-0.1)**2) = 0.141421356237308`` >>> a - rot.apply(b) array([[ 0., 0., 0. ], [ 0., 0., -0.1], [ 0., 0., 0.1]]) >>> np.sqrt(np.sum(np.ones(3) @ (a - rot.apply(b))**2)) 0.141421356237308 >>> rssd 0.141421356237308 The sensitivity matrix for this example is as follows: >>> sens array([[0.2, 0. , 0.], [0. , 1.5, 1.], [0. , 1. , 1.]]) Special case 1: Find a minimum rotation between single vectors: >>> a = [1, 0, 0] >>> b = [0, 1, 0] >>> rot, _ = R.align_vectors(a, b) >>> rot.as_matrix() array([[0., 1., 0.], [-1., 0., 0.], [0., 0., 1.]]) >>> rot.apply(b) array([1., 0., 0.]) Special case 2: One infinite weight. Here we find a rotation between primary and secondary vectors that can align exactly: >>> a = [[0, 1, 0], [0, 1, 1]] >>> b = [[1, 0, 0], [1, 1, 0]] >>> rot, _ = R.align_vectors(a, b, weights=[np.inf, 1]) >>> rot.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) >>> rot.apply(b) array([[0., 1., 0.], [0., 1., 1.]]) Here the secondary vectors must be best-fit: >>> a = [[0, 1, 0], [0, 1, 1]] >>> b = [[1, 0, 0], [1, 2, 0]] >>> rot, _ = R.align_vectors(a, b, weights=[np.inf, 1]) >>> rot.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) >>> rot.apply(b) array([[0., 1., 0.], [0., 1., 2.]]) Determine if another rotation is approximately equal to this one. Equality is measured by calculating the smallest angle between the rotations, and checking to see if it is smaller than `atol`. Parameters ---------- other : `Rotation` instance Object containing the rotations to measure against this one. atol : float, optional The absolute angular tolerance, below which the rotations are considered equal. If not given, then set to 1e-8 radians by default. degrees : bool, optional If True and `atol` is given, then `atol` is measured in degrees. If False (default), then atol is measured in radians. Returns ------- approx_equal : ndarray or bool Whether the rotations are approximately equal, bool if object contains a single rotation and ndarray if object contains multiple rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np >>> p = R.from_quat([0, 0, 0, 1]) >>> q = R.from_quat(np.eye(4)) >>> p.approx_equal(q) array([False, False, False, True]) Approximate equality for a single rotation: >>> p.approx_equal(q[0]) False Consecutive axes must be orthogonal.Concatenate a sequence of `Rotation` objects into a single object. This is useful if you want to, for example, take the mean of a set of rotations and need to pack them into a single object to do so. Parameters ---------- rotations : sequence of `Rotation` objects The rotations to concatenate. If a single `Rotation` object is passed in, a copy is returned. Returns ------- concatenated : `Rotation` instance The concatenated rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> r1 = R.from_rotvec([0, 0, 1]) >>> r2 = R.from_rotvec([0, 0, 2]) >>> rc = R.concatenate([r1, r2]) >>> rc.as_rotvec() array([[0., 0., 1.], [0., 0., 2.]]) >>> rc.mean().as_rotvec() array([0., 0., 1.5]) Concatenation of a split rotation recovers the original object. >>> rs = [r for r in rc] >>> R.concatenate(rs).as_rotvec() array([[0., 0., 1.], [0., 0., 2.]]) Note that it may be simpler to create the desired rotations by passing in a single list of the data during initialization, rather then by concatenating: >>> R.from_rotvec([[0, 0, 1], [0, 0, 2]]).as_rotvec() array([[0., 0., 1.], [0., 0., 2.]]) Notes ----- .. versionadded:: 1.8.0 Compose this rotation with the other. If `p` and `q` are two rotations, then the composition of 'q followed by p' is equivalent to `p * q`. In terms of rotation matrices, the composition can be expressed as ``p.as_matrix() @ q.as_matrix()``. Parameters ---------- other : `Rotation` instance Object containing the rotations to be composed with this one. Note that rotation compositions are not commutative, so ``p * q`` is generally different from ``q * p``. Returns ------- composition : `Rotation` instance This function supports composition of multiple rotations at a time. The following cases are possible: - Either ``p`` or ``q`` contains a single rotation. In this case `composition` contains the result of composing each rotation in the other object with the single rotation. - Both ``p`` and ``q`` contain ``N`` rotations. In this case each rotation ``p[i]`` is composed with the corresponding rotation ``q[i]`` and `output` contains ``N`` rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Composition of two single rotations: >>> p = R.from_quat([0, 0, 1, 1]) >>> q = R.from_quat([1, 0, 0, 1]) >>> p.as_matrix() array([[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]) >>> q.as_matrix() array([[ 1., 0., 0.], [ 0., 0., -1.], [ 0., 1., 0.]]) >>> r = p * q >>> r.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) Composition of two objects containing equal number of rotations: >>> p = R.from_quat([[0, 0, 1, 1], [1, 0, 0, 1]]) >>> q = R.from_rotvec([[np.pi/4, 0, 0], [-np.pi/4, 0, np.pi/4]]) >>> p.as_quat() array([[0. , 0. , 0.70710678, 0.70710678], [0.70710678, 0. , 0. , 0.70710678]]) >>> q.as_quat() array([[ 0.38268343, 0. , 0. , 0.92387953], [-0.37282173, 0. , 0.37282173, 0.84971049]]) >>> r = p * q >>> r.as_quat() array([[ 0.27059805, 0.27059805, 0.65328148, 0.65328148], [ 0.33721128, -0.26362477, 0.26362477, 0.86446082]]) Compose this rotation with itself `n` times. Composition of a rotation ``p`` with itself can be extended to non-integer ``n`` by considering the power ``n`` to be a scale factor applied to the angle of rotation about the rotation's fixed axis. The expression ``q = p ** n`` can also be expressed as ``q = Rotation.from_rotvec(n * p.as_rotvec())``. If ``n`` is negative, then the rotation is inverted before the power is applied. In other words, ``p ** -abs(n) == p.inv() ** abs(n)``. Parameters ---------- n : float The number of times to compose the rotation with itself. modulus : None This overridden argument is not applicable to Rotations and must be ``None``. Returns ------- power : `Rotation` instance If the input Rotation ``p`` contains ``N`` multiple rotations, then the output will contain ``N`` rotations where the ``i`` th rotation is equal to ``p[i] ** n`` Notes ----- For example, a power of 2 will double the angle of rotation, and a power of 0.5 will halve the angle. There are three notable cases: if ``n == 1`` then the original rotation is returned, if ``n == 0`` then the identity rotation is returned, and if ``n == -1`` then ``p.inv()`` is returned. Note that fractional powers ``n`` which effectively take a root of rotation, do so using the shortest path smallest representation of that angle (the principal root). This means that powers of ``n`` and ``1/n`` are not necessarily inverses of each other. For example, a 0.5 power of a +240 degree rotation will be calculated as the 0.5 power of a -120 degree rotation, with the result being a rotation of -60 rather than +120 degrees. Examples -------- >>> from scipy.spatial.transform import Rotation as R Raising a rotation to a power: >>> p = R.from_rotvec([1, 0, 0]) >>> q = p ** 2 >>> q.as_rotvec() array([2., 0., 0.]) >>> r = p ** 0.5 >>> r.as_rotvec() array([0.5, 0., 0.]) Inverse powers do not necessarily cancel out: >>> p = R.from_rotvec([0, 0, 120], degrees=True) >>> ((p ** 2) ** 0.5).as_rotvec(degrees=True) array([ -0., -0., -60.]) Cannot return sensitivity matrix with an infinite weight or one vector pairCannot align zero length primary vectorsAxes must be vectors of length 3.Av )1D! G5 1EV1EBgQ "Be2TqQ U!1AU%uBd&c1 4q 2XQd!1 2XQaA-.z 3aq 9Bb9Ba *AQBI!RvQ/uG1RvQ/uG1 5 #Q *AQ>EQaa *AQ%,AQcq N!89A'q7$ha 1 3at1D 'a 3avZwe1A> "Q(F!1 q G5 !7"Be1F!4qe3at1E 4q 6! 2XQaA| "Q(F!1&gQoS G5 AU! AU! AU! AU! 2Q 2Q 2Q 2Q 2Q 2Q 2Q 2Q 2Q 2Q !552S#Rq !55#S! !55#S! !55#S! !55#Rs"Cr !55#S! !55#S! !55#S! !55#Rs"Crb 4q 3aq 1A 7q` 4q &V1DQ q&aq &XU! qq 1 %q3e84~QqA 4z+Q )1A 9HCs!;c *AQ(!1 5c *AQ*1%q 5as#S *AQ18 #1LV1A IQ M5 2T$kA *AQ M#Q LJd#RyZqA 3auCq *A7waqRvQ/uG1RvQ/uG1 5 #Q *AQ%,AQa *AQ%,AQcq :S T1 vV3aq Rxq :!7$a s! 4xq t6At1A Rxq 8#WD 1 1 RxqvQfDaA$ (!1 =b *AQm6A+Qa b Qd(/1 1N#Tqa 2T"KqBcRs!4|2Q *AQ8?q $F!4t61rV1F"D !1$ja,at81E5A 1 V1AqAZ A6(& F&3a &AV7!4t3a *AQ07qa 6Cq V1Ba  rAQ 2T%s! "F!52Qb *AQH#6! 