""" This is testing the equivalence between some estimators with internal nearest neighbors computations, and the corresponding pipeline versions with KNeighborsTransformer or RadiusNeighborsTransformer to precompute the neighbors. """ import numpy as np from sklearn.base import clone from sklearn.cluster import DBSCAN, SpectralClustering from sklearn.cluster.tests.common import generate_clustered_data from sklearn.datasets import make_blobs from sklearn.manifold import TSNE, Isomap, SpectralEmbedding from sklearn.neighbors import ( KNeighborsRegressor, KNeighborsTransformer, LocalOutlierFactor, RadiusNeighborsRegressor, RadiusNeighborsTransformer, ) from sklearn.pipeline import make_pipeline from sklearn.utils._testing import assert_array_almost_equal def test_spectral_clustering(): # Test chaining KNeighborsTransformer and SpectralClustering n_neighbors = 5 X, _ = make_blobs(random_state=0) # compare the chained version and the compact version est_chain = make_pipeline( KNeighborsTransformer(n_neighbors=n_neighbors, mode="connectivity"), SpectralClustering( n_neighbors=n_neighbors, affinity="precomputed", random_state=42 ), ) est_compact = SpectralClustering( n_neighbors=n_neighbors, affinity="nearest_neighbors", random_state=42 ) labels_compact = est_compact.fit_predict(X) labels_chain = est_chain.fit_predict(X) assert_array_almost_equal(labels_chain, labels_compact) def test_spectral_embedding(): # Test chaining KNeighborsTransformer and SpectralEmbedding n_neighbors = 5 n_samples = 1000 centers = np.array( [ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ] ) S, true_labels = make_blobs( n_samples=n_samples, centers=centers, cluster_std=1.0, random_state=42 ) # compare the chained version and the compact version est_chain = make_pipeline( KNeighborsTransformer(n_neighbors=n_neighbors, mode="connectivity"), SpectralEmbedding( n_neighbors=n_neighbors, affinity="precomputed", random_state=42 ), ) est_compact = SpectralEmbedding( n_neighbors=n_neighbors, affinity="nearest_neighbors", random_state=42 ) St_compact = est_compact.fit_transform(S) St_chain = est_chain.fit_transform(S) assert_array_almost_equal(St_chain, St_compact) def test_dbscan(): # Test chaining RadiusNeighborsTransformer and DBSCAN radius = 0.3 n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) # compare the chained version and the compact version est_chain = make_pipeline( RadiusNeighborsTransformer(radius=radius, mode="distance"), DBSCAN(metric="precomputed", eps=radius), ) est_compact = DBSCAN(eps=radius) labels_chain = est_chain.fit_predict(X) labels_compact = est_compact.fit_predict(X) assert_array_almost_equal(labels_chain, labels_compact) def test_isomap(): # Test chaining KNeighborsTransformer and Isomap with # neighbors_algorithm='precomputed' algorithm = "auto" n_neighbors = 10 X, _ = make_blobs(random_state=0) X2, _ = make_blobs(random_state=1) # compare the chained version and the compact version est_chain = make_pipeline( KNeighborsTransformer( n_neighbors=n_neighbors, algorithm=algorithm, mode="distance" ), Isomap(n_neighbors=n_neighbors, metric="precomputed"), ) est_compact = Isomap(n_neighbors=n_neighbors, neighbors_algorithm=algorithm) Xt_chain = est_chain.fit_transform(X) Xt_compact = est_compact.fit_transform(X) assert_array_almost_equal(Xt_chain, Xt_compact) Xt_chain = est_chain.transform(X2) Xt_compact = est_compact.transform(X2) assert_array_almost_equal(Xt_chain, Xt_compact) def test_tsne(): # Test chaining KNeighborsTransformer and TSNE max_iter = 250 perplexity = 5 n_neighbors = int(3.0 * perplexity + 1) rng = np.random.RandomState(0) X = rng.randn(20, 2) for metric in ["minkowski", "sqeuclidean"]: # compare the chained version and the compact version est_chain = make_pipeline( KNeighborsTransformer( n_neighbors=n_neighbors, mode="distance", metric=metric ), TSNE( init="random", metric="precomputed", perplexity=perplexity, method="barnes_hut", random_state=42, max_iter=max_iter, ), ) est_compact = TSNE( init="random", metric=metric, perplexity=perplexity, max_iter=max_iter, method="barnes_hut", random_state=42, ) Xt_chain = est_chain.fit_transform(X) Xt_compact = est_compact.fit_transform(X) assert_array_almost_equal(Xt_chain, Xt_compact) def test_lof_novelty_false(): # Test chaining KNeighborsTransformer and LocalOutlierFactor n_neighbors = 4 rng = np.random.RandomState(0) X = rng.randn(40, 2) # compare the chained version and the compact version est_chain = make_pipeline( KNeighborsTransformer(n_neighbors=n_neighbors, mode="distance"), LocalOutlierFactor( metric="precomputed", n_neighbors=n_neighbors, novelty=False, contamination="auto", ), ) est_compact = LocalOutlierFactor( n_neighbors=n_neighbors, novelty=False, contamination="auto" ) pred_chain = est_chain.fit_predict(X) pred_compact = est_compact.fit_predict(X) assert_array_almost_equal(pred_chain, pred_compact) def test_lof_novelty_true(): # Test chaining KNeighborsTransformer and LocalOutlierFactor n_neighbors = 4 rng = np.random.RandomState(0) X1 = rng.randn(40, 2) X2 = rng.randn(40, 2) # compare the chained version and the compact version est_chain = make_pipeline( KNeighborsTransformer(n_neighbors=n_neighbors, mode="distance"), LocalOutlierFactor( metric="precomputed", n_neighbors=n_neighbors, novelty=True, contamination="auto", ), ) est_compact = LocalOutlierFactor( n_neighbors=n_neighbors, novelty=True, contamination="auto" ) pred_chain = est_chain.fit(X1).predict(X2) pred_compact = est_compact.fit(X1).predict(X2) assert_array_almost_equal(pred_chain, pred_compact) def test_kneighbors_regressor(): # Test chaining KNeighborsTransformer and classifiers/regressors rng = np.random.RandomState(0) X = 2 * rng.rand(40, 5) - 1 X2 = 2 * rng.rand(40, 5) - 1 y = rng.rand(40, 1) n_neighbors = 12 radius = 1.5 # We precompute more neighbors than necessary, to have equivalence between # k-neighbors estimator after radius-neighbors transformer, and vice-versa. factor = 2 k_trans = KNeighborsTransformer(n_neighbors=n_neighbors, mode="distance") k_trans_factor = KNeighborsTransformer( n_neighbors=int(n_neighbors * factor), mode="distance" ) r_trans = RadiusNeighborsTransformer(radius=radius, mode="distance") r_trans_factor = RadiusNeighborsTransformer( radius=int(radius * factor), mode="distance" ) k_reg = KNeighborsRegressor(n_neighbors=n_neighbors) r_reg = RadiusNeighborsRegressor(radius=radius) test_list = [ (k_trans, k_reg), (k_trans_factor, r_reg), (r_trans, r_reg), (r_trans_factor, k_reg), ] for trans, reg in test_list: # compare the chained version and the compact version reg_compact = clone(reg) reg_precomp = clone(reg) reg_precomp.set_params(metric="precomputed") reg_chain = make_pipeline(clone(trans), reg_precomp) y_pred_chain = reg_chain.fit(X, y).predict(X2) y_pred_compact = reg_compact.fit(X, y).predict(X2) assert_array_almost_equal(y_pred_chain, y_pred_compact)