K iM ddlmZmZmZddlmZddlmZddlm Z m Z m Z ddl m Z ddlmZddlmZmZddlmZdd lmZmZmZmZmZdd lmZdd lmZdd lm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&dd l'm(Z(ddl)m*Z*ddl+m,Z,m-Z-ddl.m/Z/ddl0m1Z1m2Z2m3Z3ddl4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:ddl;mZ>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJddlKmLZLmMZMmNZNmOZOmPZPmQZQddlRmSZSmTZTmUZUddlVmWZWmXZXddlYmZZZm[Z[m\Z\ddl]m^Z^m_Z_m`Z`maZaddlbmcZcddldmeZemfZfmgZgmhZhmiZimjZjddlkmlZlddlmmnZnmoZoddlpmqZqmrZrmsZsmtZtddlumvZvmwZwmxZxmyZymzZzm{Z{ddl|m}Z}m~Z~dd lmZmZdd!lmZmZmZmZdd"lmZmZmZmZmZmZmZmZmZdd#lmZdd$lmZmZdd%lmZmZdd&lmZmZmZmZmZdd'lmZdd(lmZmZmZmZmZmZmZmZmZmZdd)lmZdd*lmZmZmZmZmZmZmZdd+lmZdd,lmZdd-lmZdd.lmZdd/lmZdd0lmZdd1lmZmZmZmZmZmZmZmZdd2lmZmZdd3lmZdd4lmZmZmZmZmZmZmZdd5lmZdd6lmZdd7lmZdd8lmZdd9lmZmZdd:lmZdd;lmZddlmZmZmZmZdd?lmZdd@lmZddAlmZmZmZddBlmZmZmZddClmZddDlmZmZmZmZmZmZmZddElmZddFlm Z ddGl m Z m Z m Z mZddHlmZmZmZmZmZddIlmZmZddJlmZmZmZddKlmZddLlmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%ddMl&m'Z'm(Z(m)Z)m*Z*ddNl+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2ddOlZ3ddPl4m5Z5m6Z6GdQdRe3jnZ7e3dS\ Z8Z9Z:Z;Z<Z=Z>Z?Z@ZAe3dTdUV\ZBZCZDdWZEdXZFdYZGdZZHd[ZId\ZJd]ZKd^ZLd_ZMe'd`ZNe)daZOdbZPdcZQddZRdeZSdfZTdgZUdhZVdiZWdjZXdkZYdlZZdmZ[dnZ\doZ]dpZ^dqZ_drZ`dsZadtZbduZcdvZddwZedxZfdyZgdzZhd{Zid|Zjd}Zkd~ZldZmdZndZodZpdZqdZrdZsdZtdZudZvdZwdZxdZydZzdZ{dZ|dZ}dZ~dZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZd„ZdÄZdĄZdńZdƄZdDŽZdȄZdɄZdʄZe'd˄Zd̄Zd̈́Zd΄ZdτZdЄZdфZd҄ZdӄZdԄZdՄZdքZdׄZd؄ZdلZdڄZdۄZd܄Zd݄ZdބZd߄ZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZyO()MatAddMatMulArray) Quaternion) AccumBounds)Cycle PermutationAppliedPermutation)Product)Sum)TupleDict)UnevaluatedExpr) DerivativeFunctionLambdaSubsdiff)Mod)Mul)AlgebraicNumberFloatIIntegerRationaloopievaluate)Pow)EqNe)S)SymbolWildsymbols)FallingFactorialRisingFactorialbinomial factorial factorial2 subfactorial) bernoullibellcatalaneulergenocchilucas fibonacci tribonacci divisor_sigmaudivisor_sigmamobiusprimenu primeomegatotientreduced_totient)Absarg conjugateim polar_liftre)LambertWexplog)asinhcoth)ceilingfloorfrac)MaxMinrootsqrt) Piecewise)acscasincoscotsintan)beta) DiracDelta Heaviside) elliptic_e elliptic_f elliptic_k elliptic_pi)ChiCiEiShiSiexpint)gamma uppergamma)hypermeijerg)mathieuc mathieucprimemathieus mathieusprime) assoc_laguerreassoc_legendre chebyshevt chebyshevu gegenbauerhermitejacobilaguerrelegendre)SingularityFunction)YnmZnm)KroneckerDelta LeviCivita) dirichlet_etalerchphipolylog stieltjeszeta)Integral) CosineTransformFourierTransformInverseCosineTransformInverseFourierTransformInverseLaplaceTransformInverseMellinTransformInverseSineTransformLaplaceTransformMellinTransform SineTransform)Implies)AndOrXor EquivalentfalseNottrue)Matrix)KroneckerProduct) MatrixSymbol)PermutationMatrix) MatrixSlice) DotProduct)TransferFunctionSeriesParallelFeedbackTransferFunctionMatrix MIMOSeries MIMOParallel MIMOFeedback) CommutatorOperator)Tr)metergibibytegram microgramsecondmillimicro)ZZ)field)Poly)ring)RootSumrootof)fps)fourier_series)Limit)Order)SeqAdd SeqFormulaSeqMulSeqPer) ConditionSet)Contains) ComplexRegionImageSetRange)Ordinal OrdinalOmega OmegaPower)PowerSet) FiniteSetIntervalUnion Intersection ComplementSymmetricDifference ProductSet)SetExpr)Normal) Covariance Expectation ProbabilityVariance)ImmutableDenseNDimArrayImmutableSparseNDimArrayMutableSparseNDimArrayMutableDenseNDimArray tensorproduct) ArraySymbol ArrayElement)IdxIndexed IndexedBase)PartialDerivative) CoordSys3DCrossCurlDot DivergenceGradient Laplacian)XFAILraises _both_exp_powwarns_deprecated_sympy)latex translategreek_letters_settex_greek_dictionarymultiline_latex latex_escape LatexPrinterN)mutauc eZdZy) lowergammaN__name__ __module__ __qualname__e/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/sympy/printing/tests/test_latex.pyrrbsrrzx y z t w a b c s pk m nTintegercGddt}t|tdk(sJGddt}t|tdk(sJy)NceZdZdZy)test_printmethod..RcDd|j|jdzS)Nzfoo(%s)r)_printargsselfprinters r_latexz"test_printmethod..R._latexlsw~~diil;; ;rNrrrrrrrRrks .R._latexqsrNrrrrrztest_printmethod..Rps rr)r<rx)rs rtest_printmethodrjsJk(sJtttztz d?k(sJtttztz d=d?k(sJtdtdztzdz d@k(sJtdtdztzdz d=dAk(sJttttdBk(sJtdC}tdD}t|dzdEk(sJt|dzdFdGk(sJtt|||ddHk(sJtt|||ddFdIk(sJtdtttzdz dJk(sJtdtttzdz d23dKk(sJtttdLk(sJtttddzdMk(sJtttddzdNdOk(sJtttdzdPk(sJtttd2QdLk(sJtttddzd2QdRk(sJtttdzd2QdPk(sJtttdd,zdSk(sJtttdd,zd2TdUk(sJttdztdd,zdVk(sJttdztdd,zd2TdWk(sJtt!tddXk(sJtt!tdddYgdZk(sJtt!tdd[\d]k(sJtt!tdddYgd[\d^k(sJtt!dtddz zgd_d`\dak(sJt#j$d}t|j&j)gdbdck(sJt|j&j)gdbddedfk(sJt|j+dgd dhk(sJt|j+dgd ddedik(sJt|j+d/d djk(sJtdktzdlk(sJtdktzd dmk(sJtdktzdn dok(sJtdt-tz dpk(sJtt-td$zdpk(sJtt-ttddzdqk(sJtt-ttddzd2Tdrk(sJttdsk(sJtttzdtk(sJtttztzduk(sJtttzdvk(sJtttztzdwk(sJtttztzdxk(sJtt/ttdyk(sJtttz dzk(sJtt/t1tttd{k(sJtt/tt1ttd|k(sJtttzd}k(sJtttd~idk(sJtttztd~tdidk(sJtttztztd~tdtdidk(sJtttztd~tdidk(sJtttztztd~tdtdidk(sJtttztztd~tdtdidk(sJtt/tttd~tdidk(sJtttddd$ddk(sJtttdddddk(sJttt3ddz d$ddk(sJtdd2}tt5| t7|zdk(sJtttddd$ddk(sJtttd,dd$ddk(sJtttdd,d$ddk(sJtttdd,d$ddk(sJtttddd$ddk(sJtttd$dd$ddk(sJy)Nx + 1zx^{2}z x^{x + 1}zx^{3} + x^{2} + x + 1z2 x ydot mul_symbolz2 \cdot x \cdot yz\,z 3\,x^{2}\,y?z1.5 \cdot 3^{x}z \sqrt[32]{x}Frz!\frac{1}{2} x^{2} \left(-5\right)z\frac{1}{2} x^{2} \cdot 5z\left(-5\right) \left(-5\right)z5 \left(-5\right)z'\frac{1}{2} \left(-5\right) \frac{1}{2}z5 i 5z5 i \left(-5\right)z"x^{2} \left(\frac{x}{2} + 1\right)z$x^{3} \left(\frac{2 x}{3} + 1\right) zx^{11} \left(2 x + 1\right)rz 0 \cdot 1z 1 \cdot 0z 1 \cdot 1z\left(-1\right) 1z1 \cdot 1 \cdot 1z 1 \cdot 2z1 \cdot \frac{1}{2}z1 \cdot 1 \cdot \frac{1}{2}z1 \cdot 1 \cdot 2 \cdot 3 xz1 \left(-1\right)z%4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y xz*4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y xz\frac{2}{3} \cdot \frac{5}{7} \frac{1}{x}T)fold_short_fracz1 / xz - \frac{3}{2}z- 3 / 2z\frac{1}{x^{2}}z\frac{1}{2 \left(x + y\right)}z \frac{x}{2}zx / 2z\frac{x + y}{2 x}z\left(x + y\right) / 2 x)long_frac_ratioz \frac{1}{2 x} \left(x + y\right)z\frac{x + y}{x}z\frac{2 \sqrt{2} x}{3}z\frac{2 x}{3} \sqrt{2}z{\binom{x}{y}}x^*fz\left(x^{*}\right)^{2})parenthesize_superz {x^{*}}^{2}z=\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}z2\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}z\frac{2 \int x\, dx}{3}z\left(2 \int x\, dx\right) / 3z\sqrt{x}z \sqrt[3]{x}) root_notationzx^{\frac{1}{3}}zx^{\frac{3}{2}}itexz \root{3}{x}zx^{\frac{3}{4}})fold_frac_powerszx^{3/4}z \left(x + 1\right)^{\frac{3}{4}}z\left(x + 1\right)^{3/4}z\sqrt{2}z-7 + 3 \sqrt{2}alpha)alias\alphaz 3 \alpha - 7)r r r!rUz\beta^{2} + 3 \beta - 7)r r r rz%\zeta^{3} + 2 \zeta^{2} + 3 \zeta + 4oldorderz%4 + 3 \zeta + 2 \zeta^{2} + \zeta^{3}z(\left(19, \zeta^{2} + 5 \zeta + 1\right)z(\left(19, 1 + 5 \zeta + \zeta^{2}\right)z\left(7\right)g0)VC Dz1.5 \cdot 10^{20} xz1.5 \cdot 10^{20} \cdot xtimesz1.5 \times 10^{20} \times xz\frac{1}{\sin{\left(x \right)}}z#\sin^{\frac{3}{2}}{\left(x \right)}z\sin^{3/2}{\left(x \right)}z\neg xz x \wedge yzx \wedge y \wedge zzx \vee yzx \vee y \vee zzz \vee \left(x \wedge y\right)zx \Rightarrow yzx \not\Rightarrow \neg yz#\left(x \vee y\right) \Rightarrow zz#z \Rightarrow \left(x \vee y\right)z\neg \left(x \wedge y\right)x_i symbol_namesz\neg x_iy_izx_i \wedge y_iz_izx_i \wedge y_i \wedge z_iz x_i \vee y_izx_i \vee y_i \vee z_iz$z_i \vee \left(x_i \wedge y_i\right)zx_i \Rightarrow y_iz\frac{1}{\frac{1}{3}}z\frac{1}{(\frac{1}{3})^{2}}dz\frac{1}{\frac{1}{100}}ppositiveze^{- p} \log{\left(p \right)}z\frac{1}{\frac{2}{3}}z\frac{1}{\frac{4}{3}}z\frac{1}{- \frac{3}{4}}z \frac{1}{-1}z\frac{1}{- \frac{1}{3}})rryr#Halfrrr rzrMr)r$rrr}rrcyclotomic_fieldext field_element primes_aboverSrrrrCrD)x_starrkr1s rtest_latex_basicr?vs Q<8 ## # A;( "" " QU  ,, , AA1$ %)A AA A 1Q<8 ## # 1Q5 )-A AA A 1a4e , >> > QTe ,0B BB B AFFAI / 11 1 QVVQT26 7;_ __ _ QVVQT1u5 6:V VV V Re, -1S SS S QU+ ,0D DD D QVVR%8 9=g gg g Q1u- .( :: : Q2. /3I II I SAYq1 - .2W WW W SAYAq 01 45 6:a aa a SBZ1q) *.L LL L QE* +| ;; ; QE* +| ;; ; QE* +| ;; ; RU+ ,0D DD D Q1u- .2F FF F QE* +| ;; ; Q/ 04J JJ J Q166E2 3& '' ' Q1aU3 4& '' ' QU+ ,0D DD D Q1aAq59 :0 11 1 Q1ac1aU; <5 66 6 Xa^Xa^eD E( )) ) 1: '' ' 1d +x 77 7 !A$q>- -- - !A$q$ /: == = 1a4=. .. . AE1 !B BB B 1: '' ' 1d +x 77 7 !a%!A# #7 77 7 !a%!A# 5# $$ $ !a%!A# 2+ ,, , !a% 1 11 1 !a%A .2D DD D !DG)A+q !%> >> > !DG)A+q! 4! "" " !Q $5 55 5 E]F A  8 88 8 u 5 GG G AfIva0 15u uu u AfIva0U KPE EE E 8Aq>!!# $(B BB B 8Aq>!!#T :) ** * a>[ (( ( HQN" #~ 55 5 HQN"% 8X XX X Xb!_b59 :o MM M Xa^R%8 9=U UU U Xb!_b59 :>X XX Xrctddk(sJtddk(sJtddk(sJttdk(sJttdk(sJy)NTz \text{True}Fz \text{False}z \text{None})rrrrrrtest_latex_builtinsrAs\ ;. (( (  >> > q!Q1% &5 66 6 >. .. .rcttddddk(sJttddddddk(sJttdk(sJttddtdzd k(sJttdd k(sJttd dd dk(sJttd dddd dk(sJttd dk(sJt5tj}d t_ttd ddddk(sJ|t_dddy#1swYyxYw)Nr r rrGrrHrIrJz"\left( 2\; 4\right)\left( 5\right)z\left( 5\right)rF) perm_cyclicz,\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}r z<\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix})rr r print_cyclic)old_print_cyclics rtest_latex_permutationrP=s| Q1% &*D DD D "Q"1a+ ,5 66 6  #4 44 4 Q";q>1 2- .. . Q $6 66 6 Q" 67 88 8 "Q"1a(e <G HH H E 2   !4&33#(  &[A&q!,- KL LL#3  444s 8AE  Ecttddk(sJttddk(sJttdddk(sJttdd d d d k(sJttdd d d d k(sJttdd d d dk(sJttddd d dk(sJy)Ng}Ô%ITz1.0 \cdot 10^{100}g0.++z1.0 \cdot 10^{-100}r)rz1.0 \times 10^{-100}z10000.0Fr/r ) full_precminmaxz1.0 \cdot 10^{4}rrz0.099999Tz9.99990000000000 \cdot 10^{-2})rrrrrtest_latex_FloatrUTs w $9 99 9 x !%; ;; ; xW 5   y!U B   y!U B   y!U B   z"d C) ** *rcv td}tt|j|j|j zdz|j zdk(sJtt|j|jdk(sJtt t|j|jzdk(sJttt |jz|jdk(sJttd|j z|jzdk(sJttd|j z|jz|jzdk(sJttdt z|j z|jzd k(sJtt td|j z|jzzd k(sJttd|j z|jz|jzd k(sJttd|j z|jzd k(sJtt td|j z|jzzd k(sJtt|j|j|j zdz|j zdk(sJtt|j|jdk(sJttt |jz|jdk(sJtt t|j|jzdk(sJtt|j dk(sJtt|j d|jzzdk(sJtt t|j zdk(sJttt |j zdk(sJtt|j dk(sJtt|j d|jzzdk(sJtt t|j zdk(sJttt |j zdk(sJy)NAr zs\mathbf{\hat{i}_{A}} \times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)z0\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}z?x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)zM- \mathbf{\hat{j}_{A}} \times \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)zM\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)zd\nabla\times \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)zO\nabla\times \left(\left(3 \mathbf{{x}_{A}} x\right)\mathbf{\hat{j}_{A}}\right)z\x \left(\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)zc\nabla\cdot \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)zL\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)z[x \left(\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)zr\mathbf{\hat{i}_{A}} \cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)z/\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}zJ\mathbf{\hat{j}_{A}} \cdot \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)z>x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)z\nabla \mathbf{{x}_{A}}z9\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)z&x \left(\nabla \mathbf{{x}_{A}}\right)z&\nabla \left(\mathbf{{x}_{A}} x\right)z\Delta \mathbf{{x}_{A}}z9\Delta \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)z&x \left(\Delta \mathbf{{x}_{A}}\right)z&\Delta \left(\mathbf{{x}_{A}} x\right)) rrrijrr>rrrrr6r)rWs rtest_latex_vector_expressionsrZcs93A qssACCGAIaccM* +~   qssACC !; << < 5acc?" #J KK K quacc" #X YY Y aeACCi !X YY Y aeACCim$ %o pp p ac!