K i`dZgdZddlmZmZmZmZmZmZm Z m Z m Z m Z m Z mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;mm?Z?m@Z@mAZAmBZBmCZCddlDmEZEddlFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]m^Z^m_Z_ddl`maZambZbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjddlkmlZlmmZmdd lnmoZompZpmqZqmrZrmsZsmtZtdd lumvZvmwZwmxZxmyZymzZzdd l{m|Z|dd l}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZdd lmZddlmZmZmZmZmZddlmZmZmZmZmZmZmZddlmZmZmZmZmZddlmZmZmZddlmZddlmZmZmZmZddlmZmZmZmZy)z:Polynomial manipulation algorithms and algebraic objects. )PolyPurePolypoly_from_exprparallel_poly_from_exprdegree total_degree degree_listLCLMLTpdivprempquopexquodivremquoexquo half_gcdexgcdexinvert subresultants resultant discriminant cofactorsgcd_listgcdlcm_listlcm terms_gcdtruncmoniccontent primitivecompose decomposesturmgff_listgffsqf_normsqf_partsqf_listsqf factor_listfactor intervals refine_root count_roots all_roots real_rootsnroots ground_rootsnth_power_roots_polycancelreducedgroebneris_zero_dimensional GroebnerBasispoly symmetrizehorner interpolaterational_interpolatevietetogetherBasePolynomialErrorExactQuotientFailedPolynomialDivisionFailedOperationNotSupportedHeuristicGCDFailedHomomorphismFailedIsomorphismFailedExtraneousFactorsEvaluationFailedRefinementFailedCoercionFailed NotInvertible NotReversible NotAlgebraic DomainErrorPolynomialErrorUnificationFailedGeneratorsErrorGeneratorsNeededComputationFailedUnivariatePolynomialErrorMultivariatePolynomialErrorPolificationFailed OptionError FlagErrorminpolyminimal_polynomialprimitive_elementfield_isomorphismto_number_fieldisolate round_two prime_decompprime_valuation galois_group itermonomialsMonomiallexgrlexgrevlexilexigrlexigrevlexCRootOfrootofRootOf ComplexRootOfRootSumrootsDomain FiniteField IntegerRing RationalField RealField ComplexFieldPythonFiniteFieldGMPYFiniteFieldPythonIntegerRingGMPYIntegerRingPythonRationalGMPYRationalFieldAlgebraicFieldPolynomialRing FractionFieldExpressionDomain FF_pythonFF_gmpy ZZ_pythonZZ_gmpy QQ_pythonQQ_gmpyGFFFZZQQZZ_IQQ_IRRCCEXEXRAWconstruct_domainswinnerton_dyer_polycyclotomic_polysymmetric_poly random_polyinterpolating_poly jacobi_polychebyshevt_polychebyshevu_poly hermite_polyhermite_prob_poly legendre_poly laguerre_polybernoulli_polybernoulli_c_poly genocchi_poly euler_poly andre_polyapart apart_listassemble_partfrac_listOptionsringxringvringsringfieldxfieldvfieldsfield);rrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<)r=r>r?r@rA)rB)rCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[) r\r]r^r_r`rarbrcrdre)rfrg)rhrirjrkrlrm)rnrorprqrr)rs) rtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrr)r)rrrrr)rrrrrrr)rrrrr)rrr)r)rrrr)rrrrN)__doc____all__ polytoolsrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r< polyfuncsr=r>r?r@rA rationaltoolsrB polyerrorsrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[ numberfieldsr\r]r^r_r`rarbrcrdre monomialsrfrg orderingsrhrirjrkrlrm rootoftoolsrnrorprqrr polyrootsrsdomainsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrr constructorr specialpolysrrrrr orthopolysrrrrrrr appellseqsrrrrrpartfracrrr polyoptionsrringsrrrrfieldsrrrrZ/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/sympy/polys/__init__.pyrs%@? B                %%$'''/BBHH/////////*99GGG  @? ,,11r