7"Bj#S$ar*Bd!4uA &c#2V1A^1A 3a)1 s%rAV1A !5Rr !(vQa"'! " G5 AU'%s! AU'%s! AU'%s! AU'%s#RwauCq'%s! XQa wcARrBaRrBaAU%r81Cr2WAU#QAU%wauCs"G1EAAU%wauCs"G1EAAU%wauCs"G1EAAU%wauCs"G1EAAU%wauCs"G1EAAU%wauCs"G1EAAU%r81A qAQ 1 3at1D 'a 3avZwe1AH AbfA 3fHCs#Sas!3hb3a *AQ07q1 3gT 3aq  1(F!1! G5 !2U!4q Qa e2Rt1EBa e2Rt1EBa e2Rt1EBa fBb 4Ba 1 3at1D 'a 3avZwe1AB rqHE Dq Dq Dq 4q 4qt:QfJgU!A9:b 6U!  4uA  *AQ07qr! 4vS 4xqA3aq 4vQcA *AQ 9Bb9Ba *A>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_euler('z', 90, degrees=True) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_rotvec().shape (3,) Represent a rotation in degrees: >>> r = R.from_euler('YX', (-90, -90), degrees=True) >>> s = r.as_rotvec(degrees=True) >>> s array([-69.2820323, -69.2820323, -69.2820323]) >>> np.linalg.norm(s) 120.00000000000001 Represent a stack with a single rotation: >>> r = R.from_quat([[0, 0, 1, 1]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633]]) >>> r.as_rotvec().shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_quat([[0, 0, 1, 1], [1, 1, 0, 1]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633], [1.35102172, 1.35102172, 0. ]]) >>> r.as_rotvec().shape (2, 3) Represent as rotation matrix. 3D rotations can be represented using rotation matrices, which are 3 x 3 real orthogonal matrices with determinant equal to +1 [1]_. Returns ------- matrix : ndarray, shape (3, 3) or (N, 3, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_matrix().shape (3, 3) Represent a stack with a single rotation: >>> r = R.from_quat([[1, 1, 0, 0]]) >>> r.as_matrix() array([[[ 0., 1., 0.], [ 1., 0., 0.], [ 0., 0., -1.]]]) >>> r.as_matrix().shape (1, 3, 3) Represent multiple rotations: >>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]]) >>> r.as_matrix() array([[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]], [[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]]) >>> r.as_matrix().shape (2, 3, 3) Notes ----- This function was called as_dcm before. .. versionadded:: 1.4.0 Represent as Modified Rodrigues Parameters (MRPs). MRPs are a 3 dimensional vector co-directional to the axis of rotation and whose magnitude is equal to ``tan(theta / 4)``, where ``theta`` is the angle of rotation (in radians) [1]_. MRPs have a singularity at 360 degrees which can be avoided by ensuring the angle of rotation does not exceed 180 degrees, i.e. switching the direction of the rotation when it is past 180 degrees. This function will always return MRPs corresponding to a rotation of less than or equal to 180 degrees. Returns ------- mrps : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] Shuster, M. D. "A Survey of Attitude Representations", The Journal of Astronautical Sciences, Vol. 41, No.4, 1993, pp. 475-476 Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi]) >>> r.as_mrp() array([0. , 0. , 1. ]) >>> r.as_mrp().shape (3,) Represent a stack with a single rotation: >>> r = R.from_euler('xyz', [[180, 0, 0]], degrees=True) >>> r.as_mrp() array([[1. , 0. , 0. ]]) >>> r.as_mrp().shape (1, 3) Represent multiple rotations: >>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]]) >>> r.as_mrp() array([[0.41421356, 0. , 0. ], [0. , 0. , 0.41421356]]) >>> r.as_mrp().shape (2, 3) Notes ----- .. versionadded:: 1.6.0 Initialize from rotation matrix. Rotations in 3 dimensions can be represented with 3 x 3 orthogonal matrices [1]_. If the input is not orthogonal, an approximation is created by orthogonalizing the input matrix using the method described in [2]_, and then converting the orthogonal rotation matrices to quaternions using the algorithm described in [3]_. Matrices must be right-handed. Parameters ---------- matrix : array_like, shape (N, 3, 3) or (3, 3) A single matrix or a stack of matrices, where ``matrix[i]`` is the i-th matrix. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by the rotation matrices. References ---------- .. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions .. [2] https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem .. [3] F. Landis Markley, "Unit Quaternion from Rotation Matrix", Journal of guidance, control, and dynamics vol. 31.2, pp. 440-442, 2008. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Initialize a single rotation: >>> r = R.from_matrix([ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]) >>> r.single True >>> r.as_matrix().shape (3, 3) Initialize multiple rotations in a single object: >>> r = R.from_matrix([ ... [ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1], ... ], ... [ ... [1, 0, 0], ... [0, 0, -1], ... [0, 1, 0], ... ]]) >>> r.as_matrix().shape (2, 3, 3) >>> r.single False >>> len(r) 2 If input matrices are not special orthogonal (orthogonal with determinant equal to +1), then a special orthogonal estimate is stored: >>> a = np.array([ ... [0, -0.5, 0], ... [0.5, 0, 0], ... [0, 0, 0.5]]) >>> np.linalg.det(a) 0.125 >>> r = R.from_matrix(a) >>> matrix = r.as_matrix() >>> matrix array([[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]) >>> np.linalg.det(matrix) 1.0 It is also possible to have a stack containing a single rotation: >>> r = R.from_matrix([[ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]]) >>> r.as_matrix() array([[[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]]) >>> r.as_matrix().shape (1, 3, 3) Notes ----- This function was called from_dcm before. .. versionadded:: 1.4.0 Expected `weights` to have number of values equal to number of rotations, got {} values and {} rotations.Expected number of rotations to be equal to number of timestamps given, got {} rotations and {} timestamps.Expected `mrp` to have shape (3,) or (N, 3), got {}Expected `matrix` to have shape (3, 3) or (N, 3, 3), got {}Expected inputs `a` and `b` to have same shapes, got {} and {} respectively.Expected consecutive axes to be different, got {}Expected `angles` to be at most 2-dimensional with width equal to number of axes specified, got {} for shapeApply this rotation to a set of vectors. If the original frame rotates to the final frame by this rotation, then its application to a vector can be seen in two ways: - As a projection of vector components expressed in the final frame to the original frame. - As the physical rotation of a vector being glued to the original frame as it rotates. In this case the vector components are expressed in the original frame before and after the rotation. In terms of rotation matrices, this application is the same as ``self.as_matrix() @ vectors``. Parameters ---------- vectors : array_like, shape (3,) or (N, 3) Each `vectors[i]` represents a vector in 3D space. A single vector can either be specified with shape `(3, )` or `(1, 3)`. The number of rotations and number of vectors given must follow standard numpy broadcasting rules: either one of them equals unity or they both equal each other. inverse : boolean, optional If True then the inverse of the rotation(s) is applied to the input vectors. Default is False. Returns ------- rotated_vectors : ndarray, shape (3,) or (N, 3) Result of applying rotation on input vectors. Shape depends on the following cases: - If object contains a single rotation (as opposed to a stack with a single rotation) and a single vector is specified with shape ``(3,)``, then `rotated_vectors` has shape ``(3,)``. - In all other cases, `rotated_vectors` has shape ``(N, 3)``, where ``N`` is either the number of rotations or vectors. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np Single rotation applied on a single vector: >>> vector = np.array([1, 0, 0]) >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.apply(vector) array([2.22044605e-16, 1.00000000e+00, 0.00000000e+00]) >>> r.apply(vector).shape (3,) Single rotation applied on multiple vectors: >>> vectors = np.array([ ... [1, 0, 0], ... [1, 2, 3]]) >>> r = R.from_rotvec([0, 0, np.pi/4]) >>> r.as_matrix() array([[ 0.70710678, -0.70710678, 0. ], [ 0.70710678, 0.70710678, 0. ], [ 0. , 0. , 1. ]]) >>> r.apply(vectors) array([[ 0.70710678, 0.70710678, 0. ], [-0.70710678, 2.12132034, 3. ]]) >>> r.apply(vectors).shape (2, 3) Multiple rotations on a single vector: >>> r = R.from_rotvec([[0, 0, np.pi/4], [np.pi/2, 0, 0]]) >>> vector = np.array([1,2,3]) >>> r.as_matrix() array([[[ 7.07106781e-01, -7.07106781e-01, 0.00000000e+00], [ 7.07106781e-01, 7.07106781e-01, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], [[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]]]) >>> r.apply(vector) array([[-0.70710678, 2.12132034, 3. ], [ 1. , -3. , 2. ]]) >>> r.apply(vector).shape (2, 3) Multiple rotations on multiple vectors. Each rotation is applied on the corresponding vector: >>> r = R.from_euler('zxy', [ ... [0, 0, 90], ... [45, 30, 60]], degrees=True) >>> vectors = [ ... [1, 2, 3], ... [1, 0, -1]] >>> r.apply(vectors) array([[ 3. , 2. , -1. ], [-0.09026039, 1.11237244, -0.86860844]]) >>> r.apply(vectors).shape (2, 3) It is also possible to apply the inverse rotation: >>> r = R.from_euler('zxy', [ ... [0, 0, 90], ... [45, 30, 60]], degrees=True) >>> vectors = [ ... [1, 2, 3], ... [1, 0, -1]] >>> r.apply(vectors, inverse=True) array([[-3. , 2. , 1. ], [ 1.09533535, -0.8365163 , 0.3169873 ]]) Ad :Qk 3ayJgU! Q )1A,aq+Qaxt4uAs!7*AA%&l "HAQ 7&"CwfBcA *AQ&-QgQ"'s!$E)EQ$+6$c! rQhbjr$a Bd!82TQ 4rQat:QauD !A)B!N RvQcqRvQcq Bk! Bk! 1F"Cs! *AQ-4AZq 1F"Cs! *AQ-4AZq 1G3aq *AQ 55F#Q d*AT7%q qyaq 3a HIQ #Q 89A BfBcA #SQas#U!1Cs%q #SQas#U!1Cs&  A Eq Eq Eq Rt1BgQit4t1gQkTQgQkTQgQkTQgQ.cT Rxq)1D5&a "G1BhauCqe5HCs!1XRs!1 4t1 4q 4uA E! %r2Q 4q d*AWHBat:Q  ! 1A 1 uCqA vSQ 9Kq 1A!"@ )1D#7!?! G5 4vQgU! "!1 BbQfAWD vSr"G2S"BgRwbb1F"A !5V2T! !5V2T! !5V2T! 1 Rxq 4q 2XQfAQ 2XQaRotation.from_rotvec (line 1206)Rotation.from_matrix (line 1014)Rotation.concatenate (line 2400)Rotation._as_euler_from_matrixRotation.__getitem__ (line 3117)A:HqN 51 qQa 1  2XQa&$d#ZqwbRotation.from_euler (line 1316)`weights` must be non-negative.reduce..split_rotation_compute_euler..genexprRotation.magnitude (line 2816)Rotation.as_rotvec (line 1895)Rotation.as_matrix (line 1790)TQ G1F,avWA!qqq)Qg[q)Qg[Rotation.from_quat (line 914)Rotation.from_mrp (line 1593)Rotation.as_euler (line 2086)concatenate..genexprSingle rotation has no len().Rotation.as_quat (line 1695)Rotation.__setstate_cython__Rotation.__pow__ (line 2694)Rotation.__mul__ (line 2613)from_euler..genexprRotation.random (line 3243)Rotation.as_mrp (line 2321)Expected up to 3 axes, got {}indices_to_orthogonalizeRotation.apply (line 2459)Rotation.__reduce_cython__Rotation.mean (line 2913)Rotation.from_davenportRotation._compute_eulerA#!b   4s! SqQ Sqe1s!1Rotation.inv (line 2775)Rotation.from_matrixRotation.align_vectors__pyx_unpickle_Rotationmodulus not supportedhkA ^1!!yy{{|881A|7!*!;nA 1Rotation.create_groupRotation.as_davenportRotation.approx_equal_as_euler_from_matrixRotation.from_rotvecRotation.from_matrix(Rotation.concatenateRotation.from_eulerRotation.__setstate__Rotation.__getstate__NotImplementedErrorExpected 3 axes, got {}.return_sensitivitymrp_squared_plus_1cline_in_tracebackcheck_random_stateasyncio.coroutinesRotation.magnitudeRotation.from_quatRotation.as_rotvecRotation.as_matrixA 4s! Cs! &%q Tas!3j_transition_to_rngRotation.identityRotation.from_mrpRotation.as_eulerweights_inf_zeroscipy._lib._utilRotation.as_quat__setstate_cython___rotation_groups__pyx_PickleErrorRotation.reduceRotation.randomRotation.as_mrpsplit_rotationreturn_indicesfrom_davenportRotation.applyAssertionErrorweight_is_infsingle_vector__reduce_cython__num_rotationsis_orthogonal_format_anglescompute_times_compute_euler__class_getitem__align_vectorsRotation.meanxyz,ix,jy,kzuse_setstatesearchsortedscalar_firstrandom_state__pyx_checksumposition_num_is_coroutine_initializingcreate_groupcompose_quatas_davenportapprox_equalSlerp.__init__Slerp.__call__Rotation.invAiq ITa Kqweights_secsingle_timesensitivityn_rotationsfrom_rotvecfrom_matrixdenominatorconcatenate +Qaxq 1EQfAPickleErrorImportErrorstacklevelright_best__pyx_vtable____pyx_resultlogical_orfrom_eulercross_normb_pri_normb_originalatleast_2datleast_1da_pri_norma_originalValueErrortransposetolerancetimedeltarotations__reduce_ex____pyx_statenormalizen_vectors__metaclass__magnitudeleft_bestisenabledis_singleintrinsicijk,ik->ijfrom_quatextrinsiccanonicalas_rotvecas_matrixalgorithmTypeErrorA-.@ s!66awarningsswapaxessin_term__setstate____set_name__reduce__qualname____pyx_typenum_axesmoveaxisji,jk->ikitemsizeisposinfidentitygramians__getstate__from_mrperrstatedecisioncos_termas_euleradd_noteRotationAr$hfHDA&'F |1EQA12f t?!5 ^[xyz]{1,3}$weightsvectorsrotvecsreshapereducedrad2deg__prepare__newaxismax_indix,jx,kix,j,kxiscloseinverseinvalidij,ij->ii,jx,kxgenexprdisabledegreesdeg2radcrotveccmatrixasarrayas_quat^[XYZ]{1,3}$A$%l t?!5 updatetheta2singlesamplerotvecresultrepeat__reduce__randompicklenormal__module__matrixmatmullinalgignoreformatencodeenableeinsumdivide_dictchoiceas_mrpargminargmaxanglesangle2R_flipzeroswherevaluetimesthrowthetastateshapescalerightrangequatsotherordernumpyn_infmatchlowerkappai,j,kgroup__enter__dtypecrossclose__class__c_secb_secb_priarrayapplyanglealphaa_seca_pria_estSlerpR_secR_priR_optzetawarn__test__sqrt__spec__sizesignsendselfrssdrollquatonesnormnextndim__name__mrpsmean__main__left__init____func____exit__eighdiff__dict__detscopycmrp__call__axisaxesatolsvdsumsinseqrngretpopphinum__new__mrpinvindeyedot__doc__detcls&avQanyallabsazwz2yzywy2xzxyxwx2w2vhrvrsreqsqipvpspinpn3n2n1lvlsgc_?) : VtzyxwvusrqpkjiedbaZUTRQNKCB =A.@?MbP?@@(@@?H@@-DT! @Hz>-DT!-DT!?-DT! -DT!@:0yE>-q=ؗҜ<???;8hTTs s` t vP wT Jx x Lzzze|\=t++0+E .TqpTD|Tt4(T<tPdxTt$ 8 P D T 0 L 4 d $  ( 4` T , dL$t (@t\p4$D<tTDpd0$     P`xtd40Lh$TL$l$T $ ht!"4$$d%l&( + 4167D:h$;<=d> AdBH$K<4SWDZ@\|_`(doTx0 xD y| 4 D0!T!Ԓ! "p"d"Ŀ##d###l$%$%T&'dp''T (p(T( D)*P*t*+t 0,#\,T*,0,2@-@-A-AD.dLp/L/d 2thh2m2qH3w@4d}45456T6|7Ķ<889$9l::6;; <dB<d^<fP=|>d>tH??T@|AATBXBCC4EEAF$KlF$gF`KDMMDN-dNp@O4PtHQ4QFR4jPS$YSzRx $(a FJ w?;*3$"DXl4EBDD a GBL AAB4EBDD a GBL AAB,(!4@D\AA ABDF x!!HDb J Ul h\Jd e+Df@AGG0k GAF d DAG Z CAJ \piAG`A kAJ i AK < 8bah G Dab4({iBDD W DBE AB`%(tBAD ] DBF (DBJ0` BB I BE A@ G m K 4TBAD  DBI \ DBF 4(mBGD x DBE L DBF 8`BBA A(D0Z (D ABBC xhBEI K(D0A8Gp"xIDDDDAABAABIp8D0A(B BBB8;jBEH A(A0m(D BBB$TA H K E K$|A H K E K$Aj E K E C$H4A G K E c$`Aj E K E CHi.BEL E(A0A8E@8A0A(B BBB4hjBEE A(D0k(D BBB8j{BBE D(A0b(D BBB4HUBDD s GBJ AAB4pBDD  GBG AAB4L(eBDD E GBH AAB`ctkGAE Dq K K E `QD t H (TSc]wD$x8BBE B(D0D8Dc 8G0A(B BBBF ] 8D0A(B BBBF Q 8I0A(B BBBM jEAc E N E DHjBEB B(A0A8GPk8D0A(B BBB($ lBAGABDP BHE A(D08I@T8A0P(D BBB \ ( H $BBE D(D0h (J BBBG O (D BBBG H hBEE E(A0D8GP 8D0A(B BBBH ,X ZI P AD Hp x 'BBB E(A0A8D@_ 8A0A(B BBBF _ 8A0A(B BBBG _ 8F0A(B BBBB  Db AG8 |i@P 4BDD { ABH Q AEI A CBE L BBE A(J0 (A BBBF (A BBB `Gv` NBBE B(A0A8DP 8A0A(B BBBJ c 8A0C(B BBBA \ kAw H j| 6$ L~nBDA cAB H BBE H(D0A8I`" 8D0A(B BBBB ` l5BBB B(D0D8G` 8A0A(B BBBF  8C0A(B BBBH ,| HJI P AD Hp 4 JAD0 AAG H0@ BAD D0  AABG `  DABI (Ae J I4&1geBEA R EBE zBB( '{ BIB B(A0A8J/GGGGGGGGGGGGGGGGGGGGGGGGGP 8A0A(B BBBE WLGGGGGGGGGGGGGGGGGGGGGGGP(8(zDN N DR `AF C ld(@BIB B(A0A8JGGGGGGGGGGGGGGGGGGGGGGG G G G G G G G G G G G G G G G G G G G G G G G G G G G G ] 8D0A(B BBBD GGGGGGGGGGGGGGGGGGGGGGG G G PWLGGGGGGGGGGGGGGGGGGGGG G G P'WLGGGGGGGGGGGGGGGGGGGGG G G PX*1dBLB B(A0A8D|HYAW 8A0A(B BBBI l0+6BBB E(A0DP 0A(B BBBH g 0C(B BBBF  0A(B BBBA l+4:BIE B(A0A8DW_AW 8A0A(B BBBA W_A,T>eBBB B(A0A8DpxVKFFFFFFFFFCCCCCCCCCCCCCCPp 8A0A(B BBBB M 8A0A(B BBBI 4xR`xApF 8A0A(B BBBI -BEBBB B(A0A8DpxXMHHHHHHHHHEEEEEEEEEEEEEEPp 8D0A(B BBBE -dHCBBB B(A0A8GWLGGGGGGGGGGGGGGGGGGGGGGGP 8D0A(B BBBA (|.