##gacck" #Z [[ [ 4!##acc ?" #g hh h AaccE!##IaccM* +n oo o AaccE!##I& 'W XX X :aeACCi(( )f gg g QSS!##acc'!)ACC-( )} ~~ ~ QSS!## : ;; ; QqssUACC !U VV V 3qssACC= !I JJ J !## #= == = !##!##+& 'D EE E 8ACC= !%N NN N !ACC% !%N NN N 133 $> >> > 133133;' (D EE E 9QSS>! "&O OO O 1QSS5! "&O OO Orc&td\}}}td\}}}}t|dk(sJt|dk(sJt|dk(sJt|dk(sJtDchc]}|j}}t |t t jz dk(sJt||zdk(sJt||zdk(sJttdd k(sJttd d k(sJttd d k(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttdtdzdk(sJycc}w) NzGamma, lambda, rhoztau, Tau, TAU, taU\tau \mathrm{T}rz\Gamma + \lambdaz\Gamma \lambdaq1zq_{1}q21zq_{21}epsilon0z \epsilon_{0}omega1 \omega_{1}91 alpha_newz \alpha_{new}zC^origzC^{orig}zx^alphaz x^{\alpha}z beta^alphaz\beta^{\alpha}ze^Alphaze^{\mathrm{A}}zomega_alpha^betaz\omega^{\beta}_{\alpha}omegarUz\omega^{\beta}) r&rr capitalizelensetrkeysr$) GammalmbdarhorTauTAUtaUlcapitalized_letterss rtest_latex_symbolsrrs 45E5# !56Cc3 :  : && & :  :  3DEa1<<>EE "S)=)B)B)D%EE F! KK K  #6 66 6  #4 44 4  ( ** *  9 ,, ,  # $ 77 7 ! "m 33 3  % '' '  $ % 88 8 ! "k 11 1  " #} 44 4  % &*; ;; ;  " #'8 88 8 *+ ,0J JJ J F6N2 37H HH HFs(Hctd\}}}t||z|k(dk(sJt||z |zdk(dk(sJt|dz|dzzdk(sJy)Nzrho, mass, volumez$\rho \mathrm{volume} = \mathrm{mass}r z/\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1r z/{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}r&r)rlmassvolumes rtest_latex_symbols_failingrws 34Cv   !H II I $$) *: ;; ; q619$ %: ;; ;rcDtttdk(sJttdtdzdk(sJtd}t|tdk(sJt|dk(sJtd}t|ttdk(sJt|dk(sJtd }t|ttt d k(sJt|d k(sJtd }t|d k(sJt|td k(sJtd}t|ttt dk(sJtt ttdk(sJtt tddk(sJtt ttdzdk(sJt|tdk(sJt|dk(sJtd}t|ttt dk(sJt|tdk(sJt|dk(sJtd}t|dk(sJt|tdk(sJttddk(sJttddk(sJttd d!k(sJttd"d#k(sJttd$d!k(sJttd%d#k(sJttd&d'k(sJttd(d)k(sJttdtd*d+k(sJttd td*d,k(sJttd"td*d-k(sJttd$td*d,k(sJttd&td*d.k(sJttd(td*d/k(sJttddzd0k(sJttd dzd1k(sJttd"dzd2k(sJttd$dzd1k(sJttd%dzd2k(sJttdtd*dzd3k(sJttd td*dzd4k(sJttd"td*dzd5k(sJttd$td*dzd4k(sJttd%td*dzd5k(sJttd6d6k(sJttd7dk(sJttd8d9k(sJttddk(sJttd:d9k(sJttd6d;k(sJttd7dk(sJttd7dzd?k(sJttd8dzd@k(sJttddzd?k(sJttd:dzd@k(sJttd6td*dzdAk(sJttd7td*dzdBk(sJttd8td*dzdCk(sJttdtd*dzdBk(sJttd:td*dzdCk(sJttd6dDzdEk(sJttd7dDzdFk(sJttd8dDzdGk(sJttddDzdFk(sJttd:dDzdGk(sJttd6td*dDzdHk(sJttd7td*dDzdIk(sJttd8td*dDzdJk(sJttdtd*dDzdIk(sJttd:td*dDzdJk(sJttd6tzdKk(sJttd7tzdLk(sJttd8tzdMk(sJttdtzdLk(sJttd:tzdMk(sJttd6td*tzdNk(sJttd7td*tzdOk(sJttd8td*tzdPk(sJttdtd*tzdOk(sJttd:td*tzdPk(sJtd}ttd6|zdQk(sJttd7|zdRk(sJttd8|zdSk(sJttd|zdRk(sJttd:|zdSk(sJttd6td*|zdTk(sJttd7td*|zdUk(sJttd8td*|zdVk(sJttdtd*|zdUk(sJttd:td*|zdVk(sJttdWtdXk(sJttdWt|zdYk(sJttdZtdXk(sJttdZt|zdYk(sJttd[td\k(sJtd]}t|d^k(sJt|td_k(sJtttd`k(sJtttdabdck(sJttdtdzzdabddk(sJtttdzdabdek(sJtttdzdfk(sJtttdzdghdik(sJtttdzdjhdkk(sJtttdzdjdaldmk(sJtttdghdnk(sJtttdghdok(sJtttdpk(sJttt dqk(sJtttdzdrk(sJtttdsk(sJttt dtk(sJtttdzduk(sJtt!tdvk(sJtt!t dwk(sJtt!tdzdxk(sJtt#dtdyk(sJtt#dtdzdzk(sJtt%d{td|k(sJtt'd{td}k(sJtt)td~k(sJtt+tdk(sJtt-tdk(sJtt)tdzdk(sJtt+tdzdk(sJtt-tdzdk(sJtt/tdtd{zdk(sJtt/ttdzdk(sJtt1tdtd{zdk(sJtt1ttdzdk(sJtt3tdk(sJtt3tdzdk(sJtt5tdk(sJtt5ttzdk(sJtt7tdk(sJtt9tdk(sJtt9tdzdk(sJtt9tdzdk(sJtt;tdk(sJt=d}tt;|dk(sJtt?tdk(sJtt?ttdk(sJtt?ttdfdk(sJtt?ttt@fdk(sJtt?ttz ttfdk(sJtt?tttdk(sJtt?tttdk(sJtt?ttt@ftt@fdk(sJttCttdk(sJttCttdzdk(sJttEttdk(sJttEttdzdk(sJttGtdk(sJttItdk(sJtt5tdk(sJtt7tdk(sJttKttdk(sJttMtdk(sJttOtdk(sJttOtdzdk(sJttOttdk(sJttOttdzdk(sJttQtdk(sJttQtdzdk(sJttSttdk(sJttSttdzdk(sJttUtttVdk(sJttUtttVdzdk(sJttYtdk(sJttYtdzdk(sJttYttdk(sJttYttdzdk(sJtt[t dk(sJtt[t dzdk(sJtt]ttdk(sJtt]ttdzdk(sJtt_ttdk(sJtt_ttdzdk(sJtt_t dk(sJtt_t dzdk(sJttattt dk(sJttattt dzdk(sJttattdk(sJttattdzdk(sJttctdk(sJttctdzdk(sJttettdk(sJttettdzdk(sJttgtdzdk(sJttitdzdk(sJttktdzdk(sJttmtdzdk(sJttmtdk(sJttotVttptdk(sJttotVttptdzdk(sJttstVttdk(sJttstVttdzdk(sJttutVtdk(sJttutVtdzdk(sJttwtVtdk(sJttwtVtdzdk(sJttytVtdk(sJttytVtdzdk(sJtt{tVttdk(sJtt{tVttdzdk(sJtt}tVtdk(sJtt}tVtdzdk(sJtttVttdk(sJtttVttdzdk(sJtttVtdk(sJtttVtdzdk(sJtdda֫} tdda֫} tttVt| | dk(sJtttVt| | d{zdk(sJtttVt| | dk(sJtttVt| | d{zdk(sJttddk(sJttdd{zdk(sJtttVdk(sJtttVdzdk(sJtttVdk(sJtttVdzdk(sJtttdk(sJtttdzdk(sJttttdk(sJttttdzdk(sJtttdk(sJtttdzdk(sJttttdk(sJttttdzdk(sJtttVdk(sJtttVdzdk(sJtttVdk(sJtttVdzdk(sJtttVdk(sJtttVddk(sJtttVtdk(sJtttVttVzdk(sJttttVddk(sJtttVtzdk(sJtttVttzdk(sJtttddk(sJtttdzddk(sJttdtdzdk(sJttdtzddk(sJttddtzdk(sJtttddzdk(sJtdttdzdk(sJttddtztVzdk(sJtd} t| tdk(sJt| dk(sJy(Nze^{x}r r z e + e^{2}rzf{\left(x \right)}gzg{\left(x,y \right)}hzh{\left(x,y,z \right)}Liz\operatorname{Li}z"\operatorname{Li}{\left(x \right)}rUz\beta{\left(x,y,z \right)}z!\operatorname{B}\left(x, y\right)Frz!\operatorname{B}\left(x, x\right)z%\operatorname{B}^{2}\left(x, y\right)z\beta{\left(x \right)}\betarbz\gamma{\left(x,y,z \right)}z\gamma{\left(x \right)}\gammaa_1za_{1}za_{1}{\left(x \right)}abz\operatorname{ab}ab1z\operatorname{ab}_{1}ab12z\operatorname{ab}_{12}ab_1ab_12ab_cz\operatorname{ab}_{c}ab_cdz\operatorname{ab}_{cd}rz"\operatorname{ab}{\left(x \right)}z&\operatorname{ab}_{1}{\left(x \right)}z'\operatorname{ab}_{12}{\left(x \right)}z&\operatorname{ab}_{c}{\left(x \right)}z'\operatorname{ab}_{cd}{\left(x \right)}z%\operatorname{ab}^{2}{\left( \right)}z)\operatorname{ab}_{1}^{2}{\left( \right)}z*\operatorname{ab}_{12}^{2}{\left( \right)}z&\operatorname{ab}^{2}{\left(x \right)}z*\operatorname{ab}_{1}^{2}{\left(x \right)}z+\operatorname{ab}_{12}^{2}{\left(x \right)}rCa1a12za_{12}a_12za{\left( \right)}za_{1}{\left( \right)}za_{12}{\left( \right)}za^{2}{\left( \right)}za_{1}^{2}{\left( \right)}za_{12}^{2}{\left( \right)}za^{2}{\left(x \right)}za_{1}^{2}{\left(x \right)}za_{12}^{2}{\left(x \right)} za^{32}{\left( \right)}za_{1}^{32}{\left( \right)}za_{12}^{32}{\left( \right)}za^{32}{\left(x \right)}za_{1}^{32}{\left(x \right)}za_{12}^{32}{\left(x \right)}za^{a}{\left( \right)}za_{1}^{a}{\left( \right)}za_{12}^{a}{\left( \right)}za^{a}{\left(x \right)}za_{1}^{a}{\left(x \right)}za_{12}^{a}{\left(x \right)}za^{ab}{\left( \right)}za_{1}^{ab}{\left( \right)}za_{12}^{ab}{\left( \right)}za^{ab}{\left(x \right)}za_{1}^{ab}{\left(x \right)}za_{12}^{ab}{\left(x \right)}za^12za^{12}{\left(x \right)}z)\left(a^{12}\right)^{ab}{\left(x \right)}a__12a_1__1_2za^{1}_{1 2}{\left(x \right)}rarbz\omega_{1}{\left(x \right)}z\sin{\left(x \right)}T)fold_func_bracketsz\sin {x}z\sin {2 x^{2}}z \sin {x^{2}}z(\operatorname{asin}^{2}{\left(x \right)}full)inv_trig_stylez\arcsin^{2}{\left(x \right)}powerz\sin^{-1}{\left(x \right)}^{2})rrz\sin^{-1} {x^{2}}z&\operatorname{arccsc}{\left(x \right)}z&\operatorname{arsinh}{\left(x \right)}zk!z\left(- k\right)!zk!^{2}z!kz!\left(- k\right)z\left(!k\right)^{2}zk!!z\left(- k\right)!!zk!!^{2}z{\binom{2}{k}}z{\binom{2}{k}}^{2}r z{\left(3\right)}_{k}z{3}^{\left(k\right)}z\left\lfloor{x}\right\rfloorz\left\lceil{x}\right\rceilz#\operatorname{frac}{\left(x\right)}z \left\lfloor{x}\right\rfloor^{2}z\left\lceil{x}\right\rceil^{2}z'\operatorname{frac}{\left(x\right)}^{2}z\min\left(2, x, x^{3}\right)z\min\left(x, y\right)^{2}z\max\left(2, x, x^{3}\right)z\max\left(x, y\right)^{2}\left|{x}\right|z\left|{x}\right|^{2}!\operatorname{re}{\left(x\right)}zE\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}!\operatorname{im}{\left(x\right)}z \overline{x}z\overline{x}^{2}z\Gamma\left(x\right)wz\Gamma\left(w\right)zO\left(x\right)rz$O\left(x; x\rightarrow \infty\right)z#O\left(x - y; x\rightarrow y\right)zGO\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)zQO\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)z\gamma\left(x, y\right)z\gamma^{2}\left(x, y\right)z\Gamma\left(x, y\right)z\Gamma^{2}\left(x, y\right)z\cot{\left(x \right)}z\coth{\left(x \right)}zx^{\frac{1}{y}}z\arg{\left(x \right)}z\zeta\left(x\right)z\zeta^{2}\left(x\right)z\zeta\left(x, y\right)z\zeta^{2}\left(x, y\right)z\eta\left(x\right)z\eta^{2}\left(x\right)z#\operatorname{Li}_{x}\left(y\right)z'\operatorname{Li}_{x}^{2}\left(y\right)z\Phi\left(x, y, n\right)z\Phi^{2}\left(x, y, n\right)z \gamma_{x}z\gamma_{x}^{2}z\gamma_{x}\left(y\right)z\gamma_{x}\left(y\right)^{2}zK\left(z\right)zK^{2}\left(z\right)zF\left(x\middle| y\right)zF^{2}\left(x\middle| y\right)zE\left(x\middle| y\right)zE^{2}\left(x\middle| y\right)zE\left(z\right)zE^{2}\left(z\right)z\Pi\left(x; y\middle| z\right)z"\Pi^{2}\left(x; y\middle| z\right)z\Pi\left(x\middle| y\right)z\Pi^{2}\left(x\middle| y\right)z"\operatorname{Ei}{\left(x \right)}z&\operatorname{Ei}^{2}{\left(x \right)}z"\operatorname{E}_{x}\left(y\right)z&\operatorname{E}_{x}^{2}\left(y\right)z'\operatorname{Shi}^{2}{\left(x \right)}z&\operatorname{Si}^{2}{\left(x \right)}z&\operatorname{Ci}^{2}{\left(x \right)}z$\operatorname{Chi}^{2}\left(x\right)z \operatorname{Chi}\left(x\right)z&P_{n}^{\left(a,b\right)}\left(x\right)z7\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}z$C_{n}^{\left(a\right)}\left(x\right)z5\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}T_{n}\left(x\right)z$\left(T_{n}\left(x\right)\right)^{2}zU_{n}\left(x\right)z$\left(U_{n}\left(x\right)\right)^{2}zP_{n}\left(x\right)z$\left(P_{n}\left(x\right)\right)^{2}z$P_{n}^{\left(a\right)}\left(x\right)z5\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}zL_{n}\left(x\right)z$\left(L_{n}\left(x\right)\right)^{2}z$L_{n}^{\left(a\right)}\left(x\right)z5\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}zH_{n}\left(x\right)z$\left(H_{n}\left(x\right)\right)^{2}thetarealphiz!Y_{n}^{m}\left(\theta,\phi\right)z2\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}z!Z_{n}^{m}\left(\theta,\phi\right)z2\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}z+\operatorname{polar\_lift}{\left(0 \right)}z/\operatorname{polar\_lift}^{3}{\left(0 \right)}z\phi\left(n\right)z#\left(\phi\left(n\right)\right)^{2}z\lambda\left(n\right)z&\left(\lambda\left(n\right)\right)^{2}z\sigma\left(x\right)z\sigma^{2}\left(x\right)z\sigma_y\left(x\right)z\sigma^{2}_y\left(x\right)z\sigma^*\left(x\right)z\sigma^*^{2}\left(x\right)z\sigma^*_y\left(x\right)z\sigma^*^{2}_y\left(x\right)z\nu\left(n\right)z"\left(\nu\left(n\right)\right)^{2}z\Omega\left(n\right)z%\left(\Omega\left(n\right)\right)^{2}zW\left(n\right)rzW_{-1}\left(n\right)zW_{k}\left(n\right)zW^{2}\left(n\right)zW^{k}\left(n\right)zW^{p}_{k}\left(n\right)rz x \bmod 7z\left(x + 1\right) \bmod 7z7 \bmod \left(x + 1\right)z 2 x \bmod 7z 7 \bmod 2 xz\left(x \bmod 7\right) + 1z2 \left(x \bmod 7\right)z\left(7 \bmod 2 x\right)^{n}fjlkdz%\operatorname{fjlkd}{\left(x \right)}z\operatorname{fjlkd})OrrCrrr6r8rUr$rCrSrPrOrEr*r>r,r+r)r'r(rHrGrIrKrJr<rAr?r>rbr%rrrrcrRrFrLr=r|rxrzryrDr{rZrYrXr[r^rar_r`r]r\rpbrnrlrmrrrkrqrjrortmrur@r:r;r5r6r8r9rBr r1r) rryrzr{mybetar~rrarrrrs rtest_latex_functionsrs Q=H $$ $ Q#a& !