K i2UddlmZddlmZddlmZddlmZmZddl m Z ddl m Z m Z ddlmZmZmZmZddlmZdd lmZmZmZmZdd lmZdd lmZdd lmZm Z dd l!m"Z"ddl#m$Z$ddl%m&Z&m'Z'ddl(m)Z)m*Z*ddl+m,Z,ddl-m.Z.ddl/m0Z0m1Z1ddlm2Z2ddl3m4Z4m5Z5ddl6m7Z7ddl8m9Z9m:Z:m;Z;mZ>m?Z?ddl@mAZAddlBmCZCed\ZDZEde2iZFdeGd<eHdeFdOd ZId!ZJd"ZKd#ZLd$ZMd%ZNd&ZOd'ZPd(ZQd)ZRd*ZSd+ZTd,ZUd-ZVd.ZWd/ZXd0ZYd1ZZd2Z[d3Z\d4Z]d5Z^d6Z_d7Z`d8Zad9Zbd:Zcd;Zdd<Zed=Zfd>Zgd?Zhd@ZidAZjdBZkdCZldDZmdEZndFZodGZpdHZqdIZrdJZsdKZtdLZudMZvdNZwy)P) annotations)Any) GROUND_TYPES)raiseswarns_deprecated_sympy)Q)Function WildFunction)AlgebraicNumberFloatIntegerRational)S)DummySymbolWildsymbols)sympify)Abs)rootsqrt)sin) Heaviside)falsetrue)Matrixones) MatrixSymbol)ImmutableDenseMatrix)Cycle Permutation)Str)PointEllipse)srepr)ringfieldZZQQlexgrlexPoly)DMP)FiniteExtensionx,yr"zdict[str, Any]ENVzfrom sympy import *Nc |t}n tj}t||t|fi||k(sJt |||k(sJy)z sT := sreprTest Tests that srepr delivers the expected string and that the condition eval(srepr(expr))==expr holds. N)r0copyexecr%eval)exprstring import_stmtkwargsENV2s d/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/sympy/printing/tests/test_repr.pysTr;$sQxxz [$   F ** *   %% %cVGddt}t|tdk(sJy)NceZdZdZy)test_printmethod..RcDd|j|jdzS)Nzfoo(%s)r)_printargs)selfprinters r: _sympyreprz&test_printmethod..R._sympyrepr7sw~~diil;; ;r<N)__name__ __module__ __qualname__rEr<r:Rr?6s }x}Q56x}o&s1v!"sENr<cjtttdtttddy)NzHeaviside(Symbol('x'))rOz"Heaviside(Symbol('x'), Integer(1)))r;rrKrIr<r:test_HeavisiderdTs"y|-.yA<=r<crttdddtttdddddy)NrzPoint2D(Integer(0), Integer(0))rOz@Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1)))r;r#r$rIr<r: test_GeometryrgYs0uQ{56wuQ{Aq!IKr<cttjdttjdttjdttj dttj dttjdttjdttjdttjd ttjd ttjd ttjd ttjd ttjdttj dttj"dttj$dttj&dttj(dttj*dttj,dttj.dttj0dy)NCatalanzoo EulerGammaE GoldenRatioTribonacciConstantzRational(1, 2)Ioonanz-ooz Integer(-1)z Integer(1)piz Integer(0) Complexes EmptySequenceEmptySetNaturals Naturals0 RationalsReals UniversalSet)r;rriComplexInfinityrkExp1rmrnHalf ImaginaryUnitInfinityNaNNegativeInfinity NegativeOneOnePiZerorsrtrurvrwrxryrzrIr<r:test_Singletonsr`sJqyy)q% q||\"qvvsOq}}m$q12qvv qqzz4quueq5!q}}m$quulqttTNqvv|q{{K q(qzz:qzz:q{{K q{{K qwwq~~~&r<c.ttddy)Nz Integer(4))r;r rIr<r: test_Integerr{swqz< r<c:tttdgdy)Nrz[Symbol('x'), Integer(4)])r;rKr rIr<r: test_listrs71:34r<c  tdftdffD]{\}}t|tdzdgtttzggd|zt|d|zt|tdzdgtttzggd|z}y)NMutableDenseMatrixrrOzM%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])z%s([]))rrr;rKrW)clsnames r: test_Matrixrs347KMc6deB T 3B QAJ' ( Z]a a c 35(T/" 3B QAJ' (*y}A+A B Br<cttdddttdddttdddy)NrzMutableDenseMatrix(0, 3, [])rzMutableDenseMatrix(4, 0, [])zMutableDenseMatrix([]))r;rrIr<r:test_empty_Matrixrs5tAqz12tAqz12tAqz+,r<c\ttdddttdddy)NrOrzRational(1, 3)zRational(-1, 3))r;rrIr<r: test_Rationalrs$x1~'(xA)*r<cttdddttdddttdd d ttd d d ttdddttdddttddd ttd dd ttd d d y)Nz1.23r)dpszFloat('1.22998', precision=13)z 1.23456789 z$Float('1.23456788994', precision=33)z1.234567890123456789z.Float('1.234567890123456789013', precision=66)z0.60038617995049726z*Float('0.60038617995049726', precision=53) ) precision!B5)r;r rIr<r: test_FloatrsuV=>u\q!