^zDN N DR `AF C .L_ BBB B(A0A8GVKFFFFFFFFFCCCCCCCCCCCCCCPX 8D0A(B BBBE d/ph8Ni|/h BBB B(A0A8DpxWLGGGGGGGGGDDDDDDDDDDDDDDPp 8D0A(B BBBA xNgxApD0u BBB B(A0A8DPhXV`KhFpFxFFFFFFFCCCCCCCCCCCCCCPP- 8D0A(B BBBG XN`gXAPl1~BLB E(A0A8GV`AZ 8A0A(B BBBH FW_Alt1 6BIB B(D0A8G: 8D0A(B BBBF eEkALV`Bh11BMG B(A0D8T 8D0A(B BBBD [NgA] AB P2c BLB B(A0A8GBBBBBBDY 8D0A(B BBBG  WLGGGGGGGGGGGGGGGGGGGGGGGP(43 zDN N DR `AF C (`3tyBIB E(A0A8J : G G G G G G G G G G G G G G G G G G G G G G G G G X / V K F F F F F F F F F C C C C C C C C C C C C C C P  8D0A(B BBBE X4LBLB B(A0A8DHYAu 8A0A(B BBBG l4tBLB B(D0A8D[W_Av 8D0A(B BBBH W_ALX5BDB B(D0A8G0 8D0A(B BBBE l5|!BIB B(A0A8J 8D0A(B BBBE V_AOVKA(6(BIB B(A0A8J 8D0A(B BBBD GGGGGGGGGGGGGGGGGGGGGGGGGX>WLGGGGGGGGGGGGGGGGGGGGGGGPlD7 ABLE B(A0A8DW_AW 8A0A(B BBBF W_AX7pE BIE B(A0A8DL`Av 8D0A(B BBBA l8$QBIB B(A0D8DHYAv 8D0A(B BBBA V_A8X_BDE B(A0A8G  G B G G G G D { b G D D G D D G y  8A0A(B BBBI $9r BIB B(A0D8GGGGGGGGGGGGGGGGGGGGGGGGGGP 8D0A(B BBBE VKFFFFFFFFFCCCCCCCCCCCCCCPPD:|BED G0  ABBI S  ABBH t  JBBF H:~]BBB B(A0A8D 8D0A(B BBBH 8:0yANQHXPRHA@b AAA DCA( ;tBIE B(D0A8G 8D0A(B BBBE 'GGGGGGGGGGGGGGGGGGGGGGGGGPWLGGGGGGGGGGGGGGGGGGGGGGGPlL<XBIB B(A0D8DHYAu 8A0A(B BBBA DV_A<<+BKE B(A0A8G   G G G `  G G G G G G G G G G G G G G G G G G G G G G G G G X D 8D0A(B BBBI 2 L G G G G G G G G G G G G G G G G G G G G G G G G U h=hVBMG B(A0D8T 8A0A(B BBBA NgAk HB lh>\'BIB E(A0A8GhW_Ay 8D0A(B BBBA W_AX>F BIE B(A0A8D|HYAX 8D0A(B BBBE l4?BIB B(D0A8DIYAv 8D0A(B BBBA gV`B?@ jDBGB E(A0A8GX 8A0A(B BBBE BBBBBBIJvGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGMQGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGMGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGMWLGGGGGGGGGGGGGGGGGGGGGGGU BBBBBBIJBBBBBBIJGGGGGGGGGGGGGGGGGGGGGGGGGAABBBBAFLGGGBBGGGGGGGGGGACM(D,`aABDJ B(A0A8GJ GJGGGGGGGGGGGGGGGGGGGGGGGEGGGGGGGGGGGGGGGGGGGGGGGGGX 8D0A(B BBBG  BBBBBBIgGGGGGGGGGGGGGGGGGGGGGGGGGP BBBBBBIg\ FBMG B(A0D8TV_At 8A0A(B BBBH \lF8RBMG B(A0D8TV_At 8A0A(B BBBH \F8;BMG B(Q0D8GV_At 8D0A(B BBBE ,G=CBDB B(D0A8G 8A0A(B BBBD AGGGGnlBBBBBBJRBBBBBBBRBBBBBBBRH|!o0BMG R(A0D8G 8D0A(B BBBJ H`A FNGGGGGGGGGGGGGGGGGGGBBAHX NL (HQ3QBIB B(D0A8G M G G G G G G G G G G G G G G G G G G G G G G G G G P  8D0A(B BBBH   W L G G G G G G G G G G G G G G G G G G G G G G G P lJ$BLE B(A0A8DW_AW 8A0A(B BBBF W_AJtNBMG B(A0D8R  8D0A(B BBBH  VRAVKFFFFFFFFFCCCCCCCCCCCCCCPLKx-$BIB B(A0D8D|HYAX 8D0A(B BBBE 5VKFFFFFFFFFCCCCCCCCCCCCCCPLLBDB E(D0A8G  9 8D0A(B BBBF lhL|dBIB B(A0D8GT 8A0A(B BBBG SDlALV_A\LAKBBB B(A0A8GiHHKVJ8A0A(B BBB8M   &  W ` `@ " o& `m& ` ) L  % ] `v "   v : m u A `u O u R 2 `t s } `s c s 8 r 8 r 0 ` M < 4 ` l `r 3 r 8 q L   q 6 j l h  @h ' @a  ] E W  `W m 8 `W V `E  @8  0  # b @    G  i k& `` , i& ` T  `@  $  R ( `d& `Z# `X$ `R$ `L$ `  u @ O r @  > ! `  !  `     ` ` ` `@ ` ` # P `   ` "  ` "  `@  0 `   ``  p `   ``  p ` !  `  `@ $  ` P   ` !  `    `  0 `@ !  `8 `   `@  ( `   `@   `  & F$ `( ` ` b& ` , x ``& ` `9& `X" ^& `6&  &  &  &  &  & `\& `@$ ` `:$ ` `4$ `% ` h ` `% `.$ `($ `S# `L# `% `"$ ` `E# `># `$ ` ` ` `X `7# `P" `H `H" ` ` ` `C% `` F >% `9% `Z& ` `$ ` `$ ` $ `0% `8 ` `0# `$ ` `p `# `% `@" `+% ` ` `  ` ` `` `&% ` ` `# ` `8" `X& @ `0" `(" ` `% `!% `% `*# `% ` "  ## `% `% `# `V& ` % `# `#  # `# ` `% `( `% `# ` `@ ` `  ` ` ` ` `$ `&  " ` ` `# `T& `#  "  x `# `"  % ` `$ ` ` )  `|% `! `! ` ` ` `! ` h `X `!  !  R& `H P& `# `$ ` `" ` `# `& `& ` `$ `# `" `" `! `$ ` `" `0  8 `x% `P `$ `% `% `% `# ` ` `$ `$ `p% `! `$ `$ `" ` `% `h% `( ` `# ` ( # $ `# ` k # `N& `d% `% `" ``% ` `! `% `% ` ` `x `x ` ` `h `L& `% `% ` `$ `# `J& `! `" ` `# `% `" ` ` `h ` `! `" `! `" `\% `0 `0 `# `X `X% `$ ` `X ` + ` 8 " `! `% `$ `% `H& `" `x `# `P `` "` & h `$ `$ ` `T% ` ` ` `# `$ `P% ` `" ` ` `$ `x$ `  `q$ `H `# `X  L% `H% ` `h$ `# `" `y# `H `s# ` ' 8 ` `( `F& `" `H `D& `m# ` ! `% `B& `% `c$ ` `p `! `0 ` *  p `g# `@& `% `% `% `x! 8 % `>& `% `% `% `<& `% `a# `^$ `% `URR $p x o`    xw'O ox'oo%o&Ȭ 6FVfvƐ֐&6FVfvƑ֑&6FVfvƒ֒&6FVfvƓ֓&6FVfvƔ֔&6FVfvƕ֕&6FVfvƖ֖&6FVfvƗ֗&6FVfvƘ֘&6FVfvƙ֙&6FVfvƚ֚A @ E   @D-@6M X@ehm`x0)hPppM 4bB20 G`3_@@ H I` 6 p1m @0x(ә@ܙ@`D`D  @E pH pH   ' 30 =0 FM@FTM@FaFp `B8 I mC@ mF` @  @0 ? @ p@@?((@`>h 0@  @>b0  p 009 M@R@c    @;` p@ ǔ@ 0^ ZP 4 ` A ;x 7``i -t@c z``^ rN 09HF d`; 0B8 )3 Km. D@* ה& pi Д \`h_+ГZA_+h\`Д pi ה& >D@* Km. )3 0B8 d`; rN z``^ -t@c 7``i ;x A ` 4 ZP 0^ ǔ@ p@ @;`    c R@M@(6= 4>GP>?'@ H I :PQ@&GCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8`%x''xw    $ ' . p x  Ȭ       P    0 EX E     0 ! ` 2 X  !u @ ! p H`  U J  p+? [ @u  `  pk   b `D ( ; %F f {   m @  o /4   7 4 0 .  m{( ? G U ` Pe c G 0 Q8 p(L c   0  /E t  4  <  % H  P  X  f& b  xj   !~  x&   p  `   h  `  !   X  P      P  )9  HA  ` mi  @r  8{     0  5  (  @ q1  :  c  l         !    `!     p"   ` B+  4  =  f  o   a  `     ` U    m#  ,  ` RS  \  e    .    @!     ` A    ` E %  M V _  \ %   x  p  h ` L# ٸF #l $  % P& : @;7 @:ee 0(  @)' p* +  +|( `,H -n /G p/N 0k 016 n% p1= 1R `35x 5 6 8 < >R `>kf >c @?k ?c_ @C p@C  @S% A6: `B[ Bj C @Dx Dx @Ex Ex @F F3 GK pHe &`r Iz J8 K, M M @P+ 0SI Xb ]` h @ @ _ b) b, cT 0es fo pi jI  Ppb* rY z pb h   " @F3 R   0 2 0V n 0 Ш  " t_ p4   P  9 k {   S `= 8 0Z PWw  @6   4< +  L @#  #7D  @&[  'p  )<  +4  01! 0! 09Ns! 9! ;x! AxI" j" L" ̻" H" J6.# Q# W# Z $ g4$ @i>O$ ee$ i{ $ tz$ t.%( M% d% % ?& @e& E& C' PzW' м ' 8'  #(  p( `( p6) ) )1]) 7c ) 0Bz) By** 0^Lm* ct* j* 7+ {+ @+  , I, 0_,  ,x - F- ]i- y- p-  . @+S.` h. @;V. A'(/ piF l/ r/ jD/ 0aA@0 ^0 {0 0 R1 6;D1 U=C1 `o01 3Q2 -2 t2 N2 3 m-$I3 Б3 d3 FK3 4 "4` B4 \4 u4p 4 4 `  5 F ]P5 @> 45  5  $6@ t6 6 7` e7 7 7 7 7 8 <8 X8x u8p 8h 8` 8X 8P 9H 89@ Q98 f90 9 9 9 9 : @:( L: : : : : :` <;@ ; ; < ^< < < 8=` }=@ = > W> > > :? ~?` ?@ @ K@ @ @ A bA` A@ A 6B B B !C cC C` C hC D 1D LD dD D@ @D D` D D P E & E W>E ` UE @ "~E o& E m& E )E LE F 6F _F %F ]F `v "F  F v :G mGG u ApG `u OG u RG 2G `t H s }YO ! jO  !O  O  O  O  P  0P  SP  zP @ P  P #P P P  Q  8Q "`Q  ~Q "Q  Q @ Q 0 Q  $R  X S# MX L# \X % hX "$ vX  X E# X ># X $ X  X X  X X Y 7# Y P" +Y H =Y H" MY  hY  {Y  Y C% Y ` FY >% Y 9% Y Z& Y  Y $  Z  Z $ *Z $ 8Z 0% EZ 8 WZ  rZ 0# Z $ Z  Z p Z # Z % Z @" Z +% Z  [  "[  G[  ][  q[ ` [ &% [ [  [ # [  [ 8" [ X& \ \ 0" #\ (" 3\  G\ % S\ !% `\ % m\ *# |\ % \ " \ ## \ % \ % \ # \ V& \ % \ # \ # ] # ] # ] 1] % >] ( P] % \] # k]  ] @ ]  ]  ]  ] ]  ^  ^ $ %^ & 0^ " @^ Q^ b^ # p^ T& z^ # ^ " ^ x ^ # ^ " ^  ^ % ^  _ $ _  )_ )R_  d_ |% p_ ! _ ! _  _  _  _ ! _  _ h ` X ` ! !` ! 1` R& ;` H L` P& V` # d` $ q`  ` " `  ` # ` & ` & `  ` $ ` # ` " a " a ! $a $ 1a  Ca " Ra 0 pa 8 a x% a P a $ a % a % a % a # a  a  b $ b $ $b p% 0b ! @b $ Mb $ Zb " ib  {b % b h% b ( b  b # b (b #c $ &c # 4c k\c # jc N& tc d% c % c " c `% c  c ! c % c % c  c  d x !d x 3d  Dd  bd h ud L& d % d % d  d $ d # d J& d ! d " d  d #  e % e " 'e  8e  Ne h `e  e ! e " e ! e " e \% e 0 e 0 f # f X "f X% .f $ ;f  Sf X ef +f ` 8f " f ! f % f $ f % f H& g " g x %g # 3g P Lg ` "ug &g h g $ g $ g  g T% g  h  h  )h # 7h $ Dh P% Ph  ah " ph  h  h $ h x$ h  h q$ h H h # h X i L% i H% &i  7i h$ Di # Ri " ai y# oi H i s# i 'i 8 i  i ( i F& i " j H #j D& -j m# ;j cj ! sj % ~j B& j % j c$ j  j p j ! j 0 j *k  =k p Qk g# _k @& ik % tk % k % k x! k 8 k % k >& k % k % k % k <& k % k a# l ^$ l %  l@ .l 0Dl `l P~l l l Pm ? [m  m Cm ` 2 2n @ }n An o CLo o ` 7o /p x tp `i p @c q `^ Hq N sq `; q 8 r 3 Yr . r @* r & &s  Wks  s ` s 9t vtt t P t t tx t tp vt u | u 8cu 8u 8u $v 8Uv bv vȬ v` 8v' wp w V &w;wMw^wiwwwwwwwwwxx(x DxWxdxqxxxxxxxxyy'y;yLycypyyCyyyyzz(z4zGzVzfzvzzzzzzz{/{<{S{e{x{{{{{{{||/|?|Q|j|~||||||||}}#}6}G}}i}}}.