\ 11 1 A 1;/ // / 8t   A 1a>4 44 4 8t   A 1a  9 99 9 8t   $B 9, ,, , A<@ @@ @ f F 1a !%B BB B a  D DD D a%( )-Q QQ Q aQ #K KK K  8 88 8 =H $$ $A 1a  > >> > 1;4 44 4 8y  5/C : !! ! Q=5 55 5 % !X -- - $ $8 88 8 % !%= == = &! "&? ?? ? &! "&> >> > '" #'@ @@ @ &! "&> >> > '" #'@ @@ @ $s , -1V VV V %- .2[ [[ [ !&!&+. /3] ]] ] !&!&+. /3\ \\ \ !&!&+. /3\ \\ \ "'"6#;/ 04^ ^^ ^ $!1$ %)Q QQ Q %"A% &*V VV V !&!#Q& '+X XX X !&!#Q& '+W WW W "'"$a' (,Y YY Y $s ,a/ 04] ]] ] %-q0 15b bb b !&!&+.1 26d dd d !&!&+.1 26c cc c "'"6#;/2 36 77 7 # 4 '' ' $ H ,, , % !Y .. . % !X -- - &! "i // / # !%9 99 9 $! "&> >> > %" #'@ @@ @ %" #'? ?? ? !&!# $(A AA A #!# $(@ @@ @ $!1$ %)E EE E %"A% &*G GG G %"A% &*F FF F !&!#Q& '+H HH H #vc{+Q. /3L LL L $s ,a/ 04Q QQ Q %-q0 15S SS S %-q0 15R RR R !&!&+.1 26T TT T #"$ %)B BB B $!2% &*G GG G %"B& '+I II I %"B& '+H HH H !&!#R' (,J JJ J #vc{+R/ 04N NN N $s ,b0 15S SS S %-r1 26U UU U %-r1 26T TT T !&!&+.2 37V VV V #!# $(@ @@ @ $!1$ %)E EE E %"A% &*G GG G %"A% &*F FF F !&!#Q& '+H HH H #vc{+Q. /3L LL L $s ,a/ 04Q QQ Q %-q0 15S SS S %-q0 15R RR R !&!&+.1 26T TT T B #"$ %)B BB B $!2% &*G GG G %"B& '+I II I %"B& '+H HH H !&!#R' (,J JJ J #vc{+R/ 04N NN N $s ,b0 15S SS S %-r1 26U UU U %-r1 26T TT T !&!&+.2 37V VV V !&!!$ %)C CC C !&!!$* +/[ [[ [ "'"1% &*D DD D "'"1%+ ,0\ \\ \ %*%a( )-L LL Lh F =M )) )  = == = Q=4 44 4 QD 1[ @@ @ Qq!tV 6   QTt 4   a!  K KK K a!F 3' (( ( a!G 4) ** * adG$( *   a 01 22 2 q& 11 22 2 1 % '' ' A2 #7 77 7 1q !Y .. . a !U ** * qb! "&: :: : a!# $(> >> > A 6 )) ) QB $9 99 9 A! "j 00 0 !Q $5 55 5 !Q" #'< << < !!Q' (,C CC C A& '+B BB B q?= == =   = == = a>C CC C q1 !D DD D Q #D DD D a!  J JJ J Q1a4 !%D DD D QA "> >> > Q1a4 !%D DD D QA "> >> > Q=/ // / Q 6 66 6 A<? ?? ? AE P QQ Q A<? ?? ? 1 / 11 1 1q !%8 88 8 1a4 !%8 88 8 q?5 55 5 S A q?5 55 5 q?0 00 0 q! !3 33 3 q1a&! "&8 88 8 q1b'" #'N NN N q1uq!f% &. // / q!Q R SS S q!Q R SS S q1b'Ar7+ ,\ ]] ] Aq! "&@ @@ @ Aq!1$ %)G GG G Aq! "&@ @@ @ Aq!1$ %)G GG G Q=4 44 4 a>6 66 6 A<? ?? ? A<? ?? ? a  2 22 2 Q=4 44 4 a>3 33 3 a!  : :: : a  9 99 9 aQ #@ @@ @ q! "&; ;; ; q!1$ %)B BB B A #I II I 1 q G HH H !Q" #'B BB B !Q"A% &*I II I 1 - // / 1q !%6 66 6 1a !%@ @@ @ 1a!# $(G GG G A #5 55 5 A! "&< << < Aq! "&B BB B Aq!1$ %)I II I Aq! "&B BB B Aq!1$ %)I II I A #5 55 5 A! "&< << < Q1% &*K KK K Q1%q( )- .. . Q" #'E EE E Q"A% &*L LL L A<@ @@ @ A?G GG G 1 "G GG G 1q !%N NN N Q I II I A?G GG G A?G GG G Q F FF F Q=? ?? ? 1a# $1 22 2 1a#Q& 'B CC C Aq!$ %/ 00 0 Aq!$a' (@ AA A Aq! "&< << < Aq!1$ %/ 00 0 Aq! "&< << < Aq!1$ %/ 00 0 !Q $: :: : !Q" #'N NN N 1a( )/ 00 0 1a(!+ ,@ AA A !Q $: :: : !Q" #'N NN N 1a( )/ 00 0 1a(!+ ,@ AA A A #9 99 9 A! "&M MM M 7 &E T "C Q5#& '+O OO O Q5#&) *= >> > Q5#& '+O OO O Q5#&) *= >> > A 6 77 7 A! ": ;; ;   5 55 5 q !%K KK K # $(@ @@ @ #q( )1 22 2 q! "&= == = q!1$ %)D DD D q!$ %)B BB B q!$a' (,I II I " #'@ @@ @ "A% &*G GG G 1% &*E EE E 1%q( )-L LL L   4 44 4 q !%J JJ J A #: :: : A!# $0 11 1 ! !3 33 3 !R !%< << < !Q $: :: : !x{* +/E EE E Xa[!$ %)? ?? ? !a $: :: : !Q" #'A AA A Q | ++ + QUA #@ @@ @ QA #@ @@ @ QUA > 11 1 QA > 11 1 QQ #@ @@ @ SAY #> >> > QA! "&E EE E W E q?F FF F <2 22 2rcvGddt}t|dk(sJt|tdk(sJy)Nc eZdZy)6test_function_subclass_different_name..mygammaNrrrrmygammar)s rrz\operatorname{mygamma}z'\operatorname{mygamma}{\left(x \right)})rbrr)rs r%test_function_subclass_different_namer(s9 % >6 66 6   J JJ Jrc ddlm}m}tt t t t |t ddt dddt z |dk(sJtt t t ddt |d k(sJtt|dfd |d k(sJttt t d|d k(sJy) Nrrr8r )rr r r zt{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, \frac{3}{\pi} \end{matrix} \middle| {z} \right)})rzS{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)})r zL{{}_{2}F_{1}\left(\begin{matrix} 2, x \\ 3 \end{matrix}\middle| {z} \right)}zH{{}_{0}F_{1}\left(\begin{matrix} \\ 1 \end{matrix}\middle| {z} \right)}) sympy.abcrr8rrer rrdrs rtest_hyper_printingr/s r2q)58q!QrT!2A7 8 < << < %(D%'1= >^ __ _ 1vtQ' ( 2 22 2 uwa!, - 2 22 2rc|ddlm}m}m}m}m}m}m}m}m }m } ddl m } t|t| dztzdk(sJt|t| dk(sJt|t| dk(sJt|t| dk(sJt|t| dzdzd k(sJt|t| d k(sJt|t| d k(sJt|t| d k(sJt|t| d k(sJt| t| dk(sJy)Nr) besseljbesselybesselibesselkhankel1hankel2jnynhn1hn2r8r zJ^{k}_{n}\left(z^{2}\right)zY_{n}\left(z\right)zI_{n}\left(z\right)zK_{n}\left(z\right)z.\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}zH^{(2)}_{n}\left(z\right)zj_{n}\left(z\right)zy_{n}\left(z\right)zh^{(1)}_{n}\left(z\right)zh^{(2)}_{n}\left(z\right))sympy.functions.special.besselrrrrrrrrrrrr8rrDr>) rrrrrrrrrrr8s rtest_latex_besselr@s5BBB AqD!1$ %)G GG G A #9 99 9 A #9 99 9 A #9 99 9 AqD!1$ %9 :: : A #? ?? ? Aq?4 44 4 Aq?4 44 4 Q ; ;; ; Q ; ;; ;rcddlm}m}ddlm}t ||dk(sJt ||dk(sJt ||dzdk(sJt ||dzdk(sJy) Nr)fresnelsfresnelcrzS\left(z\right)zC\left(z\right)r zS^{2}\left(z\right)zC^{2}\left(z\right))'sympy.functions.special.error_functionsrrrr8r)rrr8s rtest_latex_fresnelrRspL ! !3 33 3 ! !3 33 3 !a $: :: : !a $: :: :rc2tdtzdk(sJy)Nrz\left(-1\right)^{x}rrrrrtest_latex_bracketsr[s "q>3 33 3rc Ftddd}ttddd}t|t|z}t|dt|dz}|dk(sJ|dk(sJd }tt d td d k(sJtt d t d dk(sJtt dt d tdd|zdzk(sJtt dt d tddzd|zdzk(sJtt dt d tdtdfd|zdzk(sJttddk(sJttddk(sJttddk(sJy)NPsi_0TF)complexrPsirz\Psi_{0} \overline{\Psi_{0}}z \overline{{\Psi}_{0}} {\Psi}_{0}z\mathrel{..}\nobreak x1rXz {x_{1}}_{i}x2z {x_{2}}_{i}x3Nz{x_{3}}_{{i}_{0zN - 1}}r zN}}x4rCrz{x_{4}}_{{i}_{azb}}rbr}za ba_bza_{b})r$rrr>rr) Psi_symbol Psi_indexed symbol_latex indexed_latexintervals rtest_latex_indexedr_sE:JfUDuEFKi &;;> > s3x( )^ ;; ; s3s 45 6:LX:UV_:_ __ _ s3s A 67 8 ?? ? c!a%j1a4'U; <S TT T d3qs8ad?A>ER S[ \\ \ d4AaC1a4UCQQVWYZejk l[ \\ \  A d1Q7A6EJ K5a1gF GG G d4!QU;QOQR]bc d9E!Aq'NJ KK K tAqDE221eD EI| || | dDa5!9!UKKAW\]^_ino pG HH H hsA2a4y1a*5q5I J@ AA A aU+Q. /+ ,, , adA! "< == = adQF# $3 44 4 B B aBi$ %)h hh h B adQG$ %)\ \\ \ B adQB ,- .k ll l adAd 37l ll lrcdttttzttfddk(sJy)Nr r z+\left. x y \right|_{\substack{ x=1\\ y=2 }})rrrr6rrrtest_latex_subsrs' acAq66* +/] ]] ]rc xtttttdk(sJtttdztddfdk(sJtttdztddfdk(sJttttdzztddftd k(sJttttdzztddftd d k(sJttttdzztddftd d dk(sJttttdfdk(sJttttzttdk(sJttttzt zttt dk(sJttttzt zt zttt t dk(sJtttttttttdk(sJtttttt ddfdk(sJttttdzt tdk(sJtttttt t tdk(sJttt t dzdk(sJtttt zt dk(sJtttt dz zt dk(sJttttzt dk(sJttttddk(sJttttddfddk(sJy) Nz\int \log{\left(x \right)}\, dxr rr z\int\limits_{0}^{1} x^{2}\, dx z \int\limits_{10}^{20} x^{2}\, dxz)\int\int\limits_{0}^{1} x^{2} y\, dx\, dy equation*modezI\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}Trrz&$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$z\int\limits^{0} x\, dxz\iint x y\, dx\, dyz\iiint x y z\, dx\, dy\, dzz#\iiiint t x y z\, dx\, dy\, dz\, dtz8\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dxz,\int\limits_{0}^{1}\int\int x\, dx\, dy\, dzz(\int \left(- \int y^{2}\, dx\right)\, dxz=\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dxz\left(\int z\, dz\right)^{2}z\int \left(x + z\right)\, dzz&\int \left(x + \frac{z}{2}\right)\, dzz\int x^{y}\, dzrrz\int x\, \mathrm{d}xz#\int\limits_{0}^{1} x\, \mathrm{d}x)rr}rDrr6r8trrrtest_latex_integralsrs6 #a&!$ %)K KK K !Q$Aq * +) ** * !Q$B , -+ ,, , !AqD&1a)Q/ 04 55 5 !AqD&1a)Q/k BT UU U !AqD&1a)Q/k M 4 55 5 !aV$ %)B BB B !A#q!$ %)? ?? ? !A#a%Aq) *.L LL L !A#a%'1aA. /. // / !Q1aA. /C DD D !QAq!9- .7 88 8 8AqD++A. /3 44 4 8Xa]N155a8 9H II I !Q" #'F FF F !a%# $(G GG G !AaC%# $1 22 2 !Q$" #'9 99 9 !Qt 48O OO O !aAY't <@f ff frc ttfD]l}t|ttztdzgdk(sJt|t dddk(sJt|t dddk(rlJt }t|ttztdzgdk(sJt|t dddk(sJt|t dddk(sJy)Nr z\left\{x^{2}, x y\right\}r rHz\left\{1, 2, 3, 4, 5\right\} z4\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}) frozensetrhrrr6rangerss rtest_latex_setsrs DQ!QT{^$(DDDDQuQ{^$(GGGGQuQ|_% CD DDD A QqS!Q$K !%A AA A E!QK !%D DD D E!RL! "? @@ @rcRtdd}t|}t|dk(sJy)Nr r z%SetExpr\left(\left[1, 3\right]\right))rrr)ivses rtest_latex_SetExprrs) !QB B 9@ @@ @rcttdddk(sJttdddk(sJttddddk(sJttdd dd k(sJttd dd d k(sJttdtd dk(sJtttdddk(sJttdt d dk(sJttt tdk(sJtttt d dk(sJtd\}}}tt|||dk(sJtt|dddk(sJttd|ddk(sJttdd|dk(sJt dd}t ddd}t ddd }tt||dzd!k(sJttt |d d"k(sJtt|td#k(sJtt||dzd$k(sJy)%Nr 3z\left\{1, 2, \ldots, 50\right\}rz\left\{1, 2, 3\right\}rr z\left\{0, 1, 2\right\}z\left\{0, 1, \ldots, 29\right\}rz \left\{30, 29, \ldots, 2\right\}r z\left\{0, 2, \ldots\right\}r/z\left\{\ldots, 2, 0\right\}z\left\{-2, -3, \ldots\right\}z'\left\{\ldots, -1, 0, 1, \ldots\right\}z'\left\{\ldots, 1, 0, -1, \ldots\right\}za:cz \text{Range}\left(a, b, c\right)rz\text{Range}\left(a, 10\right)z\text{Range}\left(b\right)z!\text{Range}\left(0, 10, c\right)rXTrrD)negativerr1)r3rz\left\{i, i + 1, i + 2\right\}z#\left\{\ldots, n - 4, n - 2\right\}z\left\{p, p + 1, \ldots\right\}z!\text{Range}\left(a, a + 3\right))rrrr&r$)rCrcrXrDr1s rtest_latex_Rangers< q" "D DD D q! !: :: : q!Q $= == = q"a !%G GG G r1b! "&I II I q"a !%C CC C r2r" #'E EE E rB3# $(H HH H sB $N NN N rB3# $(R RR RenGAq! q!Q $G GG G q"a !%F FF F q!Q $A AA A q"a !%I II IsD!AsT40AsT40A q!a% !%F FF F sAq! "&L LL L q" "D DD D q!a% !