K i- *ddlmZmZddlmZddlmZddlmZddl m Z ddl m Z m Z ddlmZddlmZmZdd lmZdd lmZmZmZmZmZdd lmZdd lmZmZdd l m!Z!m"Z"ddl#m$Z$m%Z%ddl&m'Z'm(Z(ddl)m*Z*m+Z+ddl,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2ddl3m4Z4ddl5m6Z6ddlm7Z7m8Z8m9Z9m:Z:m;Z;mZ>m?Z?ddl@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZIedZJeJduZKedZLe dZMdZNdZOdZPdZQdZRd ZSd!ZTd"ZUd#ZVd$ZWd%ZXgd&d'd(d)eOd*d+fd,eAfd-d.eAzfd/eAd.zfd0ePeAePd.d1fd2eAeNd3d4zfd5eF fd6eDeEzfd7eDeEz fd8eDeEz fd9eDeEzfd:eNeDeEzeD fd;e7eDd.zeEd.zzeFd.zfd<eOeNeAeBeCfd=eNeOed>eEeOeDed?fd@edAfdBedAfdCeOeNeAeBeCfdDeOeNeAeBeCfdEeOeNeAeBeCfdFeOeNeAeBeCfdGeOeNeAeBeCfdHeNd4d4fdIeNdd4fdJeOd4d.fdKeOdd4fdLeOd4d.fdMe7eAeBfdNe8eAeBfdOe9eAeBfdPe;eAeBfdQe:eAeBfdRed,fdXe?d,fdYe1eLfdZe1eLfd[e-eDfd\eOe1eDe.eEfd]e1e.eLfd^e1e.eLfd_eDeEz fd`eDeEz fdaeDeEz fdbePd.d1fdceOePd.d1eBfddeOePd.d1defdfeOd.ePd3d1fdgeOe1eAePd.d1fdheOeDeEzePeFd1fdieOdjePd3d1fdke/eAe0eBzfdle6eDeAd3dmnfdoe6eDeAd3dmnfdpe6eDeAd3dmnfdqe6eDeAd3dmnfdre6eDeAd3dmnfdse6eDeAd3dtnfdue6eDeAd3dvnfdwe6eDeAd3dtnfdxe6eDeAd3dvnfdyefdze6ePeAd1eAefd{e eAeAfd|e eAeGfd}eMeAfd~eMeAeBfdeMeAeBeCfde deAfde deAeBzfde eMeAeAfde e deAeAfdNeeAeBfdeSeAfdeSe!eAfdeSeAeSeBzfdeSeSeAeSeBzfdedeSeAeBzzfde4eAeAfde4eAeLfde4eAd.zeBz eAfde4eNeAeDeAfde4d4eDfde4d4eAddjffde4eAeAdd4ffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eMeCeCeMeDeMeEffde4eNeAeDeAfde4eNeNeDeEeFeAfde4eeCd1eCfde4d3eeCd1zeCfde4eeAd1eAfde4eNePeDd1eeEd1eAfde4d3ePeLd1zeLfde4eNePeAd1d4eAfdedfdedfdedfdedfdedfdedfde dededfdeTeAfdeTdfdeTeLfdeTeNeAd4fdeTeTeAfdeTeTeTeAfdeOeTdeTdjfde+eAfde+eNeAeEfde*e1eAd3fde*e1eAeBfde*e1eAeLfdeQeOdePdd1fdeReCfdeReReCfdeReNeAeBfdeReAeReBzfdOeeAeBfdQeeAeBfdPeeAeBfdReeAeBfded,fdedëfdedūfdedǫfdeeFeHd4d3ffdeeFeHd4d3ffdeeFeHd4d3ffdeeFeHd4d3ffdeeHd.zeHd4dffdeePeTeId1eIdeffdeeAeDeEeFffdeeAeDeEeFffdeeAeDeEeFffdeeAeDeEeFffdeUeAfdeUeAfdeVeAdͫfdeVeAefdeVeAeBzefdeVeAefdeVeAeBzefdeVeAd.fdeVeAeDfdeVeAdݫfdeVeAePeDd.fdeAfdeNeDeEfde e2eAeAfdeWeIeHfdeWeIeHfdeWeIeHfdeWeIdfdePeAeWeIeHfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfde4eAeAfdeVeAd.fdeVeAeDfdeNePddeOd1ePddfdeNeOd3eAd1fZYdZZgdZ[dZ\gdZ]edZ^dZ_y))raisesXFAIL) import_module)Product)SumAdd) DerivativeFunctionMul)EooPow) GreaterThanLessThanStrictGreaterThanStrictLessThan Unequality)Symbol)binomial factorial)Abs conjugate)explog)ceilingfloor)rootsqrt)asincoscscsecsintan)Integral)Limit)EqNeLtLeGtGe)BraKet) xyzabctknantlr4Nthetafct||dSNF)evaluaterr5r6s d/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/sympy/parsing/tests/test_latex.py_AddrC# q!e $$ct||dSr?r rAs rB_MulrG'rDrEct||dSr?rrAs rB_PowrI+rDrEct|dSr?)r!r5s rB_SqrtrL/s E ""rEct|dSr?)rrKs rB _ConjugaterN3 Q ''rEct|dSr?)rrKs rB_AbsrQ7 q5 !!rEct|dSr?)rrKs