}}}}} ~~'~:~L~Z~l~~~~ ~~~~(;Gaq 5@N]wĀӀ$6ARj}  ́#/DUpłڂ$9GUdxу݃' AUh~Ȅ߄&;N_l}"Åхޅ%=Skw_rotation.c__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_7__bool____pyx_tp_traverse_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct__from_euler__pyx_tp_traverse_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_2__compute_euler__pyx_tp_traverse_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_3_genexpr__pyx_tp_traverse_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_4_genexpr__Pyx_CyFunction_get_qualname__Pyx_CyFunction_get_globals__Pyx_CyFunction_get_closure__Pyx_CyFunction_get_code__pyx_typeinfo_cmp__Pyx_Coroutine_get_is_running_getter__Pyx_Coroutine_get_qualname__Pyx_Coroutine_get_name__pyx_tp_new_5scipy_7spatial_9transform_9_rotation_Rotation__pyx_mstate_global_static__Pyx_CyFunction_get_annotations__Pyx_CyFunction_get_dict__Pyx_Coroutine_fail_reduce_ex__Pyx_CyFunction_CallMethod__Pyx_PyObject_GetAttrStr__Pyx_PyList_Pack__pyx_memview_get_double__pyx_memview_set_double__pyx_CommonTypesMetaclass_get_module__Pyx_CyFunction_get_doc__Pyx_CyFunction_get_name__Pyx_CyFunction_repr__Pyx_PyType_ReadyPy_XDECREF__Pyx_CyFunction_get_kwdefaults__Pyx_RejectKeywords__Pyx_PyNumber_LongWrongResultType__Pyx_PyLong_As_int__pyx_sq_item_5scipy_7spatial_9transform_9_rotation_Rotation__Pyx_Coroutine_get_frame__Pyx_PyCode_New__Pyx_copy_spec_to_module__pyx_tp_dealloc_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_4_genexpr__pyx_tp_dealloc_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_3_genexpr__pyx_tp_dealloc_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_2__compute_euler__pyx_tp_dealloc_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_1_genexpr__pyx_tp_dealloc_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct__from_euler__Pyx_ImportFunction_3_1_6__Pyx__SetItemOnTypeDict__pyx_pymod_createmain_interpreter_id.38__pyx_m__pyx_tp_traverse_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_1_genexpr__Pyx_CyFunction_traverse__Pyx_Coroutine_traverse__Pyx_IsSubtype__Pyx_VerifyCachedType__Pyx_CyFunction_Vectorcall_O__Pyx_IternextUnpackEndCheck.part.0__Pyx_PyLong_AbsNeg__pyx_tp_new_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_4_genexpr__Pyx_PyMethod_New__Pyx_CyFunction_CallAsMethod__Pyx_Method_ClassMethod__Pyx_FetchCommonTypeFromSpec.constprop.0__Pyx_CreateCodeObjects.constprop.0descr.0__pyx_k_a_2descr.1descr.2__pyx_k_Qdescr.3__pyx_k_Qaxq_1E_QfA__pyx_k_Adescr.4__pyx_k_Rxq_a_q_81A_y_1_6_s_V82S_6_A_V4descr.5descr.6__pyx_k_A_r_hfHDdescr.7__pyx_k_A_iq_IT_a_Kq__pyx_k_A_s_6_6_adescr.8__pyx_k_AZ_A_6_F_3a_AV7_4t3a_AQ07q_a_6_Cdescr.9__pyx_k_A_A_81HF_1_Rxq_6_xs_S_fAS_was_Qdescr.10descr.11__pyx_k_A_z_3aq_9Bb_9Ba_AQBI_RvQ_uG1_RvQ__pyx_k_A9_b_6_U_4uA_AQ07q_r_4vS_4xq_A_3descr.12__pyx_k_AH_A_b_fA_3fHCs_S_as_3hb_3a_AQ07descr.13__pyx_k_A_7q_4q_V1D_Q_q_aq_XU_q_q_1_q_3edescr.14__pyx_k_A_Q_F_1_gQoS_G5_AU_AU_AU_AU_2Q_2descr.15__pyx_k_A_1D_7_G5_4vQgU_1_Bb_QfAWD_vS_rdescr.16descr.17__pyx_k_A_3auCq_A_7waq_RvQ_uG1_RvQ_uG1_5descr.18__pyx_k_A12f_t_5descr.19__pyx_k_A_l_t_5__pyx_k_A01R_6_U_4uA_AQ07q_3avS_A_7was_1descr.20descr.21__pyx_k_Av_1D_G5_1E_V1E_BgQ_Be2T_q_Q_U_1descr.22__pyx_k_Ad_Qk_3ay_JgU_Q_1A_aq_Qaxt4uA_s__pyx_k_A_l_HAQ_7_CwfBc_A_AQ_QgQ_s_E_Cqdescr.23__pyx_k_AB_r_q_HE_D_q_D_q_D_q_4q_4q_t_Qfdescr.24__pyx_k_A_Q_F_1_q_G5_7_Be1F_4q_e3at1E_4qdescr.25__pyx_k_A_H_qN_5_1_q_Qa_1_2XQa_d_Zq_wbdescr.26descr.27__pyx_k_A_X_4vV1Cs_AQ_83a_b_Qc_b_wfCq_j__pyx_k_A_1_5_5_F_Q_d_AT_7_q_q_y_a_q_3adescr.28__pyx_k_A_F_1E_Qdescr.29__pyx_k_A_4s_Cs_q_T_a_s_3jdescr.30__pyx_k_A_b_4s_S_q_Q_S_q_e1_s_1descr.31__pyx_k_A_B_N_RvQc_q_RvQc_q_Bk_Bk_1F_Csdescr.32descr.33__pyx_k_T_Q_G1F_a_vWA_q_q_q_Qg_q_Qg__pyx_k_avQdescr.34descr.35__pyx_k_A_4z_Q_1A_9HCs_c_AQ_1_5_c_AQ_1_qdescr.36__pyx_k_A_1_b_AQ_m6_A_Qa_b_Qd_1_1N_T_q_adescr.37__pyx_k_hk_A_1_yy_881A_7_nA_1__Pyx_ImportType_3_1_6.constprop.0__Pyx_PyLong_SubtractObjC.constprop.0__Pyx_PyLong_TrueDivideObjC.constprop.0__Pyx__PyObject_LookupSpecial.constprop.0__Pyx_CyFunction_New.constprop.0__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD__Pyx_CyFunction_Vectorcall_NOARGS__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS__Pyx_PyLong_BoolEqObjC.constprop.0__Pyx_MatchKeywordArg_nostr.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__pyx_fatalerror.constprop.0__func__.39__Pyx_XCLEAR_MEMVIEW.constprop.0__Pyx_PyObject_Call.constprop.0__pyx__insert_code_object.constprop.0__Pyx_INC_MEMVIEW.constprop.0.isra.0__Pyx_Coroutine_SendEx.constprop.0__Pyx__ExceptionSave.isra.0__pyx_f_5scipy_7spatial_9transform_9_rotation__norm3.isra.0__Pyx_GetVtable.isra.0__Pyx_CyFunction_reduce__Pyx_PyUnicode_Join__Pyx_MatchKeywordArg_str.constprop.0__Pyx_PyLong_BoolNeObjC.constprop.0__Pyx_PyUnicode_Equals.constprop.0__Pyx_GetItemInt_Fast.constprop.0__Pyx_Coroutine_clear.isra.0__Pyx_Coroutine_dealloc__pyx_tp_new_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_1_genexpr__pyx_tp_new_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct__from_euler__pyx_tp_new_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_2__compute_euler__pyx_tp_new_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_3_genexpr__pyx_tp_clear_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct__from_euler__pyx_tp_clear_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_2__compute_euler__Pyx_CyFunction_set_doc__Pyx_PyLong_As_long__Pyx_CyFunction_set_annotations__Pyx_TypeTest__Pyx__ExceptionReset.isra.0__Pyx_Coroutine_set_qualname__Pyx_CyFunction_set_name__Pyx_CyFunction_set_qualname__Pyx_Coroutine_set_name__Pyx_CyFunction_set_defaults__Pyx_CyFunction_set_kwdefaults__Pyx_ErrRestoreInState__Pyx_CyFunction_set_dict__Pyx_Import__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx__GetException__Pyx__ReturnWithStopIteration.constprop.0__Pyx_CyFunction_get_defaults__Pyx_Raise.constprop.0__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__GetBufferAndValidate.constprop.0__Pyx_TypeInfo_double__Pyx_minusones__Pyx_zeros__Pyx_CyFunction_clear__Pyx_CyFunction_dealloc__pyx_tp_dealloc_5scipy_7spatial_9transform_9_rotation_Rotation__Pyx_PyObject_FastCallDict.constprop.0__Pyx__ArgTypeTest.constprop.0__Pyx_PyObject_FastCallDict.constprop.1__Pyx_IterFinish__Pyx_ValidateAndInit_memviewslice.constprop.1__pyx_memoryview_new__Pyx_PyObject_to_MemoryviewSlice_dsds_double.constprop.0__Pyx_ValidateAndInit_memviewslice.constprop.2__Pyx_ValidateAndInit_memviewslice.constprop.0__Pyx_PyObject_to_MemoryviewSlice_ds_double__const__.constprop.0__Pyx_TypeInfo_double__const____Pyx_CyFunction_get_is_coroutine__Pyx_PyObject_GetIndex__Pyx_ImportFrom__Pyx_AddTraceback.constprop.0__pyx_f_5scipy_7spatial_9transform_9_rotation__empty1__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_4__setstate____pyx_getprop_5scipy_7spatial_9transform_9_rotation_8Rotation_single__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_9__len____pyx_builtin_TypeError__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_69__repr____Pyx_AddTraceback.constprop.1__pyx_f_5scipy_7spatial_9transform_9_rotation___pyx_unpickle_Rotation__set_state__pyx_f_5scipy_7spatial_9transform_9_rotation__cross3.isra.0__pyx_f_5scipy_7spatial_9transform_9_rotation__empty2__pyx_f_5scipy_7spatial_9transform_9_rotation__zeros2.constprop.0__pyx_f_5scipy_7spatial_9transform_9_rotation__elementary_basis_vector__pyx_format_from_typeinfo__pyx_v_5scipy_7spatial_9transform_9_rotation__ey__pyx_array_new__pyx_v_5scipy_7spatial_9transform_9_rotation__ex__pyx_v_5scipy_7spatial_9transform_9_rotation__ez__Pyx_PyObject_GetItem_Slow__Pyx_PyObject_GetItem__Pyx_Coroutine_CloseIter.constprop.0__Pyx_Coroutine_Close.constprop.0__Pyx_Coroutine_Close_Method__Pyx_Coroutine_del__pyx_f_5scipy_7spatial_9transform_9_rotation__compose_quat_single.isra.0__pyx_memoryview_slice_memviewslice__pyx_f_5scipy_7spatial_9transform_9_rotation__compose_quat.isra.0__pyx_pf_5scipy_7spatial_9transform_9_rotation_compose_quat.constprop.0__pyx_memoryview_fromslice__pyx_pw_5scipy_7spatial_9transform_9_rotation_1compose_quat__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_5__setstate____Pyx_Coroutine_FinishDelegation__Pyx_Coroutine_AmSend__Pyx_Generator_Next__Pyx_Coroutine_Send__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_73__setstate_cython____pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_42__mul____pyx_builtin_ValueError__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_43__mul____pyx_nb_multiply_5scipy_7spatial_9transform_9_rotation_Rotation__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_33as_euler__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_31_as_euler_from_matrix__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce_is_named__Pyx_ImportDottedModule.constprop.0__Pyx_Generator_Replace_StopIteration.constprop.0__pyx_gb_5scipy_7spatial_9transform_9_rotation_8Rotation_10from_euler_2generator__pyx_gb_5scipy_7spatial_9transform_9_rotation_8Rotation_14_compute_euler_2generator1__pyx_gb_5scipy_7spatial_9transform_9_rotation_8Rotation_11concatenate_2generator2__pyx_pw_5scipy_7spatial_9transform_9_rotation_5__pyx_unpickle_Rotation