from sympy.core.numbers import Rational, I, oo from sympy.core.relational import Eq from sympy.core.symbol import symbols from sympy.core.singleton import S from sympy.matrices.dense import Matrix from sympy.matrices.dense import randMatrix from sympy.assumptions.ask import Q from sympy.logic.boolalg import And from sympy.abc import x, y, z from sympy.assumptions.cnf import CNF, EncodedCNF from sympy.functions.elementary.trigonometric import cos from sympy.external import import_module from sympy.logic.algorithms.lra_theory import LRASolver, UnhandledInput, LRARational, HANDLE_NEGATION from sympy.core.random import random, choice, randint from sympy.core.sympify import sympify from sympy.ntheory.generate import randprime from sympy.core.relational import StrictLessThan, StrictGreaterThan import itertools from sympy.testing.pytest import raises, XFAIL, skip def make_random_problem(num_variables=2, num_constraints=2, sparsity=.1, rational=True, disable_strict = False, disable_nonstrict=False, disable_equality=False): def rand(sparsity=sparsity): if random() < sparsity: return sympify(0) if rational: int1, int2 = [randprime(0, 50) for _ in range(2)] return Rational(int1, int2) * choice([-1, 1]) else: return randint(1, 10) * choice([-1, 1]) variables = symbols('x1:%s' % (num_variables + 1)) constraints = [] for _ in range(num_constraints): lhs, rhs = sum(rand() * x for x in variables), rand(sparsity=0) # sparsity=0 bc of bug with smtlib_code options = [] if not disable_equality: options += [Eq(lhs, rhs)] if not disable_nonstrict: options += [lhs <= rhs, lhs >= rhs] if not disable_strict: options += [lhs < rhs, lhs > rhs] constraints.append(choice(options)) return constraints def check_if_satisfiable_with_z3(constraints): from sympy.external.importtools import import_module from sympy.printing.smtlib import smtlib_code from sympy.logic.boolalg import And boolean_formula = And(*constraints) z3 = import_module("z3") if z3: smtlib_string = smtlib_code(boolean_formula) s = z3.Solver() s.from_string(smtlib_string) res = str(s.check()) if res == 'sat': return True elif res == 'unsat': return False else: raise ValueError(f"z3 was not able to check the satisfiability of {boolean_formula}") def find_rational_assignment(constr, assignment, iter=20): eps = sympify(1) for _ in range(iter): assign = {key: val[0] + val[1]*eps for key, val in assignment.items()} try: for cons in constr: assert cons.subs(assign) == True return assign except AssertionError: eps = eps/2 return None def boolean_formula_to_encoded_cnf(bf): cnf = CNF.from_prop(bf) enc = EncodedCNF() enc.from_cnf(cnf) return enc def test_from_encoded_cnf(): s1, s2 = symbols("s1 s2") # Test preprocessing # Example is from section 3 of paper. phi = (x >= 0) & ((x + y <= 2) | (x + 2 * y - z >= 6)) & (Eq(x + y, 2) | (x + 2 * y - z > 4)) enc = boolean_formula_to_encoded_cnf(phi) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) assert lra.A.shape == (2, 5) assert str(lra.slack) == '[_s1, _s2]' assert str(lra.nonslack) == '[x, y, z]' assert lra.A == Matrix([[ 1, 1, 0, -1, 0], [-1, -2, 1, 0, -1]]) assert {(str(b.var), b.bound, b.upper, b.equality, b.strict) for b in lra.enc_to_boundary.values()} == {('_s1', 2, None, True, False), ('_s1', 2, True, False, False), ('_s2', -4, True, False, True), ('_s2', -6, True, False, False), ('x', 0, False, False, False)} def test_problem(): from sympy.logic.algorithms.lra_theory import LRASolver from sympy.assumptions.cnf import CNF, EncodedCNF cons = [-2 * x - 2 * y >= 7, -9 * y >= 7, -6 * y >= 5] cnf = CNF().from_prop(And(*cons)) enc = EncodedCNF() enc.from_cnf(cnf) lra, _ = LRASolver.from_encoded_cnf(enc) lra.assert_lit(1) lra.assert_lit(2) lra.assert_lit(3) is_sat, assignment = lra.check() assert is_sat is True def test_random_problems(): z3 = import_module("z3") if z3 is None: skip("z3 is not installed") special_cases = []; x1, x2, x3 = symbols("x1 x2 x3") special_cases.append([x1 - 3 * x2 <= -5, 6 * x1 + 4 * x2 <= 0, -7 * x1 + 3 * x2 <= 3]) special_cases.append([-3 * x1 >= 3, Eq(4 * x1, -1)]) special_cases.append([-4 * x1 < 4, 6 * x1 <= -6]) special_cases.append([-3 * x2 >= 7, 6 * x1 <= -5, -3 * x2 <= -4]) special_cases.append([x + y >= 2, x + y <= 1]) special_cases.append([x >= 0, x + y <= 2, x + 2 * y - z >= 6]) # from paper example special_cases.append([-2 * x1 - 2 * x2 >= 7, -9 * x1 >= 7, -6 * x1 >= 5]) special_cases.append([2 * x1 > -3, -9 * x1 < -6, 9 * x1 <= 6]) special_cases.append([-2*x1 < -4, 9*x1 > -9]) special_cases.append([-6*x1 >= -1, -8*x1 + x2 >= 5, -8*x1 + 7*x2 < 4, x1 > 7]) special_cases.append([Eq(x1, 2), Eq(5*x1, -2), Eq(-7*x2, -6), Eq(9*x1 + 10*x2, 9)]) special_cases.append([Eq(3*x1, 6), Eq(x1 - 8*x2, -9), Eq(-7*x1 + 5*x2, 3), Eq(3*x2, 7)]) special_cases.append([-4*x1 < 4, 6*x1 <= -6]) special_cases.append([-3*x1 + 8*x2 >= -8, -10*x2 > 9, 8*x1 - 4*x2 < 8, 10*x1 - 9*x2 >= -9]) special_cases.append([x1 + 5*x2 >= -6, 9*x1 - 3*x2 >= -9, 6*x1 + 6*x2 < -10, -3*x1 + 3*x2 < -7]) special_cases.append([-9*x1 < 7, -5*x1 - 7*x2 < -1, 3*x1 + 7*x2 > 1, -6*x1 - 6*x2 > 9]) special_cases.append([9*x1 - 6*x2 >= -7, 9*x1 + 4*x2 < -8, -7*x2 <= 1, 10*x2 <= -7]) feasible_count = 0 for i in range(50): if i % 8 == 0: constraints = make_random_problem(num_variables=1, num_constraints=2, rational=False) elif i % 8 == 1: constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_equality=True, disable_nonstrict=True) elif i % 8 == 2: constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_strict=True) elif i % 8 == 3: constraints = make_random_problem(num_variables=3, num_constraints=12, rational=False) else: constraints = make_random_problem(num_variables=3, num_constraints=6, rational=False) if i < len(special_cases): constraints = special_cases[i] if False in constraints or True in constraints: continue phi = And(*constraints) if phi == False: continue cnf = CNF.from_prop(phi); enc = EncodedCNF() enc.from_cnf(cnf) assert all(0 not in clause for clause in enc.data) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) s_subs = lra.s_subs lra.run_checks = True s_subs_rev = {value: key for key, value in s_subs.items()} lits = {lit for clause in enc.data for lit in clause} bounds = [(lra.enc_to_boundary[l], l) for l in lits if l in lra.enc_to_boundary] bounds = sorted(bounds, key=lambda x: (str(x[0].var), x[0].bound, str(x[0].upper))) # to remove nondeterminism for b, l in bounds: if lra.result and lra.result[0] == False: break lra.assert_lit(l) feasible = lra.check() if feasible[0] == True: feasible_count += 1 assert check_if_satisfiable_with_z3(constraints) is True cons_funcs = [cons.func for cons in constraints] assignment = feasible[1] assignment = {key.var : value for key, value in assignment.items()} if not (StrictLessThan in cons_funcs or StrictGreaterThan in cons_funcs): assignment = {key: value[0] for key, value in assignment.items()} for cons in constraints: assert cons.subs(assignment) == True else: rat_assignment = find_rational_assignment(constraints, assignment) assert rat_assignment is not None else: assert check_if_satisfiable_with_z3(constraints) is False conflict = feasible[1] assert len(conflict) >= 2 conflict = {lra.enc_to_boundary[-l].get_inequality() for l in conflict} conflict = {clause.subs(s_subs_rev) for clause in conflict} assert check_if_satisfiable_with_z3(conflict) is False # check that conflict clause is probably minimal for subset in itertools.combinations(conflict, len(conflict)-1): assert check_if_satisfiable_with_z3(subset) is True @XFAIL def test_pos_neg_zero(): bf = Q.positive(x) & Q.negative(x) & Q.zero(y) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in enc.encoding.values(): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 3 assert lra.check()[0] == False bf = Q.positive(x) & Q.lt(x, -1) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in enc.encoding.values(): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == False bf = Q.positive(x) & Q.zero(x) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in enc.encoding.values(): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == False bf = Q.positive(x) & Q.zero(y) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in enc.encoding.values(): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == True @XFAIL def test_pos_neg_infinite(): bf = Q.positive_infinite(x) & Q.lt(x, 10000000) & Q.positive_infinite(y) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in enc.encoding.values(): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 3 assert lra.check()[0] == False bf = Q.positive_infinite(x) & Q.gt(x, 10000000) & Q.positive_infinite(y) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in enc.encoding.values(): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 3 assert lra.check()[0] == True bf = Q.positive_infinite(x) & Q.negative_infinite(x) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in