%I II Ircttdzdtf}td}d}t ||k(sJd}t ||k(sJttdzd}tdd}d}t ||k(sJd}t ||k(sJttdzt df}tdt df}d }t ||k(sJd }t ||k(sJd }t t |||k(sJd }t t |||k(sJd }t t |||k(sJd}t t |||k(sJd}t t |||k(sJd}t t |||k(sJttdztdtf}d}t ||k(sJtd}t|tdzztddf} d}t | |k(sJy)Nr rrz\left[0, 1, 4, 9, \ldots\right]z\left[1, 2, 1, 2, \ldots\right])rr z\left[0, 1, 4\right]z\left[1, 2, 1\right]z\left[\ldots, 9, 4, 1, 0\right]z\left[\ldots, 2, 1, 2, 1\right]z \left[1, 3, 5, 11, \ldots\right]z\left[1, 3, 5\right]z \left[\ldots, 11, 5, 3, 1\right]z \left[0, 2, 4, 18, \ldots\right]z\left[0, 2, 4\right]z \left[\ldots, 18, 4, 2, 0\right]z\left\{a^{2}\right\}_{a=0}^{x}rz\left[0, b, 4 b\right]) rrCrrrrrrr$) s1s2 latex_strs3s4s5s6s7rs8s rtest_latex_sequencesrs  AqD1b' "B B2I 9 !! !2I 9 !! ! AqD& !B  B'I 9 !! !'I 9 !! ! AqDB3( #B "a !B2I 9 !! !2I 9 !! !3I B I -- -'I B I -- -3I B I -- -3I B I -- -'I B I -- -3I B I -- - AqD1a) $B1I 9 !! !s A AadFQ1I &B)I 9 !! !rcdd}ttttt tf|k(sJy)Nz`2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots)rrrrrs rtest_latex_FourierSeriesrLs,k AsB<0 1Y >> >rcZd}tttdtz|k(sJy)Nz;\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}r )rrrDrrs rtest_latex_FormalPowerSeriesrRs&NI SQZ !Y .. .rcftdd}ttdddk(sJttd|dk(sJttd|dddk(sJttd|dddk(sJttd|ddd k(sJttd|ddd k(sJy) NrCTrrz\left\{0\right\}z\left[0, a\right]Fz\left(0, a\right]z\left[0, a\right)z\left(0, a\right))r$rrrCs rtest_latex_intervalsrWssA !Q $7 77 7 !Q $8 88 8 !Qu- .2F FF F !Qe, -1E EE E !Qt, -1E EE E !Qd+ ,0D DD Drctdd}ttdddk(sJttd|dk(sJtt|dz|dzd k(sJy) NrCTrrr z\left\langle 0, 1\right\ranglez\left\langle 0, a\right\rangler z&\left\langle a + 1, a + 2\right\rangle)r$rrrs rtest_latex_AccumuBoundsrasmsA Q" #'H HH H Q" #'H HH H QUAE* +1 22 2rc@ttjdk(sJy)N \emptyset)rr#EmptySetrrrtest_latex_emptysetr is   ,, ,rc@ttjdk(sJy)Nz \mathbb{U})rr# UniversalSetrrrtest_latex_universalsetr ms  M 11 1rctd}td}t||}t|jdk(sJy)NrWBz - (A B - B A))rrrdoit)rWrcomms rtest_latex_commutatorrqs: A A a D  !1 11 1rc tttddtdddk(sJtttddtddtdddk(sJy)Nrr r r z(\left[0, 1\right] \cup \left[2, 3\right]rz*\left\{1, 2\right\} \cup \left[3, 4\right])rrrrrrtest_latex_unionrxsd x1~x1~6 73 44 4 x1~x1~x1~F G5 66 6rc ptttddtttdk(sJy)Nrr z(\left[0, 1\right] \cap \left[x, y\right])rrrrr6rrrtest_latex_intersectionrs/ hq!nhq!n= >3 44 4rc dtttddtddddk(sJy)Nr rrrFrz-\left[2, 5\right] \triangle \left[4, 7\right])rrrrrrtest_latex_symmetric_differencers7 $Xa^Xa^.35 68 99 9rcptttjtjdk(sJy)Nz\mathbb{R} \setminus \mathbb{N})rrr#RealsNaturalsrrrtest_latex_Complementrs+ AGGQZZ0 1* ++ +rcXtdd}tdd}tddd}t|dzdt|zk(sJt|dzdt|zk(sJt||z|zjt|dt|dt|k(sJy) Nrr rr r z%s^{2}z%s^{10}z \times )rrrflatten)linebiglinefsets rtest_latex_productsetr!s Aq>Dq"oG Q1 D q>Yt4 44 4 r?j5;6 66 6 $.4'002 3 d U7^U4[82 22 2rcPtddd}tt|dk(sJy)Nr r r z.\mathcal{P}\left(\left\{1, 2, 3\right\}\right))rrr)r s rtest_latex_powersetr#s( Q1 D $ $U UU Urc t}t|dk(sJtdd}t|dk(sJtt|tdddk(sJtttddtdddk(sJy)N\omegar r z 3 \omega^{2}r z3 \omega^{2} + \omegaz\omega^{2} + 2 \omega)rrrr)rwps rtest_latex_ordinalsr'sA 8y  Aq B 9 '' ' Z1-. /3K KK K Aq):a+;< =AY YY Yrc td\}}}}t|}t|}t|}t|}t||d}t||d} t||d} t||d} t ||d} t ||d} t ||d}t ||d}t ||}t ||}tt|| ddk(sJtt|| ddk(sJtt| | ddk(sJtt||ddk(sJtt||ddk(sJtt|| dd k(sJtt| | dd k(sJtt| | dd k(sJtt||dd k(sJtt||dd k(sJtt || ddk(sJtt || ddk(sJtt | | ddk(sJtt ||ddk(sJtt ||ddk(sJtt ||ddk(sJtt || ddk(sJtt | | ddk(sJtt | | ddk(sJtt ||ddk(sJtt ||jdk(sJtt || dk(sJtt | | dk(sJtt | | dk(sJtt ||dk(sJy)Nza:dFrzI\left\{a\right\} \cap \left(\left\{c\right\} \cup \left\{d\right\}\right)zl\left(\left\{a\right\} \cup \left\{b\right\}\right) \cap \left(\left\{c\right\} \cup \left\{d\right\}\right)zv\left(\left\{a\right\} \setminus \left\{b\right\}\right) \cap \left(\left\{c\right\} \setminus \left\{d\right\}\right)zv\left(\left\{a\right\} \triangle \left\{b\right\}\right) \cap \left(\left\{c\right\} \triangle \left\{d\right\}\right)zp\left(\left\{a\right\} \times \left\{b\right\}\right) \cap \left(\left\{c\right\} \times \left\{d\right\}\right)zI\left\{a\right\} \cup \left(\left\{c\right\} \cap \left\{d\right\}\right)zl\left(\left\{a\right\} \cap \left\{b\right\}\right) \cup \left(\left\{c\right\} \cap \left\{d\right\}\right)zv\left(\left\{a\right\} \setminus \left\{b\right\}\right) \cup \left(\left\{c\right\} \setminus \left\{d\right\}\right)zv\left(\left\{a\right\} \triangle \left\{b\right\}\right) \cup \left(\left\{c\right\} \triangle \left\{d\right\}\right)zp\left(\left\{a\right\} \times \left\{b\right\}\right) \cup \left(\left\{c\right\} \times \left\{d\right\}\right)zS\left\{a\right\} \setminus \left(\left\{c\right\} \setminus \left\{d\right\}\right)zq\left(\left\{a\right\} \cup \left\{b\right\}\right) \setminus \left(\left\{c\right\} \cup \left\{d\right\}\right)zq\left(\left\{a\right\} \cap \left\{b\right\}\right) \setminus \left(\left\{c\right\} \cap \left\{d\right\}\right)z{\left(\left\{a\right\} \triangle \left\{b\right\}\right) \setminus \left(\left\{c\right\} \triangle \left\{d\right\}\right)zu\left(\left\{a\right\} \times \left\{b\right\}\right) \setminus \left(\left\{c\right\} \times \left\{d\right\}\right)zS\left\{a\right\} \triangle \left(\left\{c\right\} \triangle \left\{d\right\}\right)zq\left(\left\{a\right\} \cup \left\{b\right\}\right) \triangle \left(\left\{c\right\} \cup \left\{d\right\}\right)zq\left(\left\{a\right\} \cap \left\{b\right\}\right) \triangle \left(\left\{c\right\} \cap \left\{d\right\}\right)z{\left(\left\{a\right\} \setminus \left\{b\right\}\right) \triangle \left(\left\{c\right\} \setminus \left\{d\right\}\right)zu\left(\left\{a\right\} \times \left\{b\right\}\right) \triangle \left(\left\{c\right\} \times \left\{d\right\}\right)z@\left\{a\right\} \times \left\{c\right\} \times \left\{d\right\}zn\left(\left\{a\right\} \cup \left\{b\right\}\right) \times \left(\left\{c\right\} \cup \left\{d\right\}\right)zn\left(\left\{a\right\} \cap \left\{b\right\}\right) \times \left(\left\{c\right\} \cap \left\{d\right\}\right)zx\left(\left\{a\right\} \setminus \left\{b\right\}\right) \times \left(\left\{c\right\} \setminus \left\{d\right\}\right)zx\left(\left\{a\right\} \triangle \left\{b\right\}\right) \times \left(\left\{c\right\} \triangle \left\{d\right\}\right)) r&rrrrrrrr)rCrrdrWrCDU1U2I1I2C1C2D1D2P1P2s rtest_set_operators_parenthesisr6sJAq!Q! A! A! A! A q!e $B q!e $B aU +B aU +B Aq5 )B Aq5 )B QE 2B QE 2B Aq B Aq B ae4 5 ? ?? ? b"u5 6 D DD D b"u5 6 - -- - b"u5 6 - -- - b"u5 6 # ## # q"u- . ? ?? ? r2. / D DD D r2. / - -- - r2. / - -- - r2. / # ## # ArE2 3 - -- - BU3 4 # ## # BU3 4 # ## # BU3 4 D DD D BU3 4 # ## # $QU; < - -- - $Re< = # ## # $Re< = # ## # $Re< = D DD D $Re< = # ## # Ar"**, -    B# $ # ## # B# $ # ## # B# $ - -- - B# $ - -- -rc@ttjdk(sJy)N \mathbb{C})rr# Complexesrrrtest_latex_Complexesr:s   .. .rc@ttjdk(sJy)N \mathbb{N})rr#rrrrtest_latex_Naturalsr="   -- -rc@ttjdk(sJy)N \mathbb{N}_0)rr# Naturals0rrrtest_latex_Naturals0rB&s   00 0rc@ttjdk(sJy)N \mathbb{Z})rr#Integersrrrtest_latex_IntegersrF*r>rc ntd}ttt||dztj dk(sJtd}tt||f||zhdddh}t|dk(sJtt||ff||zt hdddh}t|d k(sJy) Nrr z2\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}r6>r r r r rzY\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}zm\left\{x + y\; \middle|\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\})r$rrrr#rr)rr6imgsets rtest_latex_ImageSetrI.ss A &AqD/1::6 7= >> > s A faVQU+YA ?F =d ee efq!fYA. 9q!f0M NF =x yy yrc td}tt|t|dzdtj dk(sJtt|t|dzdtj dk(sJy)Nrr r z@\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}z(\left\{x\; \middle|\; x^{2} = 1 \right\})r$rrr!r#rr rs rtest_latex_ConditionSetrL=sps A aAqD!agg6 7K LL L aAqD!ann= >3 44 4rc tttddtddzdk(sJtttddtddtzzd d k(sJy) Nr rrrHzX\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}rr r T)polarz\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta \right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\})rrrrrrrtest_latex_ComplexRegionrOEsr x1~hq!n<= >c dd d x1~hq!B$.??tL M n nn nrcjtd}tt|tjdk(sJy)Nrzx \in \mathbb{N})r$rrr#rrKs rtest_latex_ContainsrQMs*s A !QZZ( )-@ @@ @rc ttttdzztddftddfdk(sJtttdztddfdk(sJtttdztztddfdk(sJtttdztztddfdzdk(sJy) Nr r/rrz<\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}z\sum_{x=-2}^{2} x^{2}z&\sum_{x=-2}^{2} \left(x^{2} + y\right)z7\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2})rr rr6rrrtest_latex_sumrSRs Qq!tVaQZ!R4 5G HH H QTAr1:& '  !! ! QTAX2qz* +1 22 2 QTAX2qz*A- .B CC Crc pttttdzztddftddfdk(sJtttdztddfdk(sJtttdztztddfdk(sJttttddfdzdk(sJy) Nr r/rrz=\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}z\prod_{x=-2}^{2} x^{2}z'\prod_{x=-2}^{2} \left(x^{2} + y\right)z#\left(\prod_{x=-2}^{2} x\right)^{2})rr rr6rrrtest_latex_productrU]s 1a4!RaQZ8 9H II I A2qz* +! "" " AAr1:. /2 33 3 QAJ'* +. // /rctttttdk(sJt d}tt|ttddk(sJtt|ttdddk(sJtt|ttddzdk(sJtt|ttdd d k(sJy) Nz\lim_{x \to \infty} xrrz#\lim_{x \to 0^+} f{\left(x \right)}-z#\lim_{x \to 0^-} f{\left(x \right)}r z4\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}z+-)dirz!\lim_{x \to 0} f{\left(x \right)})rrrrr)rs rtest_latex_limitsrYis q!R !%= == =  A qtQ" #'M MM M qtQ3' (. // / qtQ"A% &? @@ @ qtQt, -, -- -rctttdk(sJtttddk(sJtttttzdk(sJtttttzddk(sJtt tttdk(sJtt tttddk(sJy) Nz\log{\left(x \right)}T) ln_notationz\ln{\left(x \right)}z-\log{\left(x \right)} + \log{\left(y \right)}z+\ln{\left(x \right)} + \ln{\left(y \right)}z\log{\left(x \right)}^{x}z\ln{\left(x \right)}^{x})rrDrr6powrrrtest_latex_logr]zs Q=4 44 4 QT *.E EE E Q#a& !8 99 9 Q#a&d 36 77 7 SVQ $@ @@ @ SVQT 2# $$ $rctd}|tz}t|dvsJtd}|tz}t|dvsJy)Nr|)z \beta + xz x + \betarU)r$rr)rUr6s rtest_issue_3568r_sM ( D qA 83 33 3 '?D qA 83 33 3rc tdtztddzdk(sJtdtztddzddk(sJtdtztddzdd d k(sJtdtz t gd k(sJy) Nr rz8 \sqrt{2} \tau^{\frac{7}{2}}rrz<\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}equationTrz $$8 \sqrt{2} \mu^{\frac{7}{2}}$$z\left[ \frac{2}{x}, \ y\right])rrrrrr6rrr test_latexrbs !C%(1a.( )-M MM M !B$!Q'k :G HH H !B$!Q'jt D+ ,, , !A#q?@ @@ @rctddtdzdtdtdzdi}t|dk(sJt|}t|dk(sJy)Nr r r rz;\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\})rrrr)r)r+s rtest_latex_dictrdse !aAq!Q1a0A 8F GG G QA 8F GG Grcdtdtdtdg}t|dk(sJy)NrarCr"z)\left[ \omega_{1}, \ a, \ \alpha\right]r$r)lls rtest_latex_listrhs.  F3K 9B 9D DD Drclttjdk(sJttjdk(sJttjdk(sJttj dk(sJttj dk(sJttjdk(sJy)NGr}e\phi\piz\text{TribonacciConstant})rr#Catalan EulerGammaExp1 GoldenRatioPiTribonacciConstantrrrtest_latex_NumberSymbolsrts  s "" "  ) ++ + =C    7 ** * ;&  %% &*F FF Frcttdd dk(sJttdddk(sJttdddk(sJttdd dk(sJttdd tzdk(sJttdd tztddtzzd k(sJy) Nr r z - \frac{1}{2}rr/z \frac{1}{2}z - \frac{x}{2}r z- \frac{x}{2} - \frac{2 y}{3})rrrr6rrrtest_latex_rationalrvs (1a. !%5 55 5 "a !%5 55 5 !R !%5 55 5 (2q/! "n 44 4 (1a." #'7 77 7 (1a."Xb!_Q%66 7( )) )rcntdtz dk(sJtdttzz dk(sJy)Nr rz\frac{1}{x + y}rrr6rrrtest_latex_inverserys4 1: '' ' AE 1 11 1rc8tttdk(sJtttdzdk(sJtttddk(sJtttddk(sJtttddzdk(sJy)Nz\delta\left(x\right)r z%\left(\delta\left(x\right)\right)^{2}rrz)\delta^{\left( 5 \right)}\left( x \right)z:\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2})rrVrrrrtest_latex_DiracDeltar{s A #: :: : A! "&N NN N Aq! "&= == = Aq! "4 55 5 Aq!1$ %E FF Frc~tttdk(sJtttdzdk(sJy)Nz\theta\left(x\right)r z%\left(\theta\left(x\right)\right)^{2})rrWrrrrtest_latex_Heavisider}s6 1 "9 99 9 1q !