rB _factorialrT;rOrEct|dSr?)rrKs rB_exprV?rRrEct||dSr?)rrAs rB_logrXCrDrEct||dSr?)r)r:r9s rB _binomialrZGs Aq5 ))rEcddlm}m}m}~~~y)Nr build_parsercheck_antlr_versiondir_latex_antlr)&sympy.parsing.latex._build_latex_antlrr]r^r_r\s rB test_importraKs )?rE)0r)1)z-3.14gQ z (-7.13)(1.5)gQg?r22xzx^2z x^\frac{1}{2}z x^{3 + 1}rdz-cz a \cdot bza / bza \div bza + bz a + b - aza^2 + b^2 = c^2z (x + y) zza'b+ab'za'zb'zy''_1zy_{1}''zy_1''z\left(x + y\right) zz\left( x + y\right ) zz\left( x + y\right ) zz\left[x + y\right] zz\left\{x + y\right\} zz1+1z0+1z1*2z0*1z 1 \times 2 zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yz\lfloor x \rfloorz\lceil x \rceilz \langle x |z | x \ranglez \sin \thetaz \sin(\theta)z \sin^{-1} az \sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z \frac{a}{b}z \dfrac{a}{b}z \tfrac{a}{b}z\frac12z\frac12yz \frac1234"z \frac2{3}z\frac{\sin{x}}2z\frac{a + b}{c}z \frac{7}{3}z(\csc x)(\sec y)z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\inftyz\lim_{x \to \infty} \frac{1}{x}z\frac{d}{dx} xz\frac{d}{dt} xzf(x)zf(x, y)z f(x, y, z)zf'_1(x)zf_{1}'z f_{1}''(x+y)zf_{1}''z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}z|x|z||x||z|x||y|z||x||y||z \pi^{|xy|}piz \int x dxz\int x d\thetaz\int (x^2 - y)dxz \int x + a dxz\int daz \int_0^7 dxz\int\limits_{0}^{1} x dxz \int_a^b x dxz \int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz \int (x+a)z\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz#\int \frac{3 \cdot d\theta}{\theta}z\int \frac{1}{x} + 1 dxx_0zx_{0}zx_{1}x_azx_{a}zx_{b}zh_\thetaz h_{theta}z h_{\theta}zh_{\theta}(x_0, x_1)zx!z100!dz\theta!z(x + 1)!z(x!)!zx!!!z5!7!z\sqrt{x}z \sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}} z \overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z \mathit{x}z \mathit{test}testz \mathit{TEST}TESTz\mathit{HELLO world}z HELLO worldz\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2 z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz \log_{2} xz \log_{a} xz \log_{11} x z \log_{a^2} xz[x]z[a + b]z\frac{d}{dx} [ \tan x ]z \binom{n}{k}z \tbinom{n}{k}z \dbinom{n}{k}z \binom{n}{0}zx^\binom{n}{k}za \, bza \thinspace bza \: bz a \medspace bza \; bza \thickspace bz a \quad bz a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz \int x \, dxz\log_2 xz\log_a xz 5^0 - 4^0z3x - 1cPddlm}tD]\}}|||k(rJ|y)Nr) parse_latex)sympy.parsing.latexr{ GOOD_PAIRS)r{ latex_str sympy_exprs rBtest_parseablers1/!