#IJu #,79u "+35uVr"$DEu\R(-/u #r279u "b135u "B'35r<crttdttdttdddy)N Symbol('x')z Symbol('y')rKT)negativezSymbol('x', negative=True))r;rKrWrrIr<r: test_Symbolrs(q-q-vcD!#?@r<ctddd}d}d}t|||fvsJtt|t|k(sJy)NrKrrO)rintegerz)Symbol('x', integer=True, negative=False)z)Symbol('x', negative=False, integer=True))rr%r4r0)rKs1s2s r:test_Symbol_two_assumptionsrsIsQ*A 4B 4B 8Bx   a# ! ## #r<cttddttdddttdddttdddttdd dy) NrKrF) commutativezSymbol('x', commutative=False)rTzSymbol('x', commutative=True)rO)r;rrIr<r:,test_Symbol_no_special_commutative_treatmentrsXvc{M"vcu%'GHvcq!#CDvct$&EFvcq!#BCr<c2ttdddy)NrKT)evenzWild('x', even=True))r;rrIr<r: test_WildrstCd34r<c^td}t|dt|jzy)NdzDummy('d', dummy_index=%s))rr;str dummy_index)rs r: test_Dummyrs$ c Aq &Q]]); ; > ?? ?r<cRttfdtttfdy)Nz(Symbol('x'),)z(Symbol('x'), Symbol('y')))r;rKrWrIr<r: test_tuplerst 1v+,r<c.ttddy)NwzWildFunction('w'))r;r rIr<r:test_WildFunctionrs|C-.r<c&ttdy)Nc$ttdS)Ngarbage)method)r%rKrIr<r:ztest_settins..s eAi8r<)r TypeErrorrIr<r: test_settinsrs  989r<ctdtdzztzdtdtdzztzddk(sJtt ddd d k(sJy) Nrz:Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))rRrPz:Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))z (x+4)*2*x*7FrSrUzFMul(Add(Symbol('x'), Integer(4)), Integer(2), Symbol('x'), Integer(7))rVrIr<r:test_MulrseqAvaxMN 1a4 '+g gg g 7v FKS SS Sr<cttd}t|dttdd}t|dy)NrNzJAlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])rzKAlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)]))r rr;r)as r:test_AlgebraicNumberrs6Q Aq VWR $Aq WXr<cttdttddk(sJttdtt ddk(sJttdtdtddk(sJy) NrKrz!PolyRing((Symbol('x'),), ZZ, lex)r/z/PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)x,y,ztz=PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex))r%r&r(r*r)r+rIr<r: test_PolyRingrsl c2s#A& '+N NN N eR'* +/` `` ` gr#w,Q/ 04s ss sr<cttdttddk(sJttdtt ddk(sJttdtdtddk(sJy) NrKrz"FracField((Symbol('x'),), ZZ, lex)r/z0FracField((Symbol('x'), Symbol('y')), QQ, grlex)rrz>FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex))r%r'r(r*r)r+rIr<r:test_FracFieldrsl sB$Q' (,P PP P ub%(+ ,0b bb b w3-a0 15u uu ur<cdtdt\}}}td|dzz|zdzdk(sJy)Nr/rrNrOzVPolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)]))r&r(r%)rJrKrWs r:test_PolyElementrs75"oGAq! 1a4A "z zz zr<cvtdt\}}}td|dzz|zdz||dzz z dk(sJy)Nr/rrNrOztFracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)]))r'r(r%)FrKrWs r:test_FracElementrsQE2GAq! !AqD&(Q,QT* +0f ff fr<cttjtdk(sJttjttt dk(sJy)Nz1FractionField(FracField((Symbol('x'),), QQ, lex))rPz?FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex)))r%r) frac_fieldrKrWr+rIr<r:test_FractionFieldr sO q! "; << < q!51 2I JJ Jr<c"ttjtdk(sJtttjtdk(sJtt j tjtdk(sJy)Nz%GlobalPolynomialRing(ZZ, Symbol('x'))z(GlobalPolynomialRing(ZZ[x], Symbol('y'))zTGlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y')))r%r( old_poly_ringrKrWr)rrIr<r:test_PolynomialRingBasers !!!$ %/ 00 0 A$$Q' (2 33 3 q!