%M MM Mrc8ttttdk(sJttttdzdk(sJtttdztdk(sJtt tttdddk(sJy) Nz \delta_{x y}r z\delta_{x, y + 1}z\delta_{y, x + 1}r Frz\left(\delta_{x y}\right)^{2})rrvrr6r rrrtest_latex_KroneckerDeltars 1% &/ 99 9 1q5) *.B BB B Aq) *.B BB B ^Aq)1u= >( )) )rctttttdk(sJtttttdzdk(sJtttttdzdk(sJttttdztdk(sJtttdzttdk(sJy)Nz\varepsilon_{x y z}r z$\left(\varepsilon_{x y z}\right)^{2}r z\varepsilon_{x, y, z + 1}z\varepsilon_{x, y + 1, z}z\varepsilon_{x + 1, y, z})rrwrr6r8rrrtest_latex_LeviCivitars Aq!$ %)? ?? ? Aq!$a' (/ 00 0 Aq!a%( )-I II I Aq1ua( )-I II I AE1a( )-I II Ircttztdk(sJtddk(sJtddk(sJtddk(sJtdd k(sJttfd y) Nzx + yplainrinlinez$x + y$rz%\begin{equation*}x + y\end{equation*}raz#\begin{equation}x + y\end{equation}ctdS)Nrrrexprsrztest_mode..suT6r)rr6rr ValueErrorrs@r test_moders q5D ;( "" " G $ 00 0 H % 33 3  ; #K LL L  : "H II I :67rctttttdk(sJtt tttdk(sJtttttdzdk(sJtt tttdzdk(sJtt tttdk(sJtttttdk(sJtt tttdzdk(sJtttttdzd k(sJy) NzC\left(x, y, z\right)zS\left(x, y, z\right)r zC\left(x, y, z\right)^{2}zS\left(x, y, z\right)^{2}zC^{\prime}\left(x, y, z\right)zS^{\prime}\left(x, y, z\right)z"C^{\prime}\left(x, y, z\right)^{2}z"S^{\prime}\left(x, y, z\right)^{2})rrfrr6r8rhrgrirrrtest_latex_mathieurs !Q" #'? ?? ? !Q" #'? ?? ? !Q"A% &*F FF F !Q"A% &*F FF F q!Q' (,M MM M q!Q' (,M MM M q!Q'* +/T TT T q!Q'* +/T TT Trc:tttdkftdzdf}t|dk(sJt|ddk(sJtttdkfdtdk\f}t|dk(sJtd d \}}t|dzt ||f||zdf}d }t||k(sJt||zd |zk(sJt||zd|zk(sJttttdkftdztdkfdk(sJy)Nr r TzK\begin{cases} x & \text{for}\: x < 1 \\x^{2} & \text{otherwise} \end{cases}rzM\begin{cases} x & \text{for}\: x \lt 1 \\x^{2} & \text{otherwise} \end{cases}rzG\begin{cases} x & \text{for}\: x < 0 \\0 & \text{otherwise} \end{cases}A BF commutativezM\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}zA \left(%s\right)z\left(%s\right) AzM\begin{cases} x & \text{for}\: x < 1 \\x^{2} & \text{for}\: x < 2 \end{cases})rNrrr&r!)r1rWrrs rtest_latex_PiecewisersK1a!e*q!tTl+A 88 88 8   ) )) ) 1a!e*q!q&k*A 88 88 8 5e ,DAq1a4Aq"QqS$K0AXA 8q== 1:-1 11 1 1:-1 11 1 Aq1u:1a!e}5 6 G GG GrcPtdtztgttdz gg}t|dk(sJt|ddk(sJt|ddk(sJt|d d k(sJt|dd d k(sJtdd t d }t|dk(sJy)Nr z;\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]rrzG$\left[\begin{smallmatrix}x + 1 & y\\y & x - 1\end{smallmatrix}\right]$array)mat_strz=\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]bmatrixz=\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]) mat_delimrz0\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}r\\left[\begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right])rrr6rr)MM2s rtest_latex_Matrixr sQ QAJ'(A 8F GG G  " . .. . G $H II I I &H II I dI 6; << < 2uRy !B 9 H HH Hrc 6td}tdt}tt||t ||gt ||j |t||j |gg}d}t ||k(sJy)Nrtheta1clsa\left[\begin{matrix}\sin{\left(\theta_{1}{\left(t \right)} \right)} & \cos{\left(\theta_{1}{\left(t \right)} \right)}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t \right)} \right)} & \sin{\left(\frac{d}{d t} \theta_{1}{\left(t \right)} \right)}\end{matrix}\right])r&rrrSrQrr)rrrexpecteds r test_latex_matrix_with_functionsr!s A X8 ,FVAYVAY0VAY^^A&'VAY^^A->)?@B CA)H 8x  rcFtd\}}}}ttttfD]}||}t |dk(sJ|d|z |g||gg}|d|z ||g}t ||}t ||}t |dk(sJt |dk(sJt |dk(sJt |dk(sJ|||d|z gg} ||g|gd|z gg} || jg} t | dk(sJt | d k(sJt | d k(rJy) Nzx y z wrr z=\left[\begin{matrix}\frac{1}{x} & y\\z & w\end{matrix}\right]z:\left[\begin{matrix}\frac{1}{x} & y & z\end{matrix}\right]a\left[\begin{matrix}\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & \left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & \left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]\end{matrix}\right]a]\left[\begin{matrix}\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & \left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & \left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]\end{matrix}\right]zG\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]z8\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]z_\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right])r&rrrrrrtolist) rr6r8r ArrayTyperM1rM3MrowMcolumnMcol2s rtest_latex_NDimArrayr3s#JAq!Q-/G+-CE(o  aLQx4 AqzAq6* + Aq!} % 2q ! 1a Qx LM MMRy IJ JJRy ## ## Ry '' ''1a1+'aS1#!u-.7>>+,-T{ VW WWW~ GH HHU| no ooO(orcBtddtzzddk(sJtddtzzddk(sJtddtzzddk(sJtdtzdd k(sJtdtzdd k(sJtdtzdd k(sJy) Nrr)rz4 \times 4^{x}r z 4 \cdot 4^{x}ldotz 4 \,.\, 4^{x}z 4 \times xz 4 \cdot xz 4 \,.\, xrrrrtest_latex_mul_symbolras 1a4G ,0A AA A 1a4E *.> >> > 1a4F +/? ?? ? 1 )] :: : 1 '< 77 7 1 (L 88 8rclddtdzz}t|dk(sJtd|z dk(sJy)Nrr z!4 \cdot 4^{\log{\left(2 \right)}}r z+\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}})rDr)r6s rtest_latex_issue_4381rks= !SV) A 8; ;; ; 1:G GG Grcttddk(sJttddk(sJttddk(sJttddk(sJttd d k(sJttd d k(sJttd dk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttd d!k(sJttd"d#k(sJttd$d#k(sJy)%N beta_13_2z \beta_{13 2} beta_132_20z\beta_{132 20}beta_13z \beta_{13}x_a_bzx_{a b}x_1_2_3z x_{1 2 3}x_a_b1zx_{a b1}x_a_1zx_{a 1}x_1_azx_{1 a}zx_1^aaz x^{aa}_{1}x_1__aazx_11^az x^{a}_{11}x_11__a x_a_a_a_az x_{a a a a}z x_a_a^a^az x^{a a}_{a a} x_a_a__a__aalpha_11z \alpha_{11} alpha_11_11z\alpha_{11 11} alpha_alphaz\alpha_{\alpha}z alpha^alephz\alpha^{\aleph} alpha__alephrr$rrrtest_latex_issue_4576rqs  $ % 88 8  & '+< << <  " #} 44 4  !Z // /  " #| 33 3 ! "k 11 1  !Z // /  !Z // / ! "m 33 3  " #} 44 4 ! "m 33 3  " #} 44 4  $ % 77 7  $ %)9 99 9  & '+; ;; ;  # $ 66 6  & '+< << <  & '+= == =  & '+= == = ' (,> >> >rctd}dtt| dz jddvsJdtd| zdz jddvsJy)Nrze^{-x}r  z3^{-x}r )r$rrCreplacerKs rtest_latex_pow_fractionrs`s A c1"gai(00b9 99 9 a!eAg..sB7 77 7rctdd\}}}t||z|dzzdk(sJt|dz|z|zdk(sJt||dzz|zdk(sJy)NzA,B,CFrrz A B C^{-1}z C^{-1} A Bz A C^{-1} BrtrWrr*s rtest_noncommutativersqg51GAq! 1QU } ,, , Bq } ,, , 1b5 } ,, ,rctdztdztzztdzzdtztdzzz}t|ddk(sJt|ddk(sJt|d d k(sJy) Nr r rlexr&z#x^{3} + x^{2} y + 3 x y^{3} + y^{4}zrev-lexz#y^{4} + 3 x y^{3} + x^{2} y + x^{3}nonez#x^{3} + y^{4} + y x^{2} + 3 x y^{3})rr6rrs rtest_latex_orderrs a4!Q$q&=1a4 !A#ad( *D U #'M MM M  I "H II I V $(N NN Nrcttttdzdk(sJttttftdzdk(sJttttdk(sJy)Nr z\left( x \mapsto x + 1 \right)z2\left( \left( x, \ y\right) \mapsto x + 1 \right)z\left( x \mapsto x \right))rrrr6rrrtest_latex_Lambdars^ 1q5! "&G GG G AA& '+` `` ` 1 "? ?? ?rctdt\}}}td|\}}}}t||z dk(sJt|dz dk(sJt|dzdk(sJt|dzd|z|zzdz|dzz|z|zdzd k(sJt|dzd|z|zzdz|dzz|z|dz|zzd k(sJt|dzd|z|zzdz|dzz|z|dz|zzdzd k(sJt|dz d|z|zzdz |dzz|z|dz|zz dz d k(sJt|dz|zdz |zd|z|zzdzd k(sJt|dz|zdz |zd|z|zz dzdk(sJy)Nu,vzx,y,z0r x - 1r r r z2\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1zA\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) xzE\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1zF-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1z+-\left({v}^{2} + v + 1\right) x + 3 u v + 1z+-\left({v}^{2} + v + 1\right) x - 3 u v + 1)rrr)RuvuvRxyzrr6r8s rtest_latex_PolyElementrs#UBICA#&MD!Q Q<4   Q<8 ## # Q<8 ## # !Q$1Q,"AqD(*Q.2 3= >> > !Q$1Q,"AqD(*a!eQY6 7L MM M !Q$1Q,"AqD(*a!eQY6: ;P QQ Q 1a4%!A#a%-!#QT)!+q1uai7!; <Q RR R 1a4!8a<"QqSU*Q. /6 77 7 1a4!8a<"QqSU*Q. /6 77 7rcbtdt\}}}td|\}}}}}t||z dk(sJt|dz dk(sJt|dzdk(sJt|dz dk(sJt||z d k(sJt||z|z d k(sJt|||zz d k(sJt||z||zz d k(sJt|dz |z d k(sJt|dz|z dk(sJt| dz |z dk(sJt|dz||zz dk(sJt| |dzz dk(sJt||z|dzz dk(sJt|dz|z|zdz|dz |zdz z dk(sJt|dz|z|zdz|dz |z||z|zz dz z dk(sJy)Nrzx,y,z,trr rr r z \frac{x}{3}z \frac{x}{z}z \frac{x y}{z}z \frac{x}{z t}z\frac{x y}{z t}z\frac{x - 1}{y}z\frac{x + 1}{y}z\frac{-x - 1}{y}z\frac{x + 1}{y z}z\frac{-y}{x + 1}z\frac{y z}{x + 1}z;\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}zC\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1})rrr)FuvrrFxyztrr6r8rs rtest_latex_FracElementrs-eR ICAi-E1aA Q<4   Q<8 ## # Q<8 ## # 1: '' ' 1: '' ' 1Q<+ ++ + AaC>- -- - 1ac 1 11 1 !a% 1 11 1 !a% 1 11 1 1"q&!  3 33 3 !a%!A# #7 77 7 !QU  3 33 3 1a!e !5 55 5 1q5!)A+/QUAIM2 3F GG G 1q5!)A+/QUAI!A$5$9: ;N OO Orctttdzdtzztdk(sJttttz tdk(sJttdtztzdk(sJy)Nr zE\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}zU\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}g@zJ\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)})rrrr6rrrtest_latex_Polyrs adQUlA& 'P QQ Q ac1 ` aa a c!eai !U VV Vrc tttdtdtdgt dk(sJtttdttzddgt dk(sJtttt dzzt dzt zzt t zz tt dzzz tt zt dzzz t ztt zz tzt t fdk(sJy)Nr r r z{\operatorname{Poly}{\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}z\operatorname{Poly}{\left( a x^{4} + x^{3} + \left(b + c\right) x^{2} + 2 x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}z\operatorname{Poly}{\left( a x^{3} + x^{2}y - b xy^{2} - xy - a x - c y^{3} + y + b, x, y, domain=\mathbb{Z}\left[a, b, c\right] \right)})rrrCrrrr6rrrtest_latex_Poly_orderrs q!Q1a(!, - E EE E q!QqS!Q'+ , N NN N a1fq!tAvo!+a1f4qs1a4x?!CacIAM!f  X XX XrcZtttdztzdzddk(sJy)Nrr rz6\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)})rrrrrrtest_latex_ComplexRootOfrs2 1q1 a( )A BB Brcbtttdztzdztdk(sJy)Nrr zc\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)})rrrrSrrrtest_latex_RootSumrs2 AAs+ ,n oo orc&ttdy)Nc2tttzdS)Ngarbage)methodrxrrrrztest_settings..seAaC :r)r TypeErrorrrr test_settingsrs  9:;rcTtttdk(sJtttdzdk(sJtttdk(sJttttdk(sJtttdzdk(sJttttdzdk(sJtt tdk(sJtt ttd k(sJtt tdzd k(sJtt ttdzd k(sJtt tdk(sJtt ttdk(sJtt ttttfd k(sJtt tdzdk(sJtt ttdzdk(sJtt ttttfdzd k(sJtttdk(sJttttdk(sJtttdzdk(sJttttdzdk(sJtttdk(sJtttdzdk(sJtttdk(sJttttdk(sJtttdzdk(sJttttdzdk(sJtttdk(sJtttdzdk(sJy)NzC_{n}r z C_{n}^{2}zB_{n}zB_{n}\left(x\right)z B_{n}^{2}zB_{n}^{2}\left(x\right)zG_{n}zG_{n}\left(x\right)z G_{n}^{2}zG_{n}^{2}\left(x\right)zB_{n, m}\left(x, y\right)zB_{n, m}^{2}\left(x, y\right)zF_{n}zF_{n}\left(x\right)z F_{n}^{2}zF_{n}^{2}\left(x\right)zL_{n}z L_{n}^{2}zT_{n}rz T_{n}^{2}zT_{n}^{2}\left(x\right)z\mu\left(n\right)z\mu^{2}\left(n\right)) rr/rDr-rr1r.rr6r3r2r4r7rrrtest_latex_numbersrs   (( ( Q < // / 1 ( ** * 1a !%; ;; ; 1q !\ 11 1 1a!# $(B BB B !  )) ) !Q $: :: : !a L 00 0 !Q" #'A AA A a>X %% % a  6 66 6 aQF# $(D DD D a!  ,, , aQ #= == = aQF#Q& '+K KK K 1 ( ** * 1a !%; ;; ; 1q !\ 11 1 1a!# $(B BB B q?h && & q1  -- - A 8 ++ + Aq! "&< << < A! "l 22 2 Aq!1$ %)C CC C  3 33 3 A ": :: :rctttdk(sJttttdk(sJttttdzdk(sJy)NzE_{n}zE_{n}\left(x\right)r zE_{n}^{2}\left(x\right))rr0rDrrrrtest_latex_eulerr sP q?h && & q! !7 77 7 q!a $> >> >rchttddk(sJttddk(sJy)Nlamda\lambdaLamda\Lambdarrrr test_lamdar&s0  !Z // /  !Z // /rctd}td}t|dk(sJt||didk(sJt||z|didk(sJt|dz|didk(sJt||z|d|did k(sJy) Nrr6r*r+zx_i + yr zx_i^{2}y_jz x_i + y_jrfrr6s rtest_custom_symbol_namesr+ss As A 8t   !U , 66 6 QaZ 0J >> > AQJ /: == = Qa5%9 :l JJ Jrc 0tddd}tddd}td}tddd}t|d|zz dvsJt|d|zzd vsJt|d|zz d vsJt|d|zzd vsJt||z| |jz||jzzz d k(sJtt t ||t ||d k(sJtt t ||t ||dk(sJy)Nr*rrrDrzr r )z - 2 B + CzC -2 B)z2 B + CzC + 2 B)zB - 2 Cz - 2 C + B)zB + 2 Cz2 C + Bz5n h - \left(- h + h^{T}\right) \left(h + h^{T}\right)z'\left(h + h\right) + \left(h + h\right)z!