enc.encoding.values(): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == False def test_binrel_evaluation(): bf = Q.gt(3, 2) enc = boolean_formula_to_encoded_cnf(bf) lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True) assert len(lra.enc_to_boundary) == 0 assert conflicts == [[1]] bf = Q.lt(3, 2) enc = boolean_formula_to_encoded_cnf(bf) lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True) assert len(lra.enc_to_boundary) == 0 assert conflicts == [[-1]] def test_negation(): assert HANDLE_NEGATION is True bf = Q.gt(x, 1) & ~Q.gt(x, 0) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for clause in enc.data: for lit in clause: lra.assert_lit(lit) assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == False assert sorted(lra.check()[1]) in [[-1, 2], [-2, 1]] bf = ~Q.gt(x, 1) & ~Q.lt(x, 0) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for clause in enc.data: for lit in clause: lra.assert_lit(lit) assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == True bf = ~Q.gt(x, 0) & ~Q.lt(x, 1) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for clause in enc.data: for lit in clause: lra.assert_lit(lit) assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == False bf = ~Q.gt(x, 0) & ~Q.le(x, 0) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for clause in enc.data: for lit in clause: lra.assert_lit(lit) assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == False bf = ~Q.le(x+y, 2) & ~Q.ge(x-y, 2) & ~Q.ge(y, 0) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for clause in enc.data: for lit in clause: lra.assert_lit(lit) assert len(lra.enc_to_boundary) == 3 assert lra.check()[0] == False assert len(lra.check()[1]) == 3 assert all(i > 0 for i in lra.check()[1]) def test_unhandled_input(): nan = S.NaN bf = Q.gt(3, nan) & Q.gt(x, nan) enc = boolean_formula_to_encoded_cnf(bf) raises(ValueError, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True)) bf = Q.gt(3, I) & Q.gt(x, I) enc = boolean_formula_to_encoded_cnf(bf) raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True)) bf = Q.gt(3, float("inf")) & Q.gt(x, float("inf")) enc = boolean_formula_to_encoded_cnf(bf) raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True)) bf = Q.gt(3, oo) & Q.gt(x, oo) enc = boolean_formula_to_encoded_cnf(bf) raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True)) # test non-linearity bf = Q.gt(x**2 + x, 2) enc = boolean_formula_to_encoded_cnf(bf) raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True)) bf = Q.gt(cos(x) + x, 2) enc = boolean_formula_to_encoded_cnf(bf) raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True)) @XFAIL def test_infinite_strict_inequalities(): # Extensive testing of the interaction between strict inequalities # and constraints containing infinity is needed because # the paper's rule for strict inequalities don't work when # infinite numbers are allowed. Using the paper's rules you # can end up with situations where oo + delta > oo is considered # True when oo + delta should be equal to oo. # See https://math.stackexchange.com/questions/4757069/can-this-method-of-converting-strict-inequalities-to-equisatisfiable-nonstrict-i bf = (-x - y >= -float("inf")) & (x > 0) & (y >= float("inf")) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for lit in sorted(enc.encoding.values()): if lra.assert_lit(lit) is not None: break assert len(lra.enc_to_boundary) == 3 assert lra.check()[0] == True def test_pivot(): for _ in range(10): m = randMatrix(5) rref = m.rref() for _ in range(5): i, j = randint(0, 4), randint(0, 4) if m[i, j] != 0: assert LRASolver._pivot(m, i, j).rref() == rref def test_reset_bounds(): bf = Q.ge(x, 1) & Q.lt(x, 1) enc = boolean_formula_to_encoded_cnf(bf) lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True) for clause in enc.data: for lit in clause: lra.assert_lit(lit) assert len(lra.enc_to_boundary) == 2 assert lra.check()[0] == False lra.reset_bounds() assert lra.check()[0] == True for var in lra.all_var: assert var.upper == LRARational(float("inf"), 0) assert var.upper_from_eq == False assert var.upper_from_neg == False assert var.lower == LRARational(-float("inf"), 0) assert var.lower_from_eq == False assert var.lower_from_neg == False assert var.assign == LRARational(0, 0) assert var.var is not None assert var.col_idx is not None def test_empty_cnf(): cnf = CNF() enc = EncodedCNF() enc.from_cnf(cnf) lra, conflict = LRASolver.from_encoded_cnf(enc) assert len(conflict) == 0 assert lra.check() == (True, {})