//2 3^ __ _r<ctddgt}tjtddg}tdk7r!t |dk(sJt |dk(sJyt |dk(sJt |dk(sJy)NrOrNflintzDMP_Python([1, 2], ZZ)zDUP_Flint([1, 2], ZZ))r-r(rrKrr%)p1p2s r:test_DMPrs aVRB   ! aV $BwRy4444Ry4444Ry3333Ry3333r<cfttttdzdztdk(sJy)NrNrOz/FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))r%r.r,rKrIr<r:test_FiniteExtensionr's0 adQh!23 49 :: :r<ctttdzdzt}tdk7rd}nd}t |j |k(sJy)NrNrOrzPExtElem(DMP_Python([1, 0], ZZ), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))zOExtElem(DUP_Flint([1, 0], ZZ), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))))r.r,rKrr% generator)Aanss r:test_ExtensionElementr,sDQTAXq)*Aw`_   $$ $r<cTttdk(sJttdk(sJy)Nrr)r%rrrIr<r:test_BooleanAtomr4s& ;&  <7 "" "r<c8ttjdy)NIntegers)r;rrrIr<r: test_Integersr9qzz:r<c8ttjdy)Nrv)r;rrvrIr<r: test_Naturalsr=rr<c8ttjdy)Nrw)r;rrwrIr<r:test_Naturals0rAsq{{K r<c8ttjdy)Nry)r;rryrIr<r: test_RealsrEsqwwr<ctdd}td||}td||}t|dt||zdt||zdy) NrTrrBzLMatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True))zMatMul(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))zMatAdd(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True))))rrr;)rrrs r:test_matrix_expressionsrIs_T"AS!QAS!QAq XYqs qrq1ustr<c8ttdddk(sJy)NrOrNz Cycle(1, 2))r%r rIr<r: test_CyclerRs q!  .. .r<cNd}ttddddd|dttddddd |d t5tj}dt_ttddddd||t_dddy#1swYyxYw) Nz+from sympy.combinatorics import PermutationrOrNrrzPermutation([0, 2, 1, 4, 3])F) perm_cycliczPermutation(1, 2)(3, 4)T)r;r!r print_cyclic)r7old_print_cyclics r:test_PermutationrZs?K{1aA > Y^_{1aA 9;TXY  !4&33#(   ;q! Q "$BKP#3  444s ABB$cddlm}m}m}i}t |dk(sJ||i}t |dk(sJ||||i}t |dvsJ|||ii}t |dk(sJy)Nr)rKrWzz{}z{Symbol('x'): Symbol('y')})z4{Symbol('x'): Symbol('y'), Symbol('y'): Symbol('z')}z4{Symbol('y'): Symbol('z'), Symbol('x'): Symbol('y')}z){Symbol('x'): {Symbol('y'): Symbol('z')}}) sympy.abcrKrWrr%)rKrWrrs r: test_dictres!! A 8t   AA 83 33 3 Aq! A 8   QF A 8B BB Br<cnddlm}m}t}t |dk(sJ||h}t |dvsJy)Nr)rKrWzset())z{Symbol('x'), Symbol('y')}z{Symbol('y'), Symbol('x')})rrKrWsetr%)rKrWss r:test_setr ss: A 8w   AA 8S SS Sr<c8ttjdy)NzQ.even)r;rrrIr<r:test_Predicater zsqvvxr<cTttjtddy)Nrz%AppliedPredicate(Q.even, Symbol('z')))r;rrrrIr<r:test_AppliedPredicater}sqvvfSkCDr<)N)x __future__rtypingrsympy.external.gmpyrsympy.testing.pytestrrsympy.assumptions.askrsympy.core.functionr r sympy.core.numbersr r r rsympy.core.singletonrsympy.core.symbolrrrrsympy.core.sympifyr$sympy.functions.elementary.complexesr(sympy.functions.elementary.miscellaneousrr(sympy.functions.elementary.trigonometricr'sympy.functions.special.delta_functionsrsympy.logic.boolalgrrsympy.matrices.denserr"sympy.matrices.expressions.matexprrsympy.matrices.immutablersympy.combinatoricsr r!r"sympy.geometryr#r$sympy.printingr% sympy.polysr&r'r(r)r*r+r,sympy.polys.polyclassesr-sympy.polys.agca.extensionsr.rKrWr0__annotations__r3r;rLrXr_rbrdrgrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r rrIr<r:r(s",?#8JJ"<<&4A8=-/;92!) ==='7u~1cl^"C &"-E)> K'6!5B- + 5(A $D5=  ?- /:S Yt v { f J_4: %# !t/ 4 CTEr<