\left(h h\right) \left(h h\right))rr&rTrr)r*rrDrzs r test_matAddr5s#S!QAS!QA AS!QA QqS>6 66 6 QqS>5 55 5 QqS>7 77 7 QqS>5 55 5 Q1"qss(q133w// 04o oo o q! fQl3 48e ee e q! fQl3 48_ __ _rctddd}tddd}td}td|zdk(sJtd|z|zdk(sJtd|zd k(sJtd |zd k(sJttd|zd k(sJttd |zd k(sJtdtdz|z|zdk(sJtd|z|d|zzzdvsJy)NrWrrrr z2 Az2 x Ar/z- 2 Arz1.5 Az \sqrt{2} Az - \sqrt{2} Az2 \sqrt{2} x A)z- 2 A \left(A + 2 B\right)z- 2 A \left(2 B + A\right))rr$rrM)rWrrs r test_matMulrFsS!QAS!QAs A 1:   1Q<8 ## # A;( "" " Q<8 ## # a } ,, , $q'!  // / 471Q #4 44 4 Aq1Q3w %G GG Grc tdd}td\}}}}}td||}tddd}tddd}tt |d d d k(sJt|||d z||d zfd k(sJt|||d zd ||d zd fdk(sJt|d||dfdk(sJt|d||dfdk(sJt||dd|fdk(sJt|||||fdk(sJt|||||||fdk(sJt||d||d|fdk(sJt|d||d||fdk(sJt|dd|dd|fdk(sJtt |ddd k(sJtt |d|dfd|dfd k(sJtt |d|dfd|dfd k(sJtt |d|d fd|d fdk(sJt|d d ddddfdk(sJt|d dddddfdk(sJt|d dd d k(sJt|ddd d!d fd"k(sJt|ddd dd fd#k(sJt|dddd fd$k(sJt|dd dd fd%k(sJt|dd d dd d fd&k(sJt||zd dd dfd'k(sJy)(NrDTrz x y z w tXYrZ)NNNzX\left[:, :\right]r zX\left[x:x + 1, y:y + 1\right]r z"X\left[x:x + 1:2, y:y + 1:2\right]zX\left[:x, y:\right]zX\left[x:, :y\right]zX\left[x:y, z:w\right]zX\left[x:y:t, w:t:x\right]zX\left[x::y, t::w\right]zX\left[:x:y, :t:w\right]zX\left[::x, ::y\right])rNNrzX\left[::2, ::2\right]r rrrHzX\left[1:2:3, 4:5:6\right]zX\left[1:3:5, 4:6:8\right]zX\left[1:10:2, :\right] zY\left[:5, 1:9:2\right]zY\left[:5, 1::2\right]zY\left[5:6, :5:2\right]zX\left[:1, :1\right]zX\left[:1:2, :1:2\right]z%\left(Y + Z\right)\left[2:, 2:\right])r$r&rrr) rDrr6r8rrrrrs rtest_latex_MatrixSlicerUssD!A[)NAq!QS!QAS"b!AS"b!A Q 24FG HLa aa a 1QU7Aa!eG#$ %)J JJ J 1QU19aAai'( )-R RR R 2A2qr6 6 66 6 2A2qr6 6 66 6 12rr6 6 66 6 1Q3!8 !: :: : 1Qq5!Aa%< !%B BB B 14a4A: #> >> > 4Aa4!A: #> >> > 3Q3!8 !: :: : QA BF[ [[ [ Qq$$4A BF[ [[ [ QAt q!Tl; <@U UU U QAq Aq!95 6:S SS S 1Qq5!Aa%< !%B BB B 1Qq5!Aa%< !%B BB B 1R6 9 99 9 2A2q1u9 "< << < 2A2qAv: #< << < 1dqd7  : :: : 1Q3!8 !8 88 8 1Qq5!Aa%< !%@ @@ @ !a%QR !%M MM Mrc ddlm}m}m}m}m}ddlm}|ddd}t||dkDdk(sJ|dd}t||d kDd k(sJ|d d}|d d} t|t|| jd k(sJt|tttdddk(sJy)Nr)rDie Exponentialpspacewhere) RandomDomainrr z.\text{Domain: }0 < x_{1} \wedge x_{1} < \inftyd1rHrz'\text{Domain: }d_{1} = 5 \vee d_{1} = 6rCrzK\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \inftyr z7\text{Domain: }\left\{x\right\} \in \left\{1, 2\right\}) sympy.statsrrrr r sympy.stats.rvr rr domainrr) rrrr r r rr+rWrs rtest_latex_RandomDomainrvsCC+tQA q1u "S SS S D! A q1u "L LL LCACA uQ{"" $V WW W ilIaO< =B CC Crcvddlm}|jtt}|ttf}t |j tttzz t tttzz k(sJt |j ttzt ttzk(sJy)NrQQ)sympy.polys.domainsr frac_fieldrr6rconvert)rFrs rtest_PrettyPolyrs{& aA 1a4A 1a!e9% &%1q5 *: :: : 1q5! "eAEl 22 2rc td}td}td}td}td}tt||||dk(sJtt ||||||dk(sJtt ||||dk(sJtt ||||||fd k(sJtt||||d k(sJtt||||d k(sJtt||||d k(sJtt||||d k(sJtt||||dk(sJtt||||dk(sJy)Nrr>rrCrz<\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)zA\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)z<\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)zA\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)z<\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)zA\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)z>\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)zC\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)z>\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)zC\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)) r$rrrrrrrrr~rrr)rr>rrCrs rtest_integral_transformsrss As A As As A 1q!, -G HH H '!aAq9 :L MM M !!A$1- .G HH H (1q!aV< =L MM M !!A$1- .G HH H (1q!4 5L MM M 1q!, -I JJ J '!a3 4N OO O qtQ* +I JJ J %adAq1 2N OO Orcddlm}t|jtt dk(sJt|jtt ddk(sJy)Nrrz\mathbb{Q}\left[x, y\right]ilexr&z#S_<^{-1}\mathbb{Q}\left[x, y\right])rrr old_poly_ringrr6rs rtest_PolynomialRingBasersR& !!!Q' (,J JJ J !!!Qf!5 6. // /rcddlm}m}m}m}m}m}|d}|d}|d}|||d} |||d} ||} |d} t|d k(sJt| d k(sJt| d k(sJt| | zd k(sJt| d k(sJ|} t| dk(sJ|| d| tji} t| dk(sJ|| d| tji| | zdi} t| dk(sJ|d}|d}|d}|||d}|||d}|||g} || }t|dk(sJy)Nr)ObjectIdentityMorphism NamedMorphismCategoryDiagram DiagramGridA1A2A3f1f2K1zA_{1}zf_{1}:A_{1}\rightarrow A_{2}zid:A_{1}\rightarrow A_{1}z'f_{2}\circ f_{1}:A_{1}\rightarrow A_{3}z\mathbf{K_{1}}runiquea'\left\{ f_{2}\circ f_{1}:A_{1}\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : \emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, \ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}a\left\{ f_{2}\circ f_{1}:A_{1}\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : \emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, \ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}\rightarrow A_{3} : \left\{unique\right\}\right\}rWrr*rryz-\begin{array}{cc} A & B \\ & C \end{array} ) sympy.categoriesr r!r"r#r$r%rr#r)r r!r"r#r$r%r&r'r(r)r*id_A1r+r)rWrr*rrygrids rtest_categoriesr0s// B B B r2t $B r2t $B R E $B 9  97 77 7 <7 77 7 B<E EE E 9) )) ) A 8| ## #Xr1::./A 8? ?? ? Xr1::.b(0CDA 8= == = s As As AaC AaC AAA q>D ;  rcddlm}ddlm}|j t t }|jd}|jt t gdt dzg}t|dk(sJt|dk(sJ|jt dzt }t|dk(sJ||z }t|d k(sJt|jdt d zdz gdt gd k(sJ||j t jd|j t jdddg}t|d k(sJy) Nrr) homomorphismr r z!{\mathbb{Q}\left[x, y\right]}^{2}zP\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\ranglez&\left\langle {x^{2}},{y} \right\ranglezz\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}r a\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\ranglez}{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : {{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}) rrsympy.polys.agcar2rrr6 free_module submodulerideal)rr2rrrrQrzs r test_Modulesr8sf&- AA aA QFQ1I&A 8; ;; ; 8[ \\ \ 1aA 8@ @@ @ AA 8 D DD D aAa[1a&1 2 W WW W R%%a(44Q7%%a(44Q7!Q AA 8 Q QQ Qrcddlm}|jttdzdzgz }t |dk(sJt |j dk(sJy)Nrrr r zG\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}z.{1} + {\left\langle {x^{2} + 1} \right\rangle})rrrrrone)rrs rtest_QuotientRingr;sW& QTAXJ&A 8R SS S <L LL Lrc`tdd\}}t||z}t|dk(sJy)NrFrz!\operatorname{tr}\left(A B\right))r&rr)rWrrs rtest_Trr=s2 5e ,DAq 1Q3A 8; ;; ;rc rddlm}m}m}m}m}t d}t||dk(sJt|||dk(sJtddd}t||dk(sJt|||zd k(sJt|||dd|f||ddffd k(sJy) Nr) DeterminantInverse BlockMatrix OneMatrix ZeroMatrixr)r rz5\left|{\begin{matrix}1 & 2\\3 & 4\end{matrix}}\right|zG\left|{\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right]^{-1}}\right|rr z\left|{X}\right|zF\left|{\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right] + X}\right|zg\left|{\begin{matrix}1 & X\\\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right] & 0\end{matrix}}\right|) sympy.matricesr?r@rArBrCrrr)r?r@rArBrCrrs rtest_DeterminantrF%sWW A Q $a aa a WQZ( )Y ZZ ZS!QA Q $8 88 8 QU# $X YY Y ?A*>+,jA.>*?*ABC D} ~~ ~rc Zddlm}m}m}t ddd}t ddd}t ||dk(sJt |||zdk(sJt ||||zdk(sJt |||zd k(sJt ||||zd k(sJt ||dzd k(sJt ||dzd k(sJt |||d k(sJt |||dk(sJt |||dk(sJt |||dk(sJt ||||zdk(sJt d}t ||dk(sJt |||zdk(sJddlm}m}m }t |||dd|f||ddffdk(sJt ddd} t || dk(sJt ||ddk(sJt |||zddk(sJt ||||zddk(sJt ||||zd k(sJt ||dzddk(sJt ||dzdd k(sJy)!Nr)Adjointr@ Transposerr rz X^{\dagger}z\left(X + Y\right)^{\dagger}zX^{\dagger} + Y^{\dagger}z\left(X Y\right)^{\dagger}zY^{\dagger} X^{\dagger}z\left(X^{2}\right)^{\dagger}z\left(X^{\dagger}\right)^{2}z\left(X^{-1}\right)^{\dagger}z\left(X^{\dagger}\right)^{-1}z\left(X^{T}\right)^{\dagger}z\left(X^{\dagger}\right)^{T}z \left(X^{\dagger} + Y\right)^{T}rDz=\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right]^{\dagger}zN\left(\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right] + X\right)^{\dagger}rArBrCzo\left[\begin{matrix}1 & X\\\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right] & 0\end{matrix}\right]^{\dagger}M^xz\left(M^{x}\right)^{\dagger}star) adjoint_stylezX^{\ast} hermitianz\left(X + Y\right)^{\mathsf{H}}daggerz\left(X^{2}\right)^{\ast}z\left(X^{\mathsf{H}}\right)^{2}) rErHr@rIrrrrArBrC) rHr@rIrrrrArBrCMxs r test_AdjointrQ4s::S!QAS!QA   .. . Q $C CC C gaj( )-I II I 1 "? ?? ? GAJ& '+E EE E A #B BB B Q #B BB B $ %)I II I $ %)I II I 1& '+J JJ J 71:& '+J JJ J 71:>* +/R RR R A   f ff f 1 a bb bAA yA&:'(*Q*:&;&=>? @ G GG G eQ "B  !@ @@ @ 6 2k AA A Q{ ;?a aa a gaj( AEa aa a GAJ& '+E EE E Af 59U UU U Qk :>` `` `rc ddlm}m}m}t ddd}t ddd}t ||dk(sJt |||zdk(sJt |||ddk(sJt |||dd k(sJt |||dd k(sJt |||dd k(sJt d }t ||d k(sJt |||zdk(sJddlm}m}m }t |||dd|f||ddffdk(sJt ddd} t || dk(sJy)Nr)rIMatPow HadamardPowerrr rzX^{T}z\left(X + Y\right)^{T}z\left(X^{\circ {2}}\right)^{T}z\left(X^{T}\right)^{\circ {2}}z\left(X^{2}\right)^{T}z\left(X^{T}\right)^{2}rDz7\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right]^{T}zH\left(\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right] + X\right)^{T}rJzi\left[\begin{matrix}1 & X\\\left[\begin{matrix}1 & 2\\3 & 4\end{matrix}\right] & 0\end{matrix}\right]^{T}rKz\left(M^{x}\right)^{T}) rErIrSrTrrrrArBrC) rIrSrTrrrrArBrCrPs rtest_TransposerUXs??S!QAS!QA 1 ( ** * 1q5! "&? ?? ? =A./ 04U UU U y|Q/ 04U UU U 6!Q<( )-F FF F  ! a( )-F FF F A 1 "a aa a 1Q3 Z [[ [AA ;1a!(<)*Jq!,<(=(?@A B @@ @ eQ "B 2 #< << >> > !Q $< << < Aq! "&@ @@ @ Aq! "&> >> > eQ "B A #< << {\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right))rr applyfuncrSrrr)rrs rtest_ElementwiseApplyFunctionr^sfS!QA CCE  S !D ;k kk k ;;va1~ &D ;[ [[ [rctddlm}t|ddddk(sJt|ddddk(sJy) NrrCr rmat_symbol_stylerboldz \mathbf{0})"sympy.matrices.expressions.specialrCrr`s rtest_ZeroMatrixres== Aq!G < DD D Aq!F ;} LL Lrctddlm}t|ddddk(sJt|dddd k(sJy) NrrBr rrra1rcz \mathbf{1})rdrBrrgs rtest_OneMatrixris;< 1a7 ;t CC C 1a6 :m KK Krcpddlm}t|dddk(sJt|dddk(sJy) NrIdentityr rraz \mathbb{I}rcz \mathbf{I})rdrlrrks r test_Identityrms7; !w 7= HH H !v 6- GG Grctddlm}m}t|ddk(sJt|tdk(sJy)NrDFTIDFTrz\text{DFT}_{13}z\text{IDFT}_{x})"sympy.matrices.expressions.fourierrprqrrros rtest_latex_DFT_IDFTrss3< R>/ // / a>/ // /rctd}t|}t|dk(sJt|}t|dk(sJt |}t|dk(sJt |}t|dk(sJy)Nza:fz.a \wedge b \wedge c \wedge d \wedge e \wedge fz$a \vee b \vee c \vee d \vee e \vee fz[a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d \Leftrightarrow e \Leftrightarrow fz3a \veebar b \veebar c \veebar d \veebar e \veebar f)r&rrrrr)symsrs rtest_boolean_args_orderrvs 5>D :D ;K KK K t9D ;A AA A t D ;f gg g :D ;> ?? ?rc:td}t|dk(sJy)NrrX)rMr)rXs rtest_imaginaryrxs RA 8t  rcttdk(sJttdk(sJttdk(sJttdk(sJtt dk(sJtt dk(sJy)Nz\sinz\cosz\tanz\logz\operatorname{Ei}\zeta)rrSrQrTrDr^r|rrrtest_builtins_without_argsr{so :  :  :  :  9, ,, , ;( "" "rctd}t|dk(sJt|tdk(sJtd}t|dk(sJtd}t|dk(sJt|tdk(sJtd }t|d k(sJtd }t|td k(sJt|d k(sJy)NAlpha \mathrm{A}z\mathrm{A}{\left(x \right)}Beta \mathrm{B}Eta \mathrm{H}z\mathrm{H}{\left(x \right)}rr\Pichiz\chi{\left(x \right)}\chirrr)rr1rs rtest_latex_greek_functionsrs