+? :9%3>Y>3?rE)&()z \frac{d}{dx}z(\frac{d}{dx})z\sqrt{}z\sqrtz \overline{}z \overline{}z\mathit{x + y}z \mathit{21}z \frac{2}{}z \frac{}{2}z\int!z!0_^|z||x|z()z"((((((((((((((((()))))))))))))))))rmz\frac{d}{dx} + \frac{d}{dt}zf(x,,y)zf(x,y,z\sin^xz\cos^2@#$%&*\~z\frac{(2 + x}{1 - x)}czddlm}m}tD]}t |5||ddd y#1swY+xYwNrr{LaTeXParsingError)r|r{r BAD_STRINGSrr{rr~s rBtest_not_parseablerFs?B # % & #  " # ## # # 1: ) z \cos 1 \coszf(,zf()z a \div \div bza \cdot \cdot bza // bza +z1.1.1z1 +za / b /czddlm}m}tD]}t |5||ddd y#1swY+xYwrr|r{rFAILING_BAD_STRINGSrrs rBtest_failing_not_parseablerZs?B(# % & #  " # ## # #rc~ddlm}m}tD] }t |5||dddd"y#1swY-xYw)NrrT)strictrrs rBtest_strict_moderbsAB(0 % & 0  $ / 0 00 0 0s 3< )`sympy.testing.pytestrrsympy.externalrsympy.concrete.productsrsympy.concrete.summationsrsympy.core.addr sympy.core.functionr r sympy.core.mulr sympy.core.numbersrrsympy.core.powerrsympy.core.relationalrrrrrsympy.core.symbolr(sympy.functions.combinatorial.factorialsrr$sympy.functions.elementary.complexesrr&sympy.functions.elementary.exponentialrr#sympy.functions.elementary.integersrr(sympy.functions.elementary.miscellaneousr r!(sympy.functions.elementary.trigonometricr"r#r$r%r&r'sympy.integrals.integralsr(sympy.series.limitsr)r*r+r,r-r.r/sympy.physics.quantum.stater0r1 sympy.abcr2r3r4r5r6r7r8r9r:r;disabledr<r=rCrGrIrLrNrQrTrVrXrZrar}rrrrrrrErBrsT.(+)6& hh$JA=@ATT.%880/// x  T>w SM%%%#("("%*;~ ~ ~~d5#&' ~  1I ~  AaCL ~ QTN~tAtAr{+,~1d1aj=!~ QBK~1q5~q1u~!a%~q1u~4!aR=!~ AqD1a4KA./!~"4Q A&'#~$d6$<+T!VD\-BCD%~&vi !'~(vi !)~*d41:q12+~,T!QZ 34-~. d1aj!!45/~0d41:q121~2T!QZ 343~4 T!QZ5~6 T!QZ7~8 T!QZ9~: T!QZ;~<T!QZ =~>r!Qx?~@"Q(A~Br!QxC~Dr!QxE~F"Q(G~H"Q(I~JAqK~LAqM~N58$O~P$Q~RSXS~TSXU~VSZ W~Xc%j!Y~ZT!W[~\tCFCF+,]~^#c%j/*_~`3s5z?+a~bQUc~da!ee~fa!eg~hai~j$tAr{A&'k~l4Q R()m~n442;'(o~pc!fd1bk23q~ra!eT!R[12s~tT!T!R[)*u~v#a&Q-(w~x%1aT23y~z!%1aT":;{~|!%1aT":;}~~%eAq!&>?~@%eAq!&>?A~BeAq!56C~DeAq!56E~FE!Qs34G~HE!Qs34I~JOK~L(tAr{Ar)BCM~N 1a()O~P 1a()Q~R adOS~T1aU~VAaAJW~X#(#A&'Y~Z)hy)!A#./[~\:adA./]~^z*;(7*;A*>BC_~`*Q"#a~b T!Wc~dtCF|e~fQQ g~h$tAwtAw'(i~jF4L$qs)+,k~l8Aq>"m~nE*+o~p(1a4!8Q/0q~rxQ A./s~t!Q u~vXa!Q+,w~x!(1q!Qi"89y~zxAq!9-.{~|xAq!9-.}~~!aAY/0~@!aAY/0A~B8A1ay12C~D8A1ay12E~F#HQqTAqtQqT?$CDG~HHT!QZ+,I~J8DaQ$7;!BC[~\ VG_]~^vg_~` VG_a~bvgc~d&%&e~fF;'(g~hXk6'?F7O<>i~l JqMm~n joo~pE"#q~r*T!QZ()s~tz*Q-()u~v jJqM234w~x d:a=*Q-01y~z$q'{~|d41:&'}~~$s1vq/*~@$s1vq/*A~BtCFE23C~DU4DBK#89:E~Fjm$G~H JqM!:;I~J*T!QZ01K~L$Z]Z]%BCM~N~a#$O~P(1a.!Q~R A&'S~T+a#$U~VF3K W~Xvf~&Y~Zvf~&[~\f]34]~^CAq!9-._~`#a!Q+,a~bCAq!9-.c~d#a!Q+,e~fs1a4!Q45g~h+jmR 1a*-/i~lWQAq 23m~n71q!Qi01o~pWQAq 23q~r71q!Qi01s~tQu~vaw~xtAr{y~ztAqz{~|QqS! }~~Q ~@ac1A~BDAJC~DDAJE~FT!R[!G~Hd1d1aj)*I~J QKK~LaM~N CFA!67O~Pi1o&Q~RyA'S~TyA'U~Vi1o&W~XQ !Q01Y~ZQ [~\Q #]~^Q _~`tAqz"a~bQ c~da$e~f41:g~hDAJi~jQ k~l41:&m~n$q!*%o~pDAJ'q~rhq!n%s~t$q!*u~v$q!*w~x4Q DT!QZ$89:y~zT!QZ$%{~ B? ' R# ##0rE