__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__Pyx__GetNameInClass__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_36as_mrp__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_37as_mrp__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_26as_rotvec__pyx_memoryview_copy_contents__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_27as_rotvec__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_6reduce_split_rotation.constprop.0__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_6reduce_1split_rotation__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_3__getstate____pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_59__getitem____pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_24as_matrix__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_25as_matrix__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_60__setitem____pyx_mp_ass_subscript_5scipy_7spatial_9transform_9_rotation_Rotation__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_47inv__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_71__reduce_cython____pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_39concatenate__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_19from_davenport__pyx_builtin_range__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_51approx_equal__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_48magnitude__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_49magnitude__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_22as_quat__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_23as_quat__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_11from_quat__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation___init____pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_1__init____pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_20from_mrp__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_21from_mrp__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_65random__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_57create_group__pyx_f_5scipy_7spatial_9transform_9_rotation__elementary_quat_compose.constprop.0.isra.0__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_44__pow____pyx_builtin_NotImplementedError__pyx_nb_power_5scipy_7spatial_9transform_9_rotation_Rotation__Pyx__Coroutine_Throw.constprop.0__Pyx_Coroutine_Throw__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_14from_rotvec__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_15from_rotvec__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_16from_euler__Pyx_TypeInfo_nn___pyx_t_5scipy_7spatial_9transform_9_rotation_uchar__const____pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_17from_euler__pyx_pw_5scipy_7spatial_9transform_9_rotation_5Slerp_3__call____pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_63identity__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_41apply__pyx_f_5scipy_7spatial_9transform_9_rotation__compute_euler_from_matrix__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_28_compute_euler__pyx_assertions_enabled_flag__pyx_builtin_AssertionError__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_29_compute_euler__pyx_pw_5scipy_7spatial_9transform_9_rotation_5Slerp_1__init____pyx_pw_5scipy_7spatial_9transform_9_rotation_3_format_angles__pyx_f_5scipy_7spatial_9transform_9_rotation__compute_davenport_from_quat__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_35as_davenport__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_12from_matrixDIGIT_PAIRS_10__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_13from_matrix__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_55reduce__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_6reduce_1split_rotation__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_53mean__pyx_pf_5scipy_7spatial_9transform_9_rotation_8Rotation_66align_vectors__pyx_pw_5scipy_7spatial_9transform_9_rotation_8Rotation_67align_vectors__pyx_pymod_exec__rotation__pyx_string_tab__pyx_string_tab_encodings__pyx_CommonTypesMetaclass_spec__pyx_CyFunctionType_spec__pyx_GeneratorType_spec__pyx_builtin_ImportError__pyx_type_5scipy_7spatial_9transform_9_rotation_Rotation__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_8__len____pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_42__mul____pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_44__pow____pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_58__getitem____pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_60__setitem____pyx_type_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct__from_euler__pyx_type_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_1_genexpr__pyx_type_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_2__compute_euler__pyx_type_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_3_genexpr__pyx_type_5scipy_7spatial_9transform_9_rotation___pyx_scope_struct_4_genexpr__pyx_array_allocate_buffer__pyx_memview_slice__pyx_pybuffer_index__pyx_memslice_transpose__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview_slice_copy__pyx_memoryview_copy_object__pyx_memoryview_copy_object_from_slice__pyx_get_best_slice_order__pyx_memoryview_slice_get_size__pyx_fill_contig_strides_array__pyx_memoryview_copy_data_to_temp__pyx_memoryview_err_extents__pyx_memoryview_err_dim__pyx_memoryview_err__pyx_memoryview_err_no_memory__pyx_memoryview_broadcast_leading__pyx_memoryview_refcount_copying__pyx_memoryview_refcount_objects_in_slice__pyx_memoryview_slice_assign_scalar__pyx_memoryview__slice_assign_scalarPyArray_API__pyx_mdef_5scipy_7spatial_9transform_9_rotation_1compose_quat__pyx_t_5.42__pyx_t_7.40__pyx_t_6.41__pyx_mdef_5scipy_7spatial_9transform_9_rotation_3_format_angles__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_3__getstate____pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_5__setstate____pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_11from_quat__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_13from_matrix__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_15from_rotvec__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_17from_euler__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_19from_davenport__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_21from_mrp__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_23as_quat__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_25as_matrix__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_27as_rotvec__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_29_compute_euler__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_31_as_euler_from_matrix__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_33as_euler__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_35as_davenport__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_37as_mrp__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_39concatenate__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_41apply__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_47inv__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_49magnitude__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_51approx_equal__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_53mean__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_55reduce__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_57create_group__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_63identity__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_65random__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_67align_vectors__pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_71__reduce_cython____pyx_mdef_5scipy_7spatial_9transform_9_rotation_8Rotation_73__setstate_cython____pyx_mdef_5scipy_7spatial_9transform_9_rotation_5Slerp_1__init____pyx_mdef_5scipy_7spatial_9transform_9_rotation_5Slerp_3__call____pyx_mdef_5scipy_7spatial_9transform_9_rotation_5__pyx_unpickle_Rotation__pyx_moduledef__pyx_GeneratorType_slots__pyx_Generator_methods__pyx_Generator_memberlist__pyx_Generator_getsets__pyx_CyFunctionType_slots__pyx_CyFunction_methods__pyx_CyFunction_members__pyx_CyFunction_getsets__pyx_CommonTypesMetaclass_slots__pyx_CommonTypesMetaclass_getset__pyx_k___pyx_k_Apply_this_rotation_to_a_set_of__pyx_k_AssertionError__pyx_k_Axes_must_be_vectors_of_length_3__pyx_k_B__pyx_k_C__pyx_k_Cannot_align_zero_length_primary__pyx_k_Cannot_return_sensitivity_matrix__pyx_k_Compose_this_rotation_with_itsel__pyx_k_Compose_this_rotation_with_the_o__pyx_k_Concatenate_a_sequence_of_Rotati__pyx_k_Consecutive_axes_must_be_orthogo__pyx_k_Determine_if_another_rotation_is__pyx_k_Estimate_a_rotation_to_optimally__pyx_k_Expected_3_axes_got__pyx_k_Expected_angles_parameter_to_hav__pyx_k_Expected_angles_to_be_at_most_2__pyx_k_Expected_angles_to_have_shape_nu__pyx_k_Expected_axes_from_seq_to_be_fro__pyx_k_Expected_axis_specification_to_b__pyx_k_Expected_consecutive_axes_to_be__pyx_k_Expected_equal_number_of_rotatio__pyx_k_Expected_equal_numbers_of_rotati__pyx_k_Expected_float_1D_array_or_2D_ar__pyx_k_Expected_input_a_to_have_shape_3__pyx_k_Expected_input_b_to_have_shape_3__pyx_k_Expected_input_of_shape_3_or_P_3__pyx_k_Expected_inputs_a_and_b_to_have__pyx_k_Expected_matrix_to_have_shape_3__pyx_k_Expected_mrp_to_have_shape_3_or__pyx_k_Expected_number_of_rotations_to__pyx_k_Expected_quat_to_have_shape_4_or__pyx_k_Expected_rot_vec_to_have_shape_3__pyx_k_Expected_times_to_be_specified_i__pyx_k_Expected_up_to_3_axes_got__pyx_k_Expected_weights_to_be_1_dimensi__pyx_k_Expected_weights_to_have_number__pyx_k_Expected_weights_to_have_number_2__pyx_k_Extract_rotation_s_at_given_inde__pyx_k_Found_zero_norm_quaternions_in_q__pyx_k_Generate_uniformly_distributed_r__pyx_k_Get_the_magnitude_s_of_the_rotat__pyx_k_Get_the_mean_of_the_rotations_Th__pyx_k_Gimbal_lock_detected_Setting_thi__pyx_k_ImportError__pyx_k_Incompatible_checksums_0x_x_vs_0__pyx_k_Initialize_from_Davenport_angles__pyx_k_Initialize_from_Euler_angles_Rot__pyx_k_Initialize_from_Modified_Rodrigu__pyx_k_Initialize_from_quaternions_Rota__pyx_k_Initialize_from_rotation_matrix__pyx_k_Initialize_from_rotation_vectors__pyx_k_Interpolation_times_must_be_with__pyx_k_Invert_this_rotation_Composition__pyx_k_K__pyx_k_Mean_of_an_empty_rotation_set_is__pyx_k_N__pyx_k_Non_positive_determinant_left_ha__pyx_k_NotImplementedError__pyx_k_Note_that_Cython_is_deliberately__pyx_k_Only_one_infinite_weight_is_allo__pyx_k_Optimal_rotation_is_not_uniquely__pyx_k_PickleError__pyx_k_R__pyx_k_R_flip__pyx_k_R_opt__pyx_k_R_pri__pyx_k_R_sec__pyx_k_Represent_as_Davenport_angles_An__pyx_k_Represent_as_Euler_angles_Any_or__pyx_k_Represent_as_Modified_Rodrigues__pyx_k_Represent_as_quaternions_Rotatio__pyx_k_Represent_as_rotation_matrix_3D__pyx_k_Represent_as_rotation_vectors_A__pyx_k_Rotation__pyx_k_Rotation___getitem___line_3117__pyx_k_Rotation___getstate__pyx_k_Rotation___mul___line_2613__pyx_k_Rotation___pow___line_2694__pyx_k_Rotation___reduce_cython__pyx_k_Rotation___setstate__pyx_k_Rotation___setstate_cython__pyx_k_Rotation__as_euler_from_matrix__pyx_k_Rotation__compute_euler__pyx_k_Rotation_align_vectors__pyx_k_Rotation_align_vectors_line_3304__pyx_k_Rotation_apply__pyx_k_Rotation_apply_line_2459__pyx_k_Rotation_approx_equal__pyx_k_Rotation_approx_equal_line_2860__pyx_k_Rotation_as_davenport__pyx_k_Rotation_as_davenport_line_2175__pyx_k_Rotation_as_euler__pyx_k_Rotation_as_euler_line_2086__pyx_k_Rotation_as_matrix__pyx_k_Rotation_as_matrix_line_1790__pyx_k_Rotation_as_mrp__pyx_k_Rotation_as_mrp_line_2321__pyx_k_Rotation_as_quat__pyx_k_Rotation_as_quat_line_1695__pyx_k_Rotation_as_rotvec__pyx_k_Rotation_as_rotvec_line_1895__pyx_k_Rotation_concatenate__pyx_k_Rotation_concatenate_line_2400__pyx_k_Rotation_create_group__pyx_k_Rotation_from_davenport__pyx_k_Rotation_from_davenport_line_143__pyx_k_Rotation_from_euler__pyx_k_Rotation_from_euler_line_1316__pyx_k_Rotation_from_matrix__pyx_k_Rotation_from_matrix_2__pyx_k_Rotation_from_matrix_line_1014__pyx_k_Rotation_from_mrp__pyx_k_Rotation_from_mrp_line_1593__pyx_k_Rotation_from_quat__pyx_k_Rotation_from_quat_line_914__pyx_k_Rotation_from_rotvec__pyx_k_Rotation_from_rotvec_line_1206__pyx_k_Rotation_identity__pyx_k_Rotation_inv__pyx_k_Rotation_inv_line_2775__pyx_k_Rotation_magnitude__pyx_k_Rotation_magnitude_line_2816__pyx_k_Rotation_mean__pyx_k_Rotation_mean_line_2913__pyx_k_Rotation_random__pyx_k_Rotation_random_line_3243__pyx_k_Rotation_reduce__pyx_k_Single_rotation_has_no_len__pyx_k_Single_rotation_is_not_subscript__pyx_k_Slerp__pyx_k_Slerp___call__pyx_k_Slerp___init__pyx_k_Spherical_Linear_Interpolation_o__pyx_k_T__pyx_k_Times_must_be_in_strictly_increa__pyx_k_TypeError__pyx_k_U__pyx_k_ValueError__pyx_k_Vt__pyx_k_XYZ_1_3__pyx_k_Z__pyx_k__2__pyx_k__3__pyx_k__4__pyx_k__5__pyx_k__6__pyx_k__7__pyx_k_a__pyx_k_a_est__pyx_k_a_original__pyx_k_a_pri__pyx_k_a_pri_norm__pyx_k_a_sec__pyx_k_abs__pyx_k_add_note__pyx_k_algorithm__pyx_k_align_vectors__pyx_k_all__pyx_k_alpha__pyx_k_angle__pyx_k_angle2__pyx_k_angles__pyx_k_any__pyx_k_apply__pyx_k_approx_equal__pyx_k_argmax__pyx_k_argmin__pyx_k_array__pyx_k_as_davenport__pyx_k_as_euler__pyx_k_as_euler_from_matrix__pyx_k_as_matrix__pyx_k_as_mrp__pyx_k_as_quat__pyx_k_as_rotvec__pyx_k_asarray__pyx_k_asyncio_coroutines__pyx_k_atleast_1d__pyx_k_atleast_2d__pyx_k_atol__pyx_k_atol_must_be_set_to_use_the_degr__pyx_k_axes__pyx_k_axis__pyx_k_b__pyx_k_b_original__pyx_k_b_pri__pyx_k_b_pri_norm__pyx_k_b_sec__pyx_k_c_sec__pyx_k_call__pyx_k_canonical__pyx_k_check_random_state__pyx_k_choice__pyx_k_class__pyx_k_class_getitem__pyx_k_cline_in_traceback__pyx_k_close__pyx_k_cls__pyx_k_cmatrix__pyx_k_cmrp__pyx_k_compose_quat__pyx_k_compute_euler__pyx_k_compute_euler_locals_genexpr__pyx_k_compute_times__pyx_k_concatenate__pyx_k_concatenate_locals_genexpr__pyx_k_copy__pyx_k_cos_term__pyx_k_create_group__pyx_k_cross__pyx_k_cross_norm__pyx_k_crotvec__pyx_k_d__pyx_k_decision__pyx_k_deg2rad__pyx_k_degrees__pyx_k_denominator__pyx_k_det__pyx_k_dets__pyx_k_dict__pyx_k_dict_2__pyx_k_diff__pyx_k_disable__pyx_k_divide__pyx_k_doc__pyx_k_dot__pyx_k_dtype__pyx_k_e__pyx_k_eigh__pyx_k_einsum__pyx_k_enable__pyx_k_encode__pyx_k_enter__pyx_k_errstate__pyx_k_exit__pyx_k_extrinsic__pyx_k_eye__pyx_k_format__pyx_k_format_angles__pyx_k_from_davenport__pyx_k_from_euler__pyx_k_from_euler_locals_genexpr__pyx_k_from_matrix__pyx_k_from_mrp__pyx_k_from_quat__pyx_k_from_rotvec__pyx_k_func__pyx_k_gc__pyx_k_genexpr__pyx_k_getstate__pyx_k_gramians__pyx_k_group__pyx_k_i__pyx_k_i_j_k__pyx_k_i_jx_kx__pyx_k_identity__pyx_k_ignore__pyx_k_ij_ij_i__pyx_k_ijk_ik_ij__pyx_k_ind__pyx_k_indices_to_orthogonalize__pyx_k_init__pyx_k_initializing__pyx_k_input_must_contain_Rotation_obje__pyx_k_intrinsic__pyx_k_inv__pyx_k_invalid__pyx_k_inverse__pyx_k_is_coroutine__pyx_k_is_orthogonal__pyx_k_is_single__pyx_k_isclose__pyx_k_isenabled__pyx_k_isposinf__pyx_k_itemsize__pyx_k_ix_j_kx__pyx_k_ix_jx_k__pyx_k_j__pyx_k_ji_jk_ik__pyx_k_k__pyx_k_kappa__pyx_k_left__pyx_k_left_best__pyx_k_linalg__pyx_k_logical_or__pyx_k_lower__pyx_k_ls__pyx_k_lv__pyx_k_magnitude__pyx_k_main__pyx_k_match__pyx_k_matmul__pyx_k_matrix__pyx_k_max_ind__pyx_k_mean__pyx_k_metaclass__pyx_k_module__pyx_k_modulus_not_supported__pyx_k_moveaxis__pyx_k_mrp__pyx_k_mrp_squared_plus_1__pyx_k_mrps__pyx_k_n1__pyx_k_n2__pyx_k_n3__pyx_k_n_inf__pyx_k_n_rotations__pyx_k_n_vectors__pyx_k_name__pyx_k_ndim__pyx_k_new__pyx_k_newaxis__pyx_k_next__pyx_k_norm__pyx_k_normal__pyx_k_normalize__pyx_k_np__pyx_k_num__pyx_k_num_axes__pyx_k_num_rotations__pyx_k_numpy__pyx_k_numpy__core_multiarray_failed_to__pyx_k_numpy__core_umath_failed_to_impo__pyx_k_ones__pyx_k_order__pyx_k_order_should_be_e_extrinsic_for__pyx_k_other__pyx_k_p__pyx_k_phi__pyx_k_pi__pyx_k_pickle__pyx_k_pop__pyx_k_position_num__pyx_k_prepare__pyx_k_ps__pyx_k_pv__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Rotation__pyx_k_pyx_vtable__pyx_k_q__pyx_k_qi__pyx_k_qs__pyx_k_qualname__pyx_k_quat__pyx_k_quats__pyx_k_r__pyx_k_rad2deg__pyx_k_random__pyx_k_random_state__pyx_k_range__pyx_k_re__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_reduce_locals_split_rotation__pyx_k_reduced__pyx_k