A 8} $$ $ 1;8 88 8A 8} $$ $A 8} $$ $ 1;8 88 8 A 8v   A 1;2 22 2 8w  rcd}t|dk(sJd}t|dk(sJd}t|dk(sJd}t|dk(sJd }t|d k(sJd }t|d k(sJd }t|dk(sJy)Nr}r~rrrromicronorrrrrm LamdaHatDOTz\dot{\hat{\Lambda}})rrs rtest_translatersA Q<= (( (A Q<= (( ( A Q<= (( (A Q<4   A Q<6 !! ! A Q<6 !! !A Q<1 11 1rcVddlm}|D]}tt|d|zk(rJy)Nr) other_symbols\)sympy.printing.latexrrr&)rrs rtest_other_symbolsrs/2 1WQZ HqL0001rc ttddk(sJttddk(sJttddk(sJttddk(sJttd d k(sJttd d k(sJttd dk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttdd k(sJttd!d"k(sJttd#d$k(sJttd%d$k(sJttd&dk(sJttd'dk(sJttd(d(k(sJttd)d)k(sJttd*d*k(sJttd+d+k(sJttd,d,k(sJttd-d-k(sJttd.d.k(sJttd/d0k(sJttd1d1k(sJttd2d2k(sJttd3d3k(sJttd4d4k(sJttd5d5k(sJttd6d6k(sJttd7d7k(sJttd8d8k(sJttd9d9k(sJttd:d:k(sJttd;d;k(sJttd<d=k(sJttd>d?k(sJttd@dAk(sJttdBdCk(sJttdDdEk(sJttdFdGk(sJy)HN xMathringz \mathring{x}xCheckz \check{x}xBrevez \breve{x}xAcutez \acute{x}xGravez \grave{x}xTildez \tilde{x}xPrimez{x}'xddDDotz \ddddot{x}xDdDotz \dddot{x}xDDotz\ddot{x}xBoldz\boldsymbol{x}xnOrMz\left\|{x}\right\|xAVGz\left\langle{x}\right\ranglexHatz\hat{x}xDotz\dot{x}xBarz\bar{x}xVecz\vec{x}xAbsrxMagxPrMxBMMathringCheckBreveAcuteGraveTildePrimeDDotz\dot{D}BoldNORmAVGHatrBarVecr<MagPrMBMhbarz\hbarxvecdotz \dot{\vec{x}}xDotVecz \vec{\dot{x}}xHATNormz\left\|{\hat{x}}\right\| xMathringBm_yCheckPRM__zbreveAbszC\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'} alphadothat_nVECDOT__tTildePrimez1\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}})rr&rrrtest_modifiersr sZ % &/ 99 9 " #| 33 3 " #| 33 3 " #| 33 3 " #| 33 3 " #| 33 3 " #w .. . # $ 55 5 " #| 33 3 ! "k 11 1 ! "&7 77 7 ! "&; ;; ;  !%D DD D  !Z // /  !Z // /  !Z // /  !Z // /  !%8 88 8  !%8 88 8  !W ,, ,  $5 55 5 $ % 44 4 ! "h .. . ! "h .. . ! "h .. . ! "h .. . ! "h .. . ! "h .. .  !Z // /  !W ,, ,  !W ,, ,  F ** *  F ** *  F ** *  F ** *  F ** *  F ** *  F ** *  F ** *  5 (( (  !X -- - # $(8 88 8 # $(8 88 8 $ %)D DD D ;< =N OO O ;< =< == =rc ttddk(sJttddk(sJttddk(sJttddk(sJttd d k(sJttd d k(sJttd dk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttddk(sJttdd k(sJttd!d"k(sJttd#d$k(sJttd%d&k(sJttd'd(k(sJttd)d*k(sJttd+d,k(sJttd-d.k(sJttd/d0k(sJttd1d2k(sJttd3d4k(sJttd5d6k(sJttd7d8k(sJttd9d:k(sJttd;dk(sJttd?d@k(sJttdAdBk(sJttdCdDk(sJttdEdFk(sJttdGdHk(sJttdIdJk(sJttdKdLk(sJttdMdNk(sJttdOdPk(sJttdQdRk(sJttdSdTk(sJttdUdVk(sJttdWdXk(sJttdYdZk(sJttd[d\k(sJttd]d^k(sJttd_d`k(sJttdadbk(sJttdcddk(sJttdedfk(sJttdgdhk(sJttdidjk(sJttdkdlk(sJttdmdnk(sJy)oNr"r$rUr|rbr}delta\deltaepsilonz\epsilonr|rzetaz\etarz\thetaiotaz\iotakappaz\kappalambdarrz\munuz\nuxiz\xirrrrmrlz\rhosigmaz\sigmarr\upsilonz\upsilonrrlrrpsiz\psirer%r}r~rrrj\GammaDeltaz\DeltaEpsilonz \mathrm{E}Zetaz \mathrm{Z}rrThetaz\ThetaIotaz \mathrm{I}Kappaz \mathrm{K}rrMuz \mathrm{M}Nuz \mathrm{N}Xiz\XiOmicronz \mathrm{O}rrrRhoz \mathrm{P}Sigmaz\Sigmarmr]Upsilonz\UpsilonPhiz\Phir\z \mathrm{X}rz\PsiOmegaz\Omega varepsilonz \varepsilonvarkappaz \varkappavarphiz\varphivarpiz\varpivarrhoz\varrhovarsigmaz \varsigmavarthetaz \varthetarrrrtest_greek_symbolsr< s  !y 00 0  x // /  !y 00 0  !y 00 0  " #{ 22 2  x // /  w .. .  !y 00 0  x // /  !y 00 0 ! "z 11 1  v -- -  v -- -  v -- -  " #t ++ +  v -- -  w .. .  !y 00 0  w .. .  " #{ 22 2  w .. .  w .. .  w .. .  !y 00 0  !} 44 4  } 44 4  !y 00 0  !y 00 0  " #} 44 4  } 44 4  } 44 4  !y 00 0  } 44 4  !} 44 4 ! "z 11 1  } 44 4  } 44 4  v -- -  " #} 44 4  v -- -  } 44 4  !y 00 0  } 44 4  " #{ 22 2  w .. .  } 44 4  w .. .  !y 00 0  % &. 88 8  # $ 44 4 ! "j 00 0  !Y .. . ! "j 00 0  # $ 44 4  # $ 44 4rclttjdk(sJttjdk(sJttjdk(sJttj dk(sJttj dk(sJttjdk(sJy)Nz \mathbb{Q}r<r@rDz \mathbb{R}r8)rr# RationalsrrArErr9rrrtest_fancyset_symbolsrx s   .. .   -- -   00 0   -- - >] ** *   .. .rc,ttdk(sJy)Nz \mathcal{COS})rr~rrr*test_builtin_without_args_mismatched_namesr s  !%5 55 5rcttdk(sJttdk(sJttdk(sJttdk(sJtt dk(sJtt dk(sJy)Nz\operatorname{Chi}z\operatorname{B}rrr})rr\rUrbrvrVrrrrtest_builtin_no_argsr ss :. .. . ;- -- - <9 $$ $  I -- -   )) )   )) )rcNtd}t|tdk(sJy)Nrrz\Pi{\left(x \right)}rr1s rtest_issue_6853r s"A 1;1 11 1rc0tdtdzd}t|dk(sJtdtdzd}t|dk(sJttjtdzd}t|dk(sJtt tdzd}t|d k(sJtt tdzd}t|d k(sJtdtdz}t|d k(sJtdtdz}t|d k(sJy) Nr/r Frz- 2 \left(x + 1\right)r z2 \left(x + 1\right)z\frac{x + 1}{2}zy \left(x + 1\right)z- y \left(x + 1\right)z - 2 x - 2z2 x + 2)rrrr#r7r6)rks rtest_Mulr s BA&A 80 00 0 Aq1uu%A 8. .. . AFFAEE*A 8) )) ) Aq1uu%A 8. .. . QBA&A 80 00 0 BAA 8| ## # Aq1u A 8z !! !rctddd}t|dk(sJtttddzdk(sJt d}t|dzd k(sJtt d tzd k(sJy) Nr Frz2^{2}rr z\frac{1}{\sqrt[3]{x}}zx^2z\left(x^{2}\right)^{2}z 1.453e4500z{1.453 \cdot 10^{4500}}^{x})r rrrr$r#)rkrs rtest_Powr s~ Aq5!A 8x   Xb!_% &*B BB B B Q<4 44 4 <!# $(F FF Frcttttdk(sJtt tttdk(sJy)Nzx \Leftrightarrow yzx \not\Leftrightarrow y)rrrr6rrrrtest_issue_7180r s= Aq! "&< << < Z1%& '+E EE ErcNttjtzdk(sJy)Nz\left(\frac{1}{2}\right)^{n})rr#r7rDrrrtest_issue_8409r s  > >> >rcDddlm}|dd}t|dk(sJy)Nr parse_exprz-B*AFrzA \left(- B\right)sympy.parsing.sympy_parserrr)rrks rtest_issue_8470r s$56E*A 8, ,, ,rctddd}tddd}t||zj|| dk(sJt||zj|d|zdk(sJt||zj|| dk(sJy)Nrr r6zx \left(- y\right)r/zx \left(- 2 y\right)z\left(- x\right) y)rrsubsrs rtest_issue_15439r sS!QAS!QA !a%a!$ %)> >> > !a%aA& '+B BB B !a%a!$ %)> >> >rc6ttddk(sJy)Nz\frac{a_1}{b_1}rrrrtest_issue_2934r s *+ ,0B BB Brcpd}t|}t||k(sJtt|dk(sJy)Nz C_{x_{0}}z\cos{\left(C_{x_{0}} \right)})r$rrQ)latexSymbolWithBracers rtest_issue_10489r s='#$A 8+ ++ + Q=< << rrrs rtest_MatrixElement_printingr sS!QAS!QAS!QA 4>\ )) ) QtW  // / $ QAA 84 44 4gGAq!S!QAS!QA !A#q!t = >> > ua #C T / // /rctddd}tddd}tddd}t| dk(sJt|||zz |z dk(sJt| |z||z|zz |z dk(sJy)NrWr rr*z- Az A - A B - Bz- A B - A B C - B)rrrs rtest_MatrixSymbol_printingr sS!QAS!QAS!QA !9   QqS1  // / !A!A! "&: :: :rctddd}tddd}td}tt||dk(sJtt||z|dk(sJt|t||zdk(sJy) Nrr r rrCz X \cdot Yz a X \cdot Yza \left(X \cdot Y\right))rr$rr)rrrCs rtest_DotProduct_printingr sS!QAS!QAs A Aq! "l 22 2 AE1% &. 88 8 Z1%% &*E EE Ercltddd}tddd}tt||dk(sJy)NrWr rr  A \otimes B)rrr)rWrs rtest_KroneckerProduct_printingr s9S!QAS!QA !!Q' (N :: :rc tttdzztz tdztdzz t}tttz ttzt}tttdzztt ztzz t zttz t}t t||dk(sJt t|||dk(sJt t| |dk(sJtdtz gddtzz gg}tj|t}tddtdzzgg}tj|t}t |||zzdcxk(r#t tt|||k(sJJtddgddtz gg}tj|t}t ||z|zd cxk(r#t tt|||k(sJJy) Nr r zQ\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right)z\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right) \left(\frac{t x^{2} - t^{w} x + w}{t - y}\right)zS\left(\frac{- x + y}{x + y}\right) \left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right)rrHz\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left(\left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau\right)z\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s}\end{matrix}\right]_\tau)rrr6r8rrrrrrr from_Matrixrr) tf1tf2tf3M_1T_1M_2T_2M_3T_3s rtest_Series_printingr% s 1QT6A:q!tad{A 6C 1q5!a% +C 1QT6AqDF?Q.Aq 9C S! "\ ]] ] S#& ' N NN N c" #^ __ _ 1Q3%!QqS'# $C , ,S! 4C 1a1f+ C , ,S! 4C cCi ! K >Z S# 6<= >> >> > 1a&1ac(# $C , ,S! 4C S3 $3 e6;LTWY\I]_b ] ]] ] #sA& 'n oo o #c'* + ] ]] ]rctdtt}tttdzdz t}tttdz t}ttdztdzdz t}t||g||gg}t||g||gg}tt ||dk(sJtt ||z|ddk(sJy)Nr r a\left(I_{\tau} + \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\taua\left(I_{\tau} - \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau)rrrrr)rrrtf4tfm_1tfm_2s rtest_MIMOFeedback_printingr4m s 1a #C 1adQh *C 1a!eQ 'C 1a4A1 -C "S#Jc #; >> >rcrddlm}tddd}tddd}t|||dk(sJy)Nr) TensorProductrWr rr)sympy.tensor.functionsr9rr)r9rWrs rtest_TensorProduct_printingr; s;4S!QAS!QA q!$ % 77 7rcvddlm}ddlm}||j|j }t |dk(sJy)NrR2) WedgeProductz*\operatorname{d}x \wedge \operatorname{d}y)sympy.diffgeom.rnr>sympy.diffgeomr?dxdyr)r>r?r&s rtest_WedgeProduct_printingrD s/$+ beeRUU #B 9E EE Erc tddd}t|dk(sJtdtdddd}t|dk(sJtddd}t|d k(sJtddd}t|d k(sJy) Nr rFrz1^{-1}z 1^{1^{-1}}r r/z \frac{1}{9}z1^{-2})r r)expr_1expr_2expr_3expr_4s rtest_issue_9216rJ s B 'F =I %% % C2. ?F =M )) ) B 'F =N ** * B 'F =I %% %rcddlm}m}m}m}|d}|d|\}}}}|d|} |d|g\} } } } |d||g}|d||||g}t |d k(sJt | d k(sJ| |}t |d k(sJ| | }t |d k(sJ| | }t |d k(sJd| |z}t |dk(sJ|||| | }t |dk(sJ||| | | }t |dk(sJ||| || }t |dk(sJ||| }t |dk(sJ|||}t |dk(sJ|| | }t |dk(sJdt z| |z}t |dk(sJ||| }t |dk(sJ||| | |z| |z}t |dk(sJ| |d| |zz}t |dk(sJddlm}|||||||d|di}t |dk(sJ|||||||di}t |dk(sJ|||| |||d|di}t |d k(sJ|||| || |d|di}t |d!k(sJ||||| | |d| di}t |d"k(sJ||||| | |di}t |d#k(sJt| || |}t |d$k(sJt| | | | }t |d%k(sJt|||| | | t| t }t |d&k(sJt| | | | z| | | t }t |d'k(sJtd| | z| | | t }t |d(k(sJy))Nr)TensorIndexTypetensor_indices TensorHead tensor_headsLzi j k li_0zA B C DHKz{}^{i}z{}_{i}zA{}^{i}z A{}^{i_{0}}zA{}_{i}r4z -3A{}^{i}zK{}^{ij}{}_{ki_{0}}zK{}^{i}{}_{jk}{}^{i_{0}}zK{}^{i}{}_{j}{}^{k}{}_{i_{0}}z H{}^{i}{}_{j}zH{}^{ij}zH{}_{ij}r z\left(x + 1\right)A{}^{i}zH{}^{L_{0}}{}_{L_{0}}z#H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}r z3B{}^{i} + A{}^{i}) TensorElementr zK{}^{i=3,j,k=2,l}z K{}^{i=3,jkl}zK{}^{i=3}{}_{j}{}^{k=2,l}zK{}^{i=3}{}_{j}{}^{k=2}{}_{l}zK{}^{i=3,j}{}_{k=2,l}zK{}^{i=3,j}{}_{kl}z4\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}z,\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}zK\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}zZ\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}zQ\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}) sympy.tensor.tensorrLrMrNrOrrrTrrrD)rLrMrNrOrPrXrYr>rpi0rWrr*r+rRrSrrTs rtest_latex_printer_tensorrW s]]A 1-JAq!Q q !Bi!-JAq!Q3AA3Aq! %A 8y  !9 !! ! Q4D ;* $$ $ R5D ;. (( ( aR5D ;* $$ $ ad7D ;, && & QA2s D ;0 00 0 QQB D ;5 55 5 QAs D ;: :: : Q8D ;* ** * Q7D ;+ %% % aR!9D ;+ %% % aC1:D ;6 66 6 Q8D ;2 22 2 Q8AaD=1 D ;@ @@ @ Q4!AaD&=D ;/ // /2 1aAAq! 5D ;. .. . 1aAA /D ;* ** * 1qb!Q!Q1 6D ;6 66 6 1qb!aR1aA, 7D ;: :: : 1a!aR1a!Q- 8D ;2 22 2 1a!aR1a& 1D ;/ // / QqT1Q4 (D ;Q QQ Q QrUAqbE *D ;I II I Qq!aR!_adAqbE :D ;h hh h QrUQrU]AqbE1aR5 9D ;w ww w Qq!uWaeQrU 3D ;n nn nrc td\}}}}} | d|zzd|zz d|zzd|zz d}t d|k(sJd }t dd|k(sJd }t dd|k(sJd }t ddd |k(sJd} t d| k(sJt dd| k(sJd} t dd| k(sJtt fdy)Nz a b c d e fr r rrz\begin{eqnarray} f & = &- a \nonumber\\ & & + 2 b \nonumber\\ & & - 3 c \nonumber\\ & & + 4 d \nonumber\\ & & - 5 e \end{eqnarray}eqnarray environmentzc\begin{eqnarray} f & = &- a + 2 b \nonumber\\ & & - 3 c + 4 d \nonumber\\ & & - 5 e \end{eqnarray}zS\begin{eqnarray} f & = &- a + 2 b - 3 c \nonumber\\ & & + 4 d - 5 e \end{eqnarray}zX\begin{eqnarray} f & = &- a + 2 b - 3 c \dots\nonumber\\ & & + 4 d - 5 e \end{eqnarray}T)r[use_dotszB\begin{align*} f = &- a + 2 b - 3 c \\ & + 4 d - 5 e \end{align*}zalign*zp\begin{IEEEeqnarray}{rCl} f & = &- a + 2 b \nonumber\\ & & - 3 c + 4 d \nonumber\\ & & - 5 e \end{IEEEeqnarray} IEEEeqnarrayc tdS)NrrZ)r)rrsrrz&test_multiline_latex..7 sq$EJr)r&rrr) rCrrr)rkr expected2 expected3 expected3dotsexpected3align expected2ieeerrs @@rtest_multiline_latexrd s2}-Aq!Q1 2!8QqS=!A# qs "DH 1d ;x GG GI 1dA: >) KK KI 1dA: >) KK KM 1dA: MQ^ ^^ ^N 1dA &. 