K iatddlmZddlmZGddeZGddeZGddeZGd d eZy ) ) Predicate) Dispatcherc(eZdZdZdZeddZy)FinitePredicatea Finite number predicate. Explanation =========== ``Q.finite(x)`` is true if ``x`` is a number but neither an infinity nor a ``NaN``. In other words, ``ask(Q.finite(x))`` is true for all numerical ``x`` having a bounded absolute value. Examples ======== >>> from sympy import Q, ask, S, oo, I, zoo >>> from sympy.abc import x >>> ask(Q.finite(oo)) False >>> ask(Q.finite(-oo)) False >>> ask(Q.finite(zoo)) False >>> ask(Q.finite(1)) True >>> ask(Q.finite(2 + 3*I)) True >>> ask(Q.finite(x), Q.positive(x)) True >>> print(ask(Q.finite(S.NaN))) None References ========== .. [1] https://en.wikipedia.org/wiki/Finite finite FiniteHandlerzVHandler for Q.finite. Test that an expression is bounded respect to all its variables.docN__name__ __module__ __qualname____doc__namerhandlerk/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/sympy/assumptions/predicates/calculus.pyrrs!#H D!Grrc(eZdZdZdZeddZy)InfinitePredicatezu Infinite number predicate. ``Q.infinite(x)`` is true iff the absolute value of ``x`` is infinity. infiniteInfiniteHandlerzHandler for Q.infinite key.r Nr rrrrr1s D -Grrc$eZdZdZdZedZy)PositiveInfinitePredicatezu Positive infinity predicate. ``Q.positive_infinite(x)`` is true iff ``x`` is positive infinity ``oo``. positive_infinitePositiveInfiniteHandlerNr rrrrrA D23Grrc$eZdZdZdZedZy)NegativeInfinitePredicatezv Negative infinity predicate. ``Q.negative_infinite(x)`` is true iff ``x`` is negative infinity ``-oo``. negative_infiniteNegativeInfiniteHandlerNr rrrrrKrrrN)sympy.assumptionsrsympy.multipledispatchrrrrrrrrr$s<'-*i*Z   4 44 4r