_repeat__pyx_k_reshape__pyx_k_result__pyx_k_ret__pyx_k_return_indices__pyx_k_return_sensitivity__pyx_k_right__pyx_k_right_best__pyx_k_rng__pyx_k_roll__pyx_k_rotation_groups__pyx_k_rotations__pyx_k_rotations_must_be_a_Rotation_in__pyx_k_rotations_must_be_a_sequence_of__pyx_k_rotvec__pyx_k_rotvecs__pyx_k_rs__pyx_k_rssd__pyx_k_rv__pyx_k_s__pyx_k_sample__pyx_k_scalar_first__pyx_k_scale__pyx_k_scipy__lib__util__pyx_k_scipy_spatial_transform__rotatio__pyx_k_scipy_spatial_transform__rotatio_2__pyx_k_searchsorted__pyx_k_self__pyx_k_send__pyx_k_sensitivity__pyx_k_seq__pyx_k_set_name__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_sign__pyx_k_sin__pyx_k_sin_term__pyx_k_single__pyx_k_single_time__pyx_k_single_vector__pyx_k_size__pyx_k_spec__pyx_k_split_rotation__pyx_k_sqrt__pyx_k_stacklevel__pyx_k_state__pyx_k_stringsource__pyx_k_sum__pyx_k_svd__pyx_k_swapaxes__pyx_k_test__pyx_k_theta__pyx_k_theta2__pyx_k_throw__pyx_k_timedelta__pyx_k_times__pyx_k_times_must_be_at_most_1_dimensi__pyx_k_tolerance__pyx_k_transition_to_rng__pyx_k_transpose__pyx_k_u__pyx_k_update__pyx_k_use_setstate__pyx_k_v__pyx_k_value__pyx_k_value_must_be_a_Rotation_object__pyx_k_vectors__pyx_k_vh__pyx_k_w__pyx_k_w2__pyx_k_warn__pyx_k_warnings__pyx_k_weight_is_inf__pyx_k_weights__pyx_k_weights_inf_zero__pyx_k_weights_may_not_contain_negativ__pyx_k_weights_must_be_non_negative__pyx_k_weights_sec__pyx_k_where__pyx_k_x__pyx_k_x2__pyx_k_xw__pyx_k_xy__pyx_k_xyz_1_3__pyx_k_xyz_ix_jy_kz__pyx_k_xz__pyx_k_y__pyx_k_y2__pyx_k_yw__pyx_k_yz__pyx_k_z__pyx_k_z2__pyx_k_zeros__pyx_k_zeta__pyx_k_zw__pyx_methods__pyx_moduledef_slots__pyx_tp_as_number_Rotation__pyx_tp_as_sequence_Rotation__pyx_tp_as_mapping_Rotation__pyx_methods_5scipy_7spatial_9transform_9_rotation_Rotation__pyx_getsets_5scipy_7spatial_9transform_9_rotation_Rotation__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_10from_quat__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_12from_matrix__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_14from_rotvec__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_16from_euler__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_18from_davenport__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_20from_mrp__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_22as_quat__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_24as_matrix__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_26as_rotvec__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_28_compute_euler__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_30_as_euler_from_matrix__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_32as_euler__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_34as_davenport__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_36as_mrp__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_38concatenate__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_40apply__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_46inv__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_48magnitude__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_50approx_equal__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_52mean__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_54reduce__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_56create_group__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_62identity__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_64random__pyx_doc_5scipy_7spatial_9transform_9_rotation_8Rotation_66align_vectors__pyx_doc_5scipy_7spatial_9transform_9_rotation_5Slerp_2__call____pyx_doc_5scipy_7spatial_9transform_9_rotation_compose_quatcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END____pyx_wrapperbase_5scipy_7spatial_9transform_9_rotation_8Rotation_8__len____pyx_wrapperbase_5scipy_7spatial_9transform_9_rotation_8Rotation_44__pow____pyx_wrapperbase_5scipy_7spatial_9transform_9_rotation_8Rotation_60__setitem___fini__pyx_wrapperbase_5scipy_7spatial_9transform_9_rotation_8Rotation_58__getitem____dso_handle__pyx_module_is_main_scipy__spatial__transform___rotation_DYNAMIC__pyx_wrapperbase_5scipy_7spatial_9transform_9_rotation_8Rotation_42__mul____GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatPyNumber_NegativePyObject_SetItemPyList_NewPyObject_InitPyExc_SystemErrorPyType_FromMetaclassPyDict_SetItemStringPyDict_SizePyThreadState_GetFramePyUnicode_ResizePyException_SetTracebackPyExc_NotImplementedErrorPyMethod_Type_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyObject_FormatPyErr_RestorePyObject_ClearWeakRefs_PyThreadState_UncheckedGetPyModuleDef_InitPy_EnterRecursiveCallPyFrame_NewPyMem_Free__isnan@@GLIBC_2.2.5PyCapsule_GetNamePyNumber_InPlaceAddPyBuffer_Releasevsnprintf@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyObject_CallMethodObjArgsPyImport_AddModulePyBytes_FromStringAndSize_PyObject_GenericGetAttrWithDictPyObject_SetAttrStringPyWrapperDescr_TypePyErr_WarnEx_Py_DeallocPyModule_NewObjectPyErr_NoMemoryPyErr_SetObjectPyObject_GC_DelPyErr_NormalizeException_PyObject_CallFunction_SizeTPyNumber_AbsolutePyNumber_MultiplyPyLong_FromSize_t_Py_NotImplementedStructPyArg_ValidateKeywordArgumentsPyObject_RichComparePyGC_DisablePyImport_GetModuleDictPyObject_GC_TrackPyExc_RuntimeErrorPyObject_SelfIterPyErr_GivenExceptionMatchesPyErr_SetString_PyObject_GC_NewPyException_GetTracebackPyExc_ExceptionPyExc_ValueErrorstrrchr@@GLIBC_2.2.5PyExc_DeprecationWarningPyExc_TypeErrorPyGILState_EnsurePyInterpreterState_GetIDPySequence_ContainsPyTuple_GetItemPyErr_PrintEx_PyLong_Copymemset@@GLIBC_2.2.5PyMem_ReallocPyErr_SetNonePyErr_ExceptionMatchessincos@@GLIBC_2.2.5PyTraceBack_TypePyOS_snprintf_Py_FatalErrorFuncPyTraceBack_HerePyObject_CallFinalizerFromDeallocPyNumber_InPlaceTrueDividePyLong_FromSsize_tPyFloat_FromDoubleacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5PyLong_AsSsize_tPyObject_RichCompareBoolPyModule_GetNamePyErr_ClearPyEval_GetBuiltinsPyClassMethod_NewPyList_AppendPyCapsule_IsValidPyImport_GetModule_PyUnicode_FastCopyCharacters_Py_FalseStruct__gmon_start__PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemmemcpy@@GLIBC_2.14PyNumber_RemainderPyType_Type_PyDict_SetItem_KnownHashPyType_ModifiedPyArg_UnpackTuplePyObject_SetAttrPyErr_OccurredPyLong_AsLongPyImport_ImportModule_PyDict_GetItem_KnownHashPy_LeaveRecursiveCallPyObject_VectorcallDictPyTuple_GetSlicePyDict_GetItemStringPy_VersionPyObject_Size_Py_NoneStructPyExc_ModuleNotFoundErrorPyExc_ZeroDivisionErrorPyObject_VectorcallPyFloat_AsDoublePyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectatan2@@GLIBC_2.2.5PyObject_Hash_Py_TrueStructPyDict_SetDefaultPyDict_NewPyExc_IndexErrorPyObject_GC_IsFinalizedPyObject_GetBufferPyDict_TypePyInit__rotationPyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5PyObject_VectorcallMethodPyLong_TypePyCapsule_TypePyGC_EnablePyException_SetCausePyErr_FetchPyUnicode_FromStringPyObject_GetIterPyUnicode_InternFromStringPyUnstable_Code_NewWithPosOnlyArgsPyExc_ImportErrorPyDict_SetItemPyObject_HasAttrPyExc_AttributeErrorPyBytes_AsStringPyObject_IsSubclassPyExc_StopIterationsin@@GLIBC_2.2.5PyExc_RuntimeWarningPyObject_ReprPyObject_CallPyUnicode_TypePyExc_GeneratorExitPyType_IsSubtypePyUnicode_DecodePyErr_FormatPyCapsule_GetPointer_Py_BuildValue_SizeTPySlice_NewPyExc_NameErrorPyIter_CheckPyUnicode_FromStringAndSizePyModule_GetDict_ITM_registerTMCloneTablePyLong_FromLongLonghypot@@GLIBC_2.2.5PyUnicode_FromOrdinalPyUnicode_ConcatPyNumber_InPlaceMultiplyPyNumber_IndexPyObject_GetAttrPyDescr_NewClassMethodsqrt@@GLIBC_2.2.5PyCFunction_TypePyNumber_Invert_PyDict_NewPresizedPyUnicode_SplitlinesPyMethodDescr_TypePyUnicode_FormatPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5PyNumber_SubtractPyNumber_MatrixMultiplyPyUnicode_NewPyTuple_PackPyNumber_PowerPyCode_NewEmptyPyNumber_TrueDividePyObject_GC_UnTrackPyExc_UnboundLocalErrorPyErr_WriteUnraisablePyDict_GetItemWithErrorPyList_TypePyNumber_FloorDivide.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``$8 (@Ho%%Uox'x'Pd''OnBxwxw xs ~4$$  ' ' <. . LMp p~ x x~  ~ H Ȭ Ȝ  P x   p  0p / m 1