88 8 1dA8 < NN NM 1dA> Bm SS S :JKrc td\}}tt||tt ||zdtt ||zdzt jdz}t|dk(sJy)Nza xrr z\left\{\left( x, \ a\right)\; \middle|\; \left( x, \ a\right) \in \mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge \cos{\left(a x \right)} = 0 \right\}) r&rr r!rSrQr#r9r)rCrsols rtest_issue_15353rg9 sk 5>DAq  a RAaC!_r#ac(A6 Q HC : 0 00 0rc8td}tdd}td||}tt|dk(sJtt |dk(sJtt |dkDd k(sJtd ||}tt ||d k(sJy) NrrTr2rz\operatorname{E}\left[X\right]z \operatorname{Var}\left(X\right)rz"\operatorname{P}\left(X > 0\right)rz#\operatorname{Cov}\left(X, Y\right))r&rrrrrr)rrrrs rtest_latex_symbolic_probabilityriD s B Gd +EsBA Q $E EE E ! !D DD D QU# $(M MM MsBA Aq! "&L LL Lrcddlm}tddd}t||dk(sJt||dzdk(sJy)NrtracerWr  \operatorname{tr}\left(A \right)z$\operatorname{tr}\left(A^{2} \right) sympy.matrices.expressions.tracerlrr)rlrWs r test_tracerpO sF6S!QA q?A AA A q!t !H HH Hrcddlmddlm}Gfdd|fd}fd}t |t dk(sJt |t d zd k(sJt |t d k(sJy) NrBasic)ExprceZdZfdZy)+test_print_basic..UnimplementedExprc(j||SN)__new__)rrkrss rryz3test_print_basic..UnimplementedExpr.__new___ s==a( (rN)rrrryrrsrUnimplementedExprrv^ s )rrzc0|jSrx)r)rrzs runimplemented_exprz,test_print_basic..unimplemented_exprc s &++--rc:|}d|j_|S)NzUnimplementedExpr_x^1) __class__r)rresultrzs runimplemented_expr_sup_subz4test_print_basic..unimplemented_expr_sup_subg s "4($;! rz.\operatorname{UnimplementedExpr}\left(x\right)r z2\operatorname{UnimplementedExpr}\left(x^{2}\right)z6\operatorname{UnimplementedExpr^{1}_{x}}\left(x\right))sympy.core.basicrssympy.core.exprrtrr)rtr|rrsrzs @@rtest_print_basicrW s&$)D) . #A& '+\ \\ \ #AqD) *= >> > +A. /A BB Brcddlm}tddd}t||ddk(sJt||dd k(sJtdd d }td d d }td d d }t| dd k(sJt|||zz |z ddk(sJt| |z||z|zz |z ddk(sJtdd d }t|ddk(sJtdd d }t|ddk(sJy)NrrkrWr rcraz)\operatorname{tr}\left(\mathbf{A} \right)rrmr rr*z - \mathbf{A}z/\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}zG- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}A_kz\mathbf{A}_{k}z\nabla_kz\mathbf{\nabla}_{k}rn)rlrWrr*rs rtest_MatrixSymbol_boldrs s>6S!QA qF 34 55 5 qG 4+ ,, , S!QAS!QAS!QA !f - @@ @ QqS1v 6: ;; ; !A!A!F ;R SS S ua #C v .2C CC C[!Q'A V ,0F FF Frchtddd}td}tt||dk(sJy)Nrr r rz#\sigma_{\left( 0\; 1\; 2\right)}(x))r r$rr )r1rs rtest_AppliedPermutationr s;Aq!As A #Aq) *. // /rctddd}tt|dk(sJtdddd}tt|dk(sJy)Nrr r zP_{\left( 0\; 1\; 2\right)}r z*P_{\left( 0\; 3\right)\left( 1\; 2\right)})r rrrs rtest_PermutationMatrixr s_Aq!A "1% &*H HH H Aq!QA "1% &5 66 6rcvddlm}ddlm}t d}t d\}}|||t t fdtd|dtfttdt zt|t zz|z dt|t zz|dzz z|t kD|tkzt|dzfd t||zzt z |dtff}t||d k(sJt|||t t fdtd|dtftd|dtffd k(sJy) Nr)piecewise_fold) FourierSeriesrzk nr r/r )rTz\begin{cases} 2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases}r)$sympy.functions.elementary.piecewisersympy.series.fourierrr$r&rrrrNrQrSr"r)rrrr>rDfos rtest_issue_21758r sTC2s A 5>DAq q1rc2,Jq1a*,Ez2b5QrT?1$qQrT{1a4'77!rc'a"f9MPRSTVWPX9XY  1X &&( )+,a*H6)7 8B # $)C CC C q1rc2,Jq1a*4M1;A1bz1J1LM NQT UU Urc tdtzdk(sJtdtzddk(sJtdtzddk(sJtdtzddk(sJttd d k(sJttd d k(sJy) Nr z1 + irXimaginary_unitrYz1 + jrz1 + footiz\text{i}tjz\text{j})rrrrrtest_imaginary_unitr s Q<8 ## # Qs +x 77 7 Qs +x 77 7 Qu - ;; ; 4 (K 77 7 4 (K 77 7rctttddk(sJtttddk(sJtttddk(sJtttddk(sJy)NT) gothic_re_imz\Im{\left(x\right)}Frz\Re{\left(x\right)}r)rr?rrArrrtest_text_re_imr sj AT *.D DD D AU +/S SS S AT *.D DD D AU +/S SS Srcddlm}m}m}m}m}ddlm}tdd\}}|dd}t|d k(sJ|d |} t| d k(sJ|d | ||g} t| d k(sJ|| d} t| dk(sJtd} | |j|j} t|| dk(sJy)Nr)ManifoldPatch CoordSystemBaseScalarField Differentialr=zx yTrrr z\text{M}Pz\text{P}_{\text{M}}rectz!\text{rect}^{\text{P}}_{\text{M}}z \mathbf{x}ryzC\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)) rArrrrrr@r>r&rrrr6)rrrrrr>rr6rr1rrrys_fields rtest_latex_diffgeomr sZZ$ %d #CAaaA 8{ "" " c1 A 8- -- - vq1a& )D ;> >> >a A 8} $$ $ AbddmG g& 'N OO OrcJtdtzdk(sJtdtzdk(sJtdtztz dk(sJtdt zt ztz dk(sJtdtztzdk(sJttd k(sJy) Nrz 5 \text{m}r z3 \text{gibibyte}rz\frac{4 \mu\text{g}}{\text{s}}z\frac{4 \mu \text{g}}{\text{s}}z5 \text{m} \text{m}z\text{m})rrrrrrrrrrrtest_unit_printingr s 5>] ** * 8  4 44 4 9V# $(I II I 5f$ %)K KK K 5 #9 99 9 <; && &rcPtd}tt||ddk(sJy)Nrr z,\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*})r$rr)r=s rtest_issue_17092r s( E]F FF1- .2a aa arcttd\}}}}tdd\}}}tdt\}}} tgdd d k(sJttd d d d dk(sJtdd dk(sJtdd dk(sJtgdd dk(sJttd d d d dk(sJtdd dk(sJtdd dk(sJtgddk(sJttd d d dk(sJtddk(sJtddk(sJtt ddd dk(sJtdd dk(sJtd}td}td}t|dzd|dzzzd z|zd d k(sJtd!d d"k(sJtt d!d d"k(sJtd#d d$k(sJtt d#d d$k(sJtd%d d&k(sJtt d'd(zd d)k(sJtt d*d d)k(sJtd}td+|zdzd d,k(sJttd d d d dk(sJt td-t td.t td/y)0Nzx y z trTrzf g hrr ffffff@@commadecimal_separatorz#\left[ 1; \ 2{,}3; \ 4{,}5\right]r rrz\left\{1; 2{,}3; 4{,}5\right\})r rgffffff@z#\left( 1; \ 2{,}3; \ 4{,}6\right))r z\left( 1;\right)periodz\left[ 1, \ 2.3, \ 4.5\right]z\left\{1, 2.3, 4.5\right\}z\left( 1, \ 2.3, \ 4.6\right)z\left( 1,\right)g333333 @g333333@z18{,}02gQ2@rr6r8r z#2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5g/$?z0{,}987g333333?z0{,}3g|)v>z5{,}8 \cdot 10^{-7}g@gHz>z5{,}7 \cdot 10^{-7}gg333333?z1{,}2 x + 3{,}4c tgddS)Nr&non_existing_decimal_separator_in_listrrrrrrz.test_latex_decimal_separator.. su[Dlmrc2ttddddS)Nr rr%non_existing_decimal_separator_in_setr)rrrrrrz.test_latex_decimal_separator.. suYqS%9MturctddS)Nr'non_existing_decimal_separator_in_tuplerrrrrrz.test_latex_decimal_separator.. su[Dmnr)r&rrrrr#rr) rr6r8rr>rrDrryrzs rtest_latex_decimal_separatorr s#JAq!Qgt,GAq!g8,GAq! ' :>d de d 1c3'7 CGh hi h G <@f fg f  15H HI H ( ;?a ac a 1c3'8 DHe ef e H =Ac cd c  26I IJ I  #E EF E 1c3' (,I IJ I  #E EF E ;- -. - S7 ;z IJ I g 6* DE D A A A 3AsF"S(1,' JNt tu t ' 2j @A @ 5W 5 CD C w /8 ;< ; 2' 2h >? >  9=S ST S 3G <@V VW V <G <@V VW V A Qsg 6:L LM L 1c3'8 DHe ef e :mn :uv :norc<ddlm}t|ddk(sJy)NrStrr)sympy.core.symbolrstrrs rtest_Strr s% s3x=D  rcFtddjgdk(sJy)Nz ~^\&%$#_{}r) z\textasciitildez\textasciicircumz\textbackslashz\&z\%z\$z\#z\_z\{z\})rjoinrrrtest_latex_escaper s)  &"'' 3 +   rcnGdd}t|dk(sJt|fdk(sJy)NceZdZdZy)#test_emptyPrinter..MyObjectcy)Nzr)rs r__repr__z,test_emptyPrinter..MyObject.__repr__" s*rN)rrrrrrrMyObjectr! s +rrz'\mathtt{\text{}}z6\left( \mathtt{\text{}},\right)r)rs rtest_emptyPrinterr s>++   J JJ J (* #\ \\ \rc(ddl}|jtjdjdk(sJtt dk(sJ t jd|jtjdjdk(sJtt dk(sJ t jd=|jtjdjdk(sJtt dk(sJy#t jd=wxYw)NrrrXrYr) inspect signaturer parametersdefaultrrset_global_settings_global_settings)rs rtest_global_settingsr+ s   U # . ./? @ H HD PP P 8t   <((<  '223CDLLPTTTTQx4  ) )*: ;   U # . ./? @ H HD PP P 8t    ) )*: ;s AC>>Dcdddl}|j|jttusJy)Nr)pickleloadsdumpsr)rs rtest_pickleabler@ s% << U+ , 55 5rc ttdddk(sJttddddtz z dfdk(sJt ddd}t d dd}tt||ztdgd k(sJy) NrW)r r rr r rz{{A}_{2, \frac{1}{1 - x}, 0}}rr rz{{\left(M N\right)}_{x, 0}})rrrrr)rrs r%test_printing_latex_array_expressionsrE s S), - 44 4 cAq!A#w?3 48X XX XS!QAS!QA acAq6* +/N NN Nrcttd}t|dk(sJttd}t|dk(sJy)NrzL\left[\begin{matrix}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{matrix}\right]rr)rrr)arrs r test_ArrayrL sD b C :h hh h b C :x xx xrc|td5tttzdk(sJ dddy#1swYyxYw)NFza a)rrrCrrrtest_latex_with_unevaluatedrT s4 %&QU|v%%%&&&s2;cttddk(sJttdddk(sJttdddk(sJy)Nzu^a_bz u^{a}_{b}F)disable_split_super_subTzu\^a\_brrrr"test_latex_disable_split_super_subrY sK  ![ 00 0 % @K OO O $ ?; NN Nr(sympyrrrsympy.algebras.quaternionr!sympy.calculus.accumulationboundsr sympy.combinatorics.permutationsrr r sympy.concrete.productsr sympy.concrete.summationsr sympy.core.containersr rrrsympy.core.functionrrrrrsympy.core.modrsympy.core.mulrsympy.core.numbersrrrrrrrsympy.core.parametersrsympy.core.powerr sympy.core.relationalr!r"sympy.core.singletonr#rr$r%r&(sympy.functions.combinatorial.factorialsr'r(r)r*r+r,%sympy.functions.combinatorial.numbersr-r.r/r0r1r2r3r4r5r6r7r8r9r:r;$sympy.functions.elementary.complexesr<r=r>r?r@rA&sympy.functions.elementary.exponentialrBrCrD%sympy.functions.elementary.hyperbolicrErF#sympy.functions.elementary.integersrGrHrI(sympy.functions.elementary.miscellaneousrJrKrLrMrrN(sympy.functions.elementary.trigonometricrOrPrQrRrSrT&sympy.functions.special.beta_functionsrU'sympy.functions.special.delta_functionsrVrW*sympy.functions.special.elliptic_integralsrXrYrZr[rr\r]r^r_r`ra'sympy.functions.special.gamma_functionsrbrcsympy.functions.special.hyperrdre)sympy.functions.special.mathieu_functionsrfrgrhri#sympy.functions.special.polynomialsrjrkrlrmrnrorprqrr-sympy.functions.special.singularity_functionsrs+sympy.functions.special.spherical_harmonicsrtru(sympy.functions.special.tensor_functionsrvrw&sympy.functions.special.zeta_functionsrxryrzr{r|sympy.integrals.integralsr}sympy.integrals.transformsr~rrrrrrrrr sympy.logicrsympy.logic.boolalgrrrrrrrsympy.matrices.denser$sympy.matrices.expressions.kroneckerr"sympy.matrices.expressions.matexprr&sympy.matrices.expressions.permutationr sympy.matrices.expressions.slicer%sympy.matrices.expressions.dotproductrsympy.physics.control.ltirrrrrrrrsympy.physics.quantumrrsympy.physics.quantum.tracersympy.physics.unitsrrrrrrrsympy.polys.domains.integerringrsympy.polys.fieldsrsympy.polys.polytoolsrsympy.polys.ringsrsympy.polys.rootoftoolsrrsympy.series.formalrrrsympy.series.limitsrsympy.series.orderrsympy.series.sequencesrrrrsympy.sets.conditionsetrsympy.sets.containsrsympy.sets.fancysetsrrrsympy.sets.ordinalsrrrsympy.sets.powersetrsympy.sets.setsrrrrrrrsympy.sets.setexprrsympy.stats.crv_typesr sympy.stats.symbolic_probabilityrrrrsympy.tensor.arrayrrrrr0sympy.tensor.array.expressions.array_expressionsrrsympy.tensor.indexedrrrsympy.tensor.toperatorsr sympy.vectorrrrrrrrsympy.testing.pytestrrrrrrrrrrrrsymrrrrrr6r8rrrCrrrr1r>rrDrr?rArErKrPrUrZrrrwrrrrrrrrrrrrrrrrrrr r rrrrrr!r#r'r6r:r=rBrFrIrLrOrQrSrUrYr]r_rbrdrhrtrvryr{r}rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr0r8r;r=rFrQrUrYr[r^rerirmrsrvrxr{rrrrrrrrrrrrrrrrrrr r rrrrrr%r(r*r,r/r4r7r;rDrJrWrdrgrirprrrrrrrrrrrrrrrrrrrrrrrr(s ''09SS+)-+JJUUU* ("55HHMMMMM[ZGG?FFKK:UU7KhhRRG:hhZZZMBQff.uuuLLL'A;D8<SSS6*VVV.$&"5#/%$GG0(AAAA(ssss&&((EEE//// WV<<<55VVVVV:::>>>>>   ''<=1aAq!Q1 '4 (1a !YYx+;8/4. */PbI4;;j3j3\ K2"<$;41*=m@^%gP @A J>6"r? / E2-2264 9 + 2V Zt-n/.1. y4nA C /-" $4AGE G)2 FN )J 8UG*H( $+o\9H ?. 8-O@ 7.O6V XB o <;>? 0 K`" GNBC&3OB/7tQBM< ~"aH=0*0 =\M L H 0 ?$ #.2"1 5=p95x/66*2 ""GF ?- ?C=; ) 4 +0,;F; e86^(Z ]20?8F &Xov2Lh0MIB8G2/6 U 8TO&'b 0pd!  ]*6 Oy& Or