# @generated by tools/pyi/gen_pyi.py from torch/_C/__init__.pyi.in # mypy: disable-error-code="type-arg" # mypy: allow-untyped-defs # ruff: noqa: F401 from collections.abc import Iterable, Iterator, Sequence from enum import Enum, IntEnum from pathlib import Path from types import EllipsisType from typing import ( Any, AnyStr, Callable, Generic, IO, Literal, NamedTuple, overload, SupportsIndex, TypeVar, ) from typing_extensions import ParamSpec, Protocol, runtime_checkable, Self, TypeAlias import numpy import torch from torch import inf, SymInt, Tensor from torch._C import ( _aoti, _cpu, _dynamo, _export, _functionalization, _functorch, _lazy, _lazy_ts_backend, _nn, _onnx, _VariableFunctions, _verbose, ) from torch._prims_common import DeviceLikeType from torch.autograd.graph import Node as _Node from torch.cuda import _POOL_HANDLE from torch.fx.node import Node as FxNode from torch.package import PackageExporter from torch.storage import TypedStorage, UntypedStorage from torch.types import ( _bool, _bytes, _complex, _device, _dispatchkey, _dtype, _float, _int, _layout, _qscheme, _size, _str, _symsize, Device, IntLikeType, Number, Storage, ) from torch.utils._python_dispatch import TorchDispatchMode # This module is defined in torch/csrc/Module.cpp K = TypeVar("K") # noqa: PYI001 T = TypeVar("T") # noqa: PYI001 S = TypeVar("S", bound=torch.Tensor) # noqa: PYI001 P = ParamSpec("P") # noqa: PYI001 R = TypeVar("R", covariant=True) # return value (always covariant) # noqa: PYI001 T_co = TypeVar("T_co", covariant=True) # noqa: PYI001 @runtime_checkable class _NestedSequence(Protocol[T_co]): """A protocol for representing nested sequences. References:: `numpy._typing._NestedSequence` """ def __len__(self, /) -> _int: ... def __getitem__(self, index: _int, /) -> T_co | _NestedSequence[T_co]: ... def __contains__(self, x: object, /) -> _bool: ... def __iter__(self, /) -> Iterator[T_co | _NestedSequence[T_co]]: ... def __reversed__(self, /) -> Iterator[T_co | _NestedSequence[T_co]]: ... def count(self, value: Any, /) -> _int: ... def index(self, value: Any, /) -> _int: ... # Defined in torch/csrc/Device.cpp class device: type: str # THPDevice_type index: _int # THPDevice_index def __get__(self, instance, owner=None) -> device: ... # THPDevice_pynew @overload def __init__(self, device: DeviceLikeType) -> None: ... @overload def __init__(self, type: str, index: _int) -> None: ... # Uncomment if we ever make torch.device a decorator # def __call__(self, func: T) -> T: ... def __enter__(self) -> Self: ... def __exit__(self, exc_type, exc_val, exc_tb) -> None: ... def __reduce__(self) -> tuple[Any, ...]: ... # THPDevice_reduce # Defined in torch/csrc/Stream.cpp class Stream: stream_id: _int # Stream id device_index: _int device_type: _int device: _device # The device of the stream @overload def __new__( cls, device: DeviceLikeType | None = None, *, priority: _int = 0, ) -> Self: ... @overload def __new__( cls, stream_id: _int, device_index: _int, device_type: _int, *, priority: _int = 0, ) -> Self: ... def query(self) -> _bool: ... def synchronize(self) -> None: ... def wait_event(self, event: Event) -> None: ... def wait_stream(self, other: Stream) -> None: ... def record_event(self, event: Event | None = None) -> Event: ... def __hash__(self) -> _int: ... def __eq__(self, other: object) -> _bool: ... def __enter__(self) -> Self: ... def __exit__(self, exc_type, exc_val, exc_tb) -> None: ... # Defined in torch/csrc/Event.cpp class Event: device: _device # The device of the Event event_id: _int # The raw event created by device backend def __new__( cls, device: DeviceLikeType | None = None, *, enable_timing: _bool = False, blocking: _bool = False, interprocess: _bool = False, ) -> Self: ... @classmethod def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> Event: ... def record(self, stream: Stream | None = None) -> None: ... def wait(self, stream: Stream | None = None) -> None: ... def query(self) -> _bool: ... def elapsed_time(self, other: Event) -> _float: ... def synchronize(self) -> None: ... def ipc_handle(self) -> bytes: ... # Defined in torch/csrc/Size.cpp class Size(tuple[_int, ...]): # TODO: __reduce__ @overload def __getitem__(self: Size, key: SupportsIndex, /) -> _int: ... @overload def __getitem__(self: Size, key: slice, /) -> Size: ... # Note: torch.Size does not support adding non-integer tuples. def __add__(self, other: tuple[_int, ...], /) -> Size: ... # type: ignore[override] def __radd__(self: Size, other: tuple[_int, ...], /) -> Size: ... def __mul__(self, other: SupportsIndex, /) -> Size: ... def __rmul__(self, other: SupportsIndex, /) -> Size: ... def numel(self: Size, /) -> _int: ... # Defined in torch/csrc/Dtype.cpp class dtype: # TODO: __reduce__ is_floating_point: _bool is_complex: _bool is_signed: _bool itemsize: _int def to_real(self) -> dtype: ... def to_complex(self) -> dtype: ... # Defined in torch/csrc/TypeInfo.cpp class iinfo: bits: _int min: _int max: _int dtype: str def __init__(self, dtype: _dtype) -> None: ... class finfo: bits: _int min: _float max: _float eps: _float tiny: _float smallest_normal: _float resolution: _float dtype: str @overload def __init__(self, dtype: _dtype) -> None: ... @overload def __init__(self) -> None: ... float32: dtype = ... float: dtype = ... float64: dtype = ... double: dtype = ... float16: dtype = ... bfloat16: dtype = ... float8_e4m3fn: dtype = ... float8_e4m3fnuz: dtype = ... float8_e5m2: dtype = ... float8_e5m2fnuz: dtype = ... float8_e8m0fnu: dtype = ... float4_e2m1fn_x2: dtype = ... half: dtype = ... uint8: dtype = ... uint16: dtype = ... uint32: dtype = ... uint64: dtype = ... int8: dtype = ... int16: dtype = ... short: dtype = ... int32: dtype = ... int: dtype = ... int64: dtype = ... long: dtype = ... complex32: dtype = ... complex64: dtype = ... chalf: dtype = ... cfloat: dtype = ... complex128: dtype = ... cdouble: dtype = ... quint8: dtype = ... qint8: dtype = ... qint32: dtype = ... bool: dtype = ... quint4x2: dtype = ... quint2x4: dtype = ... bits1x8: dtype = ... bits2x4: dtype = ... bits4x2: dtype = ... bits8: dtype = ... bits16: dtype = ... # Defined in torch/csrc/Layout.cpp class layout: ... # Defined in torch/csrc/utils/disable_torch_function.cpp def DisableTorchFunction(): ... def DisableTorchFunctionSubclass(): ... # Defined in torch/csrc/utils/tensor_layouts.cpp strided: layout = ... sparse_coo: layout = ... sparse_csr: layout = ... sparse_csc: layout = ... sparse_bsr: layout = ... sparse_bsc: layout = ... _mkldnn: layout = ... jagged: layout = ... # Defined in torch/csrc/MemoryFormat.cpp class memory_format: ... # Defined in torch/csrc/utils/tensor_memoryformats.cpp contiguous_format: memory_format = ... channels_last: memory_format = ... channels_last_3d: memory_format = ... preserve_format: memory_format = ... # Defined in torch/csrc/QScheme.cpp class qscheme: ... # Defined in torch/csrc/utils/tensor_qschemes.h per_tensor_affine: qscheme = ... per_channel_affine: qscheme = ... per_tensor_symmetric: qscheme = ... per_channel_symmetric: qscheme = ... per_channel_affine_float_qparams: qscheme = ... # Defined in torch/csrc/autograd/python_function.cpp class _FunctionBase: saved_tensors: tuple[Tensor] _raw_saved_tensors: tuple[Any] next_functions: tuple[tuple[Any, _int], ...] needs_input_grad: tuple[_bool] metadata: dict _materialize_non_diff_grads: _bool # skip adding type hints for the fields that have wrappers defined # in torch/autograd/function.py # Defined in torch/csrc/autograd/python_legacy_variable.cpp class _LegacyVariableBase(Tensor): # inherits from Tensor to appease mypy def __init__( self, data: Tensor | None = ..., requires_grad: _bool | None = ..., volatile: _bool | None = ..., _grad_fn: _FunctionBase | None = ..., ) -> None: ... # Defined in torch/csrc/jit/python/init.cpp class IODescriptor: ... class JITException(Exception): ... class Future(Generic[T]): def __init__(self, devices: list[device]) -> None: ... def done(self) -> _bool: ... def value(self) -> T: ... def wait(self) -> T: ... def add_done_callback(self, callback: Callable) -> None: ... def then(self, callback: Callable) -> Future[T]: ... def set_result(self, result: T) -> None: ... def _set_unwrap_func(self, callback: Callable) -> None: ... class _Await: def __init__(self) -> None: ... def fn(self) -> Callable: ... def args(self) -> tuple[Any, ...]: ... def is_nowait(self) -> _bool: ... def _jit_set_num_profiled_runs(num: _size) -> _size: ... # Defined in torch/csrc/jit/passes/mobile_optimizer_type.h class _MobileOptimizerType: ... CONV_BN_FUSION: _MobileOptimizerType INSERT_FOLD_PREPACK_OPS: _MobileOptimizerType REMOVE_DROPOUT: _MobileOptimizerType FUSE_ADD_RELU: _MobileOptimizerType HOIST_CONV_PACKED_PARAMS: _MobileOptimizerType VULKAN_AUTOMATIC_GPU_TRANSFER: _MobileOptimizerType def fork(*args: Any, **kwargs: Any) -> Future: ... def wait(fut: Future) -> Any: ... def _awaitable(*args: Any, **kwargs: Any) -> _Await: ... def _awaitable_wait(aw: _Await) -> Any: ... def _awaitable_nowait(x: Any) -> _Await: ... def _collect_all(futures: list[Future]) -> Future: ... def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ... def unify_type_list(types: list[JitType]) -> JitType: ... def _freeze_module( module: ScriptModule, preserved_attrs: list[str] = ..., freeze_interfaces: _bool = True, preserveParameters: _bool = True, ) -> ScriptModule: ... def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ... def _jit_pass_optimize_for_inference( module: torch.jit.ScriptModule, other_methods: list[str] = ..., ) -> None: ... def _jit_pass_fold_frozen_conv_bn(graph: Graph): ... def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ... def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ... def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ... def _jit_pass_concat_frozen_linear(graph: Graph): ... def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ... def _jit_pass_transpose_frozen_linear(graph: Graph): ... def _jit_pass_remove_dropout(module: torch.jit.ScriptModule): ... def _is_tracing() -> _bool: ... def _jit_init() -> _bool: ... def _jit_flatten(arg: Any) -> tuple[list[Tensor], IODescriptor]: ... def _jit_unflatten(vars: list[Tensor], desc: IODescriptor) -> Any: ... def _jit_get_operation(op_name: str) -> tuple[Callable, list[str]]: ... def _get_operation_overload( op_name: str, op_overload_name: str, ) -> tuple[Callable, Callable, list[Any]]: ... def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ... def _jit_pass_optimize_for_mobile( module: torch.jit.ScriptModule, optimization_blocklist: set[_MobileOptimizerType], preserved_methods: list[AnyStr], ) -> torch.jit.ScriptModule: ... def _clone_module_with_class( module: torch.jit.ScriptModule, ignored_methods: list[AnyStr], ignored_attributes: list[AnyStr], ) -> torch.jit.ScriptModule: ... def _jit_pass_vulkan_optimize_for_mobile( module: torch.jit.ScriptModule, optimization_blocklist: set[_MobileOptimizerType], preserved_methods: list[AnyStr], ) -> torch.jit.ScriptModule: ... def _jit_pass_metal_optimize_for_mobile( module: torch.jit.ScriptModule, preserved_methods: list[AnyStr], ) -> torch.jit.ScriptModule: ... def _jit_pass_inline(Graph) -> None: ... def _jit_pass_constant_propagation(Graph) -> None: ... def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ... def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ... def _jit_erase_non_input_shape_information(Graph) -> None: ... def _jit_get_schemas_for_operator(name: str) -> list[FunctionSchema]: ... def _jit_get_all_schemas() -> list[FunctionSchema]: ... def _jit_check_alias_annotation( g: Graph, args: tuple[Any, ...], unqualified_op_name: str, ): ... def _jit_can_fuse_on_cpu() -> _bool: ... def _jit_can_fuse_on_gpu() -> _bool: ... def _jit_can_fuse_on_cpu_legacy() -> _bool: ... def _debug_get_fusion_group_inlining() -> _bool: ... def _debug_set_fusion_group_inlining(enable: _bool): ... def _jit_texpr_fuser_enabled() -> _bool: ... def _jit_nvfuser_enabled() -> _bool: ... def _jit_llga_enabled() -> _bool: ... def _jit_set_llga_enabled(enable: _bool): ... def _llvm_enabled() -> _bool: ... def _jit_override_can_fuse_on_cpu(override: _bool): ... def _jit_override_can_fuse_on_gpu(override: _bool): ... def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ... def _jit_set_symbolic_shapes_test_mode(override: _bool): ... def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ... def _jit_set_texpr_fuser_enabled(enable: _bool): ... def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ... def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ... def _jit_cat_wo_conditionals(optimize_cat: _bool): ... def _jit_opt_conditionals(opt_conds: _bool): ... def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ... def _jit_pass_erase_shape_information(graph: Graph): ... def _jit_pass_fold_convbn(module: torch.jit.ScriptModule): ... def _jit_pass_insert_observers( module: torch.jit.ScriptModule, method_name: str, qconfig_dict: dict[str, Any], inplace: _bool, quant_type: _int, ): ... def _jit_pass_insert_quant_dequant( module: torch.jit.ScriptModule, method_name: str, inplace: _bool, debug: _bool, quant_type: _int, ): ... def _jit_pass_insert_quant_dequant_for_ondevice_ptq( module: torch.jit.ScriptModule, method_name: str, inplace: _bool, debug: _bool, quant_type: _int, ): ... def _jit_pass_quant_finalize( module: torch.jit.ScriptModule, quant_type: _int, preserved_attrs: Sequence[str], ): ... def _jit_pass_quant_finalize_for_ondevice_ptq( module: torch.jit.ScriptModule, quant_type: _int, method_name: str, ): ... def _jit_pass_insert_observer_method_for_ondevice_ptq( module: torch.jit.ScriptModule, method_name: str, qconfig_dict: dict[str, Any], inplace: _bool, quant_type: _int, ): ... def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ... def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ... def _jit_set_fusion_strategy( strategy: list[tuple[str, _int]], ) -> list[tuple[str, _int]]: ... def _jit_try_infer_type(obj: Any) -> InferredType: ... def _jit_get_trigger_value(trigger_name: str) -> _int: ... # Defined in torch/csrc/jit/python/script_init.cpp ResolutionCallback: TypeAlias = Callable[[str], Callable[..., Any]] # Defined in torch/csrc/jit/python/script_init.cpp # and torch/csrc/jit/python/init.cpp def _maybe_call_torch_function_for_op_packet( op_overload_packet: Any, *args: Any, **kwargs: Any, ) -> Any: ... def _check_schema_allow_fake_script_object( schema: FunctionSchema, *args: Any, **kwargs: Any, ) -> _bool: ... def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ... def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ... def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ... def _jit_assert_is_instance(obj: Any, type: JitType): ... def _jit_clear_class_registry() -> None: ... def _jit_set_emit_hooks( ModuleHook: Callable | None, FunctionHook: Callable | None, ) -> None: ... def _jit_get_emit_hooks() -> tuple[Callable, Callable]: ... def _load_for_lite_interpreter( filename: str | Path, map_location: DeviceLikeType | None, ): ... def _load_for_lite_interpreter_from_buffer( buffer: IO[bytes], map_location: DeviceLikeType | None, ): ... def _export_operator_list(module: LiteScriptModule): ... def _quantize_ondevice_ptq_dynamic(module: LiteScriptModule, method_name: str): ... def _get_model_bytecode_version(filename: str | Path) -> _int: ... def _get_model_bytecode_version_from_buffer(buffer: IO[bytes]) -> _int: ... def _backport_for_mobile( filename_input: str | Path, filename_output: str | Path, to_version: _int, ) -> None: ... def _backport_for_mobile_from_buffer( buffer: IO[bytes], filename_output: str | Path, to_version: _int, ) -> None: ... def _backport_for_mobile_to_buffer( filename_input: str | Path, to_version: _int, ) -> bytes: ... def _backport_for_mobile_from_buffer_to_buffer( buffer: IO[bytes], to_version: _int, ) -> bytes: ... def _get_model_ops_and_info(filename: str | Path): ... def _get_model_ops_and_info_from_buffer(buffer: IO[bytes]): ... def _get_mobile_model_contained_types(filename: str | Path): ... def _get_mobile_model_contained_types_from_buffer(buffer: IO[bytes]): ... def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ... def _get_graph_executor_optimize(optimize: _bool | None = None) -> _bool: ... def _set_graph_executor_optimize(optimize: _bool): ... def _export_opnames(module: ScriptModule) -> list[str]: ... def _create_function_from_trace( qualname: str, func: Callable[..., Any], input_tuple: tuple[Any, ...], var_lookup_fn: Callable[[Tensor], str], strict: _bool, force_outplace: _bool, argument_names: list[str], ) -> tuple[Graph, Stack]: ... def _create_function_from_trace_with_dict( qualname: str, func: Callable[..., Any], input_dict: dict[str, Any], var_lookup_fn: Callable[[Tensor], str], strict: _bool, force_outplace: _bool, argument_names: list[str], ) -> tuple[Graph, Stack]: ... def _jit_is_script_object(obj: Any) -> _bool: ... def _last_executed_optimized_graph() -> Graph: ... def parse_type_comment(comment: str) -> Decl: ... def _get_upgraders_map_size() -> _int: ... def _get_upgraders_entry_map() -> dict[str, str]: ... def _dump_upgraders_map() -> dict[str, str]: ... def _test_only_populate_upgraders(content: dict[str, str]) -> None: ... def _test_only_remove_upgraders(content: dict[str, str]) -> None: ... def merge_type_from_type_comment( decl: Decl, type_annotation_decl: Decl, is_method: _bool, ) -> Decl: ... def parse_ir(input: str, parse_tensor_constants: _bool = False) -> Graph: ... def parse_schema(schema: str) -> FunctionSchema: ... def get_device(input: Tensor) -> _int: ... def _resolve_type_from_object( obj: Any, range: SourceRange, rcb: ResolutionCallback, ) -> JitType: ... def _create_module_with_type(ty: JitType) -> ScriptModule: ... def _create_object_with_type(ty: ClassType) -> ScriptObject: ... def _run_emit_module_hook(m: ScriptModule): ... def _replace_overloaded_method_decl( overload_decl: Decl, implementation_def: Def, new_name: str, ) -> Def: ... def _jit_pass_lower_all_tuples(graph: Graph) -> None: ... def _jit_pass_onnx_set_dynamic_input_shape( graph: Graph, dynamic_axes: dict[str, dict[_int, str]], input_names: list[str], ) -> None: ... def _jit_pass_onnx_graph_shape_type_inference( graph: Graph, params_dict: dict[str, IValue], opset_version: _int, ) -> None: ... def _jit_pass_onnx_assign_output_shape( graph: Graph, tensors: list[Tensor], desc: IODescriptor, onnx_shape_inference: _bool, is_script: _bool, opset_version: _int, ) -> None: ... def _jit_pass_onnx_remove_inplace_ops_for_onnx( graph: Graph, module: ScriptModule | None = None, ) -> None: ... def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ... def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ... def _jit_pass_peephole( graph: Graph, disable_shape_peepholes: _bool = False, ) -> None: ... def _jit_pass_onnx_autograd_function_process(graph: Graph) -> None: ... def _jit_pass_fuse_addmm(graph: Graph) -> None: ... def _jit_pass_onnx_preprocess(graph: Graph) -> None: ... def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ... def _jit_pass_onnx_remove_print(graph: Graph) -> None: ... def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ... def _jit_pass_onnx_unpack_quantized_weights( graph: Graph, paramsDict: dict[str, IValue], ) -> dict[str, IValue]: ... def _jit_pass_onnx_quantization_insert_permutes( graph: Graph, paramsDict: dict[str, IValue], ) -> dict[str, IValue]: ... def _jit_pass_custom_pattern_based_rewrite_graph( pattern: str, fused_node_name: str, graph: Graph, ) -> None: ... def _jit_onnx_list_model_parameters( module: ScriptModule, ) -> tuple[ScriptModule, list[IValue]]: ... def _jit_pass_erase_number_types(graph: Graph) -> None: ... def _jit_pass_onnx_lint(graph: Graph) -> None: ... def _jit_pass_onnx( graph: Graph, _jit_pass_onnx: _onnx.OperatorExportTypes, ) -> Graph: ... def _jit_pass_onnx_scalar_type_analysis( graph: Graph, lowprecision_cast: _bool, opset_version: _int, ) -> None: ... def _jit_pass_onnx_peephole( graph: Graph, opset_version: _int, fixed_batch_size: _bool, ) -> None: ... def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ... def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ... def _jit_pass_onnx_function_extraction( graph: Graph, module_names: set[str], param_names: list[str], ) -> dict[Node, dict[str, str]]: ... def _jit_pass_onnx_clear_scope_records() -> None: ... def _jit_pass_onnx_track_scope_attributes( graph: Graph, onnx_attrs: dict[str, Any], ) -> None: ... def _jit_is_onnx_log_enabled() -> _bool: ... def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ... def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ... def _jit_onnx_log(*args: Any) -> None: ... def _jit_pass_lower_graph(graph: Graph, m: Module) -> tuple[Graph, list[IValue]]: ... def _jit_pass_inline_fork_wait(graph: Graph) -> None: ... def _jit_pass_onnx_deduplicate_initializers( graph: Graph, params_dict: dict[str, IValue], is_train: _bool, ) -> dict[str, IValue]: ... def _jit_pass_onnx_eval_peephole( graph: Graph, paramsDict: dict[str, IValue], ) -> dict[str, IValue]: ... def _jit_pass_onnx_constant_fold( graph: Graph, paramsDict: dict[str, IValue], opset_version: _int, ) -> dict[str, IValue]: ... def _jit_pass_onnx_eliminate_unused_items( graph: Graph, paramsDict: dict[str, IValue], ) -> dict[str, IValue]: ... def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ... def _jit_pass_filter_non_tensor_arguments( params: dict[str, IValue], ) -> dict[str, Tensor]: ... def _jit_decay_packed_param_input_types(graph: Graph) -> None: ... def _jit_pass_onnx_node_shape_type_inference( n: Node, paramsDict: dict[str, IValue], opset_version: _int, ) -> None: ... def _jit_onnx_convert_pattern_from_subblock( block: Block, n: Node, env: dict[Value, Value], values_in_env: set[Value], ) -> list[Value]: ... def _jit_pass_onnx_block( old_block: Block, new_block: Block, operator_export_type: _onnx.OperatorExportTypes, env: dict[Value, Value], values_in_env: set[Value], is_sub_block: _bool, ) -> dict[Value, Value]: ... def _jit_pass_onnx_assign_scoped_names_for_node_and_value(graph: Graph) -> None: ... def _jit_pass_fixup_onnx_controlflow_node( n: Node, opset_version: _int, ) -> list[Value]: ... def _jit_onnx_create_full_scope_name(class_name: str, variable_name: str) -> str: ... def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ... def _generate_upgraders_graph() -> dict[str, Graph]: ... def _calculate_package_version_based_on_upgraders(val: _bool): ... def _get_version_calculator_flag() -> _bool: ... def _jit_script_interface_compile( name: str, class_def: ClassDef, rcb: ResolutionCallback, is_module: _bool, ): ... def _jit_script_compile_overload( qualname: str, overload_decl: Decl, implementation_def: Def, rcb: ResolutionCallback, implementation_defaults: dict[str, Any], signature: Any, ): ... def _jit_script_compile( qual_name: str, definition: Def, rcb: ResolutionCallback, defaults: dict[str, Any], ): ... def _jit_script_class_compile( qual_name: str, definition: ClassDef, defaults: dict[str, dict[str, Any]], rcb: ResolutionCallback, ): ... def _parse_source_def(src: str) -> Def: ... def import_ir_module( cu: CompilationUnit, filename: str | Path, map_location: DeviceLikeType | None, extra_files: dict[str, Any], ) -> ScriptModule: ... def import_ir_module_from_buffer( cu: CompilationUnit, buffer: IO[bytes], map_location: DeviceLikeType | None, extra_files: dict[str, Any], ) -> ScriptModule: ... def _import_ir_module_from_package( cu: CompilationUnit, reader: PyTorchFileReader, storage_context: DeserializationStorageContext, map_location: DeviceLikeType | None, ts_id: str, ) -> ScriptModule: ... def _assign_output_shapes(graph: Graph, inputs: list[Tensor]) -> Graph: ... def _check_onnx_proto(proto: str) -> None: ... def _propagate_and_assign_input_shapes( graph: Graph, inputs: tuple[Tensor, ...], param_count_list: list[_int], with_grad: _bool, propagate: _bool, ) -> Graph: ... # Defined in torch/csrc/jit/runtime/graph_executor.h class GraphExecutorState: ... # Defined in torch/torch/csrc/jit/ir/alias_analysis.h class AliasDb: ... class _InsertPoint: def __enter__(self) -> None: ... def __exit__(self, *exc_info: object) -> None: ... # Defined in torch/csrc/jit/ir/ir.h class Use: @property def user(self) -> Node: ... @property def offset(self) -> _int: ... def isAfter(self, other: Use) -> _bool: ... # Defined in torch/csrc/jit/ir/ir.h class Value: def type(self) -> JitType: ... def setType(self, t: JitType) -> Value: ... def setTypeAs(self, other: Value) -> Value: ... def inferTypeFrom(self, t: Tensor) -> None: ... def debugName(self) -> str: ... def setDebugName(self, name: str) -> None: ... def unique(self) -> _int: ... def offset(self) -> _int: ... def node(self) -> Node: ... def uses(self) -> list[Use]: ... def replaceAllUsesWith(self, val: Value) -> None: ... def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ... def requires_grad(self) -> _bool: ... def requiresGrad(self) -> _bool: ... def copyMetadata(self, other: Value) -> Value: ... def isCompleteTensor(self) -> _bool: ... def toIValue(self) -> IValue: ... # Defined in torch/csrc/jit/ir/ir.h class Block: def inputs(self) -> Iterator[Value]: ... def outputs(self) -> Iterator[Value]: ... def nodes(self) -> Iterator[Node]: ... def paramNode(self) -> Node: ... def returnNode(self) -> Node: ... def owningNode(self) -> Node: ... def registerOutput(self, n: Value) -> _int: ... def addNode(self, name: str, inputs: Sequence[Value]) -> Node: ... # Defined in torch/csrc/jit/ir/ir.h class Node: def __getitem__(self, key: str) -> Any: ... def schema(self) -> str: ... def input(self) -> Value: ... def inputs(self) -> Iterator[Value]: ... def inputsAt(self, idx: _int) -> Value: ... def inputsSize(self) -> _int: ... def output(self) -> Value: ... def outputs(self) -> Iterator[Value]: ... def outputsAt(self, idx: _int) -> Value: ... def outputsSize(self) -> _int: ... def hasMultipleOutputs(self) -> _bool: ... def blocks(self) -> list[Block]: ... def addBlock(self) -> Block: ... def mustBeNone(self) -> _bool: ... def matches(self, pattern: str) -> _bool: ... def kind(self) -> str: ... def kindOf(self, name: str) -> str: ... def addInput(self, name: str) -> Value: ... def replaceInput(self, i: _int, newValue: Value) -> Value: ... def replaceInputWith(self, from_: Value, to: Value) -> None: ... def replaceAllUsesWith(self, n: Node) -> None: ... def insertBefore(self, n: Node) -> Node: ... def insertAfter(self, n: Node) -> Node: ... def isBefore(self, n: Node) -> _bool: ... def isAfter(self, n: Node) -> _bool: ... def moveBefore(self, n: Node) -> None: ... def moveAfter(self, n: Node) -> None: ... def removeInput(self, i: _int) -> None: ... def removeAllInputs(self, i: _int) -> None: ... def hasUses(self) -> _bool: ... def eraseOutput(self, i: _int) -> None: ... def addOutput(self) -> Value: ... def scopeName(self) -> str: ... def isNondeterministic(self) -> _bool: ... def copyAttributes(self, rhs: Node) -> Node: ... def copyMetadata(self, rhs: Node) -> Node: ... def hasAttributes(self) -> _bool: ... def hasAttribute(self, name: str) -> _bool: ... def removeAttribute(self, attr: str) -> Node: ... def namedInput(self, name: str) -> Value: ... def sourceRange(self) -> SourceRange: ... def owningBlock(self) -> Block: ... def findNode(self, kind: str, recurse: _bool = True) -> Node: ... def findAllNodes(self, kind: str, recurse: _bool = True) -> list[Node]: ... def getModuleHierarchy(self) -> str: ... def prev(self) -> Node: ... def destroy(self) -> None: ... def attributeNames(self) -> list[str]: ... # Accessors for attributes as types. def f(self, name: str) -> _float: ... def f_(self, name: str, val: _float) -> Node: ... def fs(self, name: str) -> list[_float]: ... def fs_(self, name: str, val: list[_float]) -> Node: ... def c(self, name: str) -> complex: ... def c_(self, name: str, val: complex) -> Node: ... def s(self, name: str) -> str: ... def s_(self, name: str, val: str) -> Node: ... def ss(self, name: str) -> list[str]: ... def ss_(self, name: str, val: list[str]) -> Node: ... def i(self, name: str) -> _int: ... def i_(self, name: str, val: _int) -> Node: ... # Cannot define "is" like this because it's a reserved keyword in python. # def is(self, name: str) -> List[_int]: ... # def is_(self, name: str, val: List[_int]) -> Node: ... def g(self, name: str) -> Graph: ... def g_(self, name: str, val: Graph) -> Node: ... def gs(self, name: str) -> list[Graph]: ... def gs_(self, name: str, val: list[Graph]) -> Node: ... def ival(self, name: str) -> IValue: ... def ival_(self, name: str, val: IValue) -> Node: ... def t(self, name: str) -> Tensor: ... def t_(self, name: str, val: Tensor) -> Node: ... def ts(self, name: str) -> list[Tensor]: ... def ts_(self, name: str, val: list[Tensor]) -> Node: ... def ty(self, name: str) -> JitType: ... def ty_(self, name: str, val: JitType) -> Node: ... def tys(self, name: str) -> list[JitType]: ... def tys_(self, name: str, val: list[JitType]) -> Node: ... # Defined in torch/torch/csrc/jit/ir/ir.h class Graph: def inputs(self) -> Iterator[Value]: ... def outputs(self) -> Iterator[Value]: ... def nodes(self) -> Iterator[Node]: ... def param_node(self) -> Node: ... def return_node(self) -> Node: ... def addInput(self, name: str = "") -> Value: ... def eraseInput(self, i: _int) -> None: ... def registerOutput(self, n: Value) -> _int: ... def eraseOutput(self, i: _int) -> None: ... def create(self, name: str, args, num_outputs: _int) -> Node: ... def appendNode(self, n: Node) -> Node: ... def prependNode(self, n: Node) -> Node: ... def insertNode(self, n: Node) -> Node: ... def block(self) -> Block: ... def lint(self) -> None: ... def alias_db(self) -> AliasDb: ... def setInsertPoint(self, n: Block | Node) -> None: ... def insert_point_guard(self, n: Block | Node) -> _InsertPoint: ... def insertPoint(self) -> Node: ... def insertGraph(self, callee: Graph, inputs: list[Value]) -> list[Value]: ... def makeMultiOutputIntoTuple(self) -> None: ... def copy(self) -> Graph: ... # Defined in torch/aten/src/ATen/core/alias_info.h class AliasInfo: is_write: _bool before_set: set[str] after_set: set[str] def __init__( self, is_write: _bool, before_set: set[str], after_set: set[str], ) -> None: ... # Defined in torch/aten/src/ATen/core/function_schema.h class Argument: name: str type: JitType default_value: Any | None def has_default_value(self) -> _bool: ... kwarg_only: _bool is_out: _bool alias_info: AliasInfo | None is_write: _bool real_type: JitType def __init__( self, name: str, type: JitType, N: _int | None, defualt_value: Any | None, kwarg_only: _bool, alias_info: AliasInfo | None, ) -> None: ... class FunctionSchema: arguments: list[Argument] returns: list[Argument] name: str overload_name: str is_mutable: _bool def __init__( self, name: str, overload_name: str, arguments: list[Argument], returns: list[Argument], is_vararg: _bool, is_varret: _bool, ) -> None: ... def _is_view_op(self) -> _bool: ... class _UpgraderEntry: bumped_at_version: _int upgrader_name: str old_schema: str def __init__( self, bumped_at_version: _int, upgrader_name: str, old_schema: str, ) -> None: ... class _UpgraderRange: min_version: _int max_version: _int def _get_max_operator_version() -> _int: ... def _get_operator_version_map() -> dict[str, list[_UpgraderEntry]]: ... def _get_upgrader_ranges(name: str) -> list[_UpgraderRange]: ... def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ... def _test_only_remove_entry_to_op_version(op_name: str) -> None: ... # Defined in torch/csrc/jit/python/script_init.cpp class ScriptModuleSerializer: def __init__(self, export_writer: PyTorchFileWriter) -> None: ... def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ... def write_files(self) -> None: ... def storage_context(self) -> SerializationStorageContext: ... # Defined in torch/csrc/jit/python/script_init.cpp class SerializationStorageContext: def __init__(self) -> None: ... def has_storage(self, storage: Storage) -> _bool: ... def get_or_add_storage(self, storage: Storage) -> _int: ... # Defined in torch/csrc/jit/python/script_init.cpp class DeserializationStorageContext: def __init__(self) -> None: ... def get_storage(self, name: str, dtype: _dtype) -> Tensor: ... def has_storage(self, name: str) -> _bool: ... def add_storage(self, name: str, tensor: Tensor) -> _int: ... # Defined in torch/csrc/jit/python/script_init.cpp class ConcreteModuleTypeBuilder: def __init__(self, obj: Any) -> None: ... def set_module_dict(self): ... def set_module_list(self): ... def set_parameter_list(self): ... def set_parameter_dict(self): ... def add_attribute( self, name: str, ty: JitType, is_param: _bool, is_buffer: _bool, ): ... def add_module(self, name: str, meta: ConcreteModuleType): ... def add_constant(self, name: str, value: Any): ... def add_overload(self, method_name: str, overloaded_method_names: list[str]): ... def add_builtin_function(self, name: str, symbol_name: str): ... def add_failed_attribute(self, name: str, failure_reason: str): ... def add_function_attribute( self, name: str, ty: JitType, func: Callable[..., Any], ): ... def add_ignored_attribute(self, name: str): ... def add_ignored_attributes(self, names: list[str]): ... def add_forward_hook(self, hook: Callable[..., Any]): ... def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ... class ConcreteModuleType: def get_constants(self) -> dict[str, Any]: ... def equals(self, other: ConcreteModuleType) -> _bool: ... @staticmethod def from_jit_type(ty: JitType) -> ConcreteModuleType: ... class CallStack: def __init__(self, name: str, range: SourceRange) -> None: ... class ErrorReport: def __init__(self, range: SourceRange) -> None: ... def what(self) -> str: ... @staticmethod def call_stack() -> str: ... class CompilationUnit: def __init__(self, lang: str = ..., _frames_up: _int = ...) -> None: ... def find_function(self, name: str) -> ScriptFunction: ... def __getattr__(self, name: str) -> ScriptFunction: ... def define( self, script: str, rcb: ResolutionCallback = ..., _frames_up: _int = ..., ): ... def get_interface(self, name: str) -> InterfaceType: ... def get_functions(self) -> list[ScriptFunction]: ... def create_function( self, name: str, graph: Graph, shouldMangle: _bool = ..., ) -> ScriptFunction: ... def get_class(self, name: str) -> ClassType: ... class ScriptObject: def setattr(self, name: str, value: Any): ... def _get_method(self, name: str) -> ScriptMethod: ... def _type(self) -> ClassType: ... class ScriptModule(ScriptObject): def _method_names(self) -> list[str]: ... def _get_method(self, name: str) -> ScriptMethod: ... class LiteScriptModule: def __call__(self, *input): ... def find_method(self, method_name: str): ... def forward(self, *input) -> list[str]: ... def run_method(self, method_name: str, *input): ... # NOTE: switch to collections.abc.Callable in python 3.9 class ScriptFunction(Generic[P, R]): def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R: ... def save(self, filename: str, _extra_files: dict[str, bytes]) -> None: ... def save_to_buffer(self, _extra_files: dict[str, bytes]) -> bytes: ... @property def graph(self) -> Graph: ... def inlined_graph(self) -> Graph: ... def schema(self) -> FunctionSchema: ... def code(self) -> str: ... def name(self) -> str: ... @property def qualified_name(self) -> str: ... # NOTE: switch to collections.abc.Callable in python 3.9 class ScriptMethod(Generic[P, R]): graph: Graph def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R: ... @property def owner(self) -> ScriptModule: ... @property def name(self) -> str: ... @property def schema(self) -> FunctionSchema: ... class ScriptDict(Generic[K, T]): def __init__(self, dict: dict[K, T]) -> None: ... def __len__(self) -> _int: ... def __contains__(self, key: K) -> _bool: ... def __getitem__(self, key: K) -> T: ... def __setitem__(self, key: K, value: T) -> None: ... def __delitem__(self, key: K) -> None: ... def __iter__(self) -> Iterator[K]: ... def items(self) -> Iterator[tuple[K, T]]: ... def keys(self) -> Iterator[K]: ... class ScriptList(Generic[T]): def __init__(self, list: list[T]) -> None: ... def __len__(self) -> _int: ... def __contains__(self, item: T) -> _bool: ... @overload def __getitem__(self, idx: _int) -> T: ... @overload def __getitem__(self, idx: slice) -> ScriptList[T]: ... @overload def __setitem__(self, idx: _int, value: T) -> None: ... @overload def __setitem__(self, idx: slice, value: list[T]) -> None: ... def __delitem__(self, idx: _int) -> None: ... def __iter__(self) -> Iterator[T]: ... def count(self, value: T) -> _int: ... def remove(self, value: T) -> None: ... def append(self, value: T) -> None: ... def clear(self) -> None: ... @overload def extend(self, values: list[T]) -> None: ... @overload def extend(self, values: Iterable[T]) -> None: ... @overload def pop(self) -> T: ... @overload def pop(self, idx: _int) -> T: ... class ModuleDict: def __init__(self, mod: ScriptModule) -> None: ... def items(self) -> list[tuple[str, Any]]: ... class ParameterDict: def __init__(self, mod: ScriptModule) -> None: ... class BufferDict: def __init__(self, mod: ScriptModule) -> None: ... # Defined in torch/csrc/jit/api/module.h class Module: ... # Defined in torch/csrc/Module.cpp def _initExtension(shm_manager_path: str) -> None: ... # THPModule_initExtension def _autograd_init() -> _bool: ... # THPAutograd_initExtension def _add_docstr(obj: T, doc_obj: str) -> T: ... # THPModule_addDocStr def _init_names(arg: Sequence[type]) -> None: ... # THPModule_initNames def _has_distributed() -> _bool: ... # THPModule_hasDistributed def _set_default_tensor_type(type) -> None: ... # THPModule_setDefaultTensorType def _set_default_dtype(d: _dtype) -> None: ... # THPModule_setDefaultDtype def _infer_size(arg1: Size, arg2: Size) -> Size: ... # THPModule_inferSize def _crash_if_csrc_asan() -> _int: ... # THPModule_crashIfCsrcASAN def _crash_if_csrc_ubsan() -> _int: ... # THPModule_crashIfCsrcUBSAN def _crash_if_aten_asan() -> _int: ... # THPModule_crashIfATenASAN def _show_config() -> str: ... # THPModule_showConfig def _cxx_flags() -> str: ... # THPModule_cxxFlags def _parallel_info() -> str: ... # THPModule_parallelInfo def _get_cpu_capability() -> str: ... # THPModule_getCpuCapability def _set_backcompat_broadcast_warn( arg: _bool, ) -> None: ... # THPModule_setBackcompatBroadcastWarn def _get_backcompat_broadcast_warn() -> ( _bool ): ... # THPModule_getBackcompatBroadcastWarn def _set_backcompat_keepdim_warn( arg: _bool, ) -> None: ... # THPModule_setBackcompatKeepdimWarn def _get_backcompat_keepdim_warn() -> _bool: ... # THPModule_getBackcompatKeepdimWarn def get_num_thread() -> _int: ... # THPModule_getNumThreads def set_num_threads(nthreads: _int) -> None: ... # THPModule_setNumThreads def get_num_interop_threads() -> _int: ... # THPModule_getNumInteropThreads def set_num_interop_threads( nthreads: _int, ) -> None: ... # THPModule_setNumInteropThreads def _get_cudnn_enabled() -> _bool: ... # THPModule_userEnabledCuDNN def _set_cudnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledCuDNN def _get_flash_sdp_enabled() -> _bool: ... # THPModule_userEnabledFusedSDP def _set_sdp_use_flash(arg: _bool) -> None: ... # THPModule_setSDPUseFlash def _get_mem_efficient_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP def _set_sdp_use_mem_efficient( arg: _bool, ) -> None: ... # THPModule_setSDPUseMemEfficient def _get_math_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP def _set_sdp_use_math(arg: _bool) -> None: ... # THPModule_setSDPUseMath def _get_math_sdp_allow_fp16_bf16_reduction() -> ( _bool ): ... # THPModule_allowFP16BF16ReductionMathSDP def _set_math_sdp_allow_fp16_bf16_reduction( arg: _bool, ) -> None: ... # THPModule_setAllowFP16BF16ReductionMathSDP def _get_overrideable_sdp_enabled() -> ( _bool ): ... # THPModule_userEnabledOverrideableSDP def _set_sdp_use_overrideable( arg: _bool, ) -> None: ... # THPModule_setSDPUseOverrideable def _get_sdp_priority_order() -> list[_int]: ... # THPModule_getSDPPriorityOrder def _set_sdp_priority_order( arg: list[_int], ) -> None: ... # THPModule_setSDPPriorityOrder def _get_cudnn_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP def _set_sdp_use_cudnn(arg: _bool) -> None: ... # THPModule_setSDPUseMath def _get_mkldnn_enabled() -> _bool: ... # THPModule_userEnabledMkldnn def _set_mkldnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledMkldnn def _get_cudnn_benchmark() -> _bool: ... # THPModule_benchmarkCuDNN def _set_cudnn_benchmark(arg: _bool) -> None: ... # THPModule_setBenchmarkCuDNN def _get_miopen_immediate() -> _bool: ... # THPModule_userImmediateMiopen def _set_miopen_immediate(arg: _bool) -> None: ... # THPModule_setUserImmediateMiopen def _get_cudnn_deterministic() -> _bool: ... # THPModule_deterministicCuDNN def _set_cudnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicCuDNN def _get_mkldnn_deterministic() -> _bool: ... # THPModule_deterministicMkldnn def _set_mkldnn_deterministic( arg: _bool, ) -> None: ... # THPModule_setDeterministicMkldnn def _get_onednn_allow_tf32() -> _bool: ... # THPModule_allowTF32OneDNN def _set_onednn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32OneDNN def _get_deterministic_algorithms() -> _bool: ... # THPModule_deterministicAlgorithms def _get_deterministic_algorithms_warn_only() -> ( _bool ): ... # THPModule_deterministicAlgorithmsWarnOnly def _set_deterministic_algorithms( mode: _bool, *, warn_only: _bool = ..., ) -> None: ... # THPModule_setDeterministicAlgorithms def _get_deterministic_fill_uninitialized_memory() -> ( _bool ): ... # THPModule_deterministicFillUninitializedMemory def _set_deterministic_fill_uninitialized_memory( arg: _bool, ) -> None: ... # THPModule_setDeterministicFillUninitializedMemory def _get_nnpack_enabled() -> _bool: ... # THPModule_userEnabledNNPACK def _set_nnpack_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledNNPACK def _get_warnAlways() -> _bool: ... # THPModule_warnAlways def _set_warnAlways(arg: _bool) -> None: ... # THPModule_setWarnAlways def _get_cudnn_allow_tf32() -> _bool: ... # THPModule_allowTF32CuDNN def _set_cudnn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuDNN def _get_cublas_allow_tf32() -> _bool: ... # THPModule_allowTF32CuBLAS def _set_cublas_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuBLAS def _get_float32_matmul_precision() -> str: ... # THPModule_float32MatmulPrecision def _set_float32_matmul_precision( arg: str, ) -> None: ... # THPModule_setFloat32MatmulPrecision def _get_cublas_allow_fp16_reduced_precision_reduction() -> ( _bool ): ... # THPModule_allowFP16ReductionCuBLAS def _set_cublas_allow_fp16_reduced_precision_reduction( arg: _bool, ) -> None: ... # THPModule_setAllowFP16ReductionCuBLAS def _get_cublas_allow_bf16_reduced_precision_reduction() -> ( _bool ): ... # THPModule_allowBF16ReductionCuBLAS def _set_cublas_allow_bf16_reduced_precision_reduction( arg: _bool, ) -> None: ... # THPModule_setAllowBF16ReductionCuBLAS def _get_cublas_allow_fp16_accumulation() -> ( _bool ): ... # THPModule_allowFP16AccumulationCuBLAS def _set_cublas_allow_fp16_accumulation( arg: _bool, ) -> None: ... # THPModule_setAllowFP16AccumulationCuBLAS def _get_sm_carveout_experimental() -> _int | None: ... def _set_sm_carveout_experimental(arg: _int | None) -> None: ... def _set_conj(x: Tensor, conj: _bool) -> None: ... def _set_neg(x: Tensor, neg: _bool) -> None: ... def _set_meta_in_tls_dispatch_include(meta_in_tls: _bool) -> None: ... def _autocast_supported_devices() -> list[str]: ... def _meta_in_tls_dispatch_include() -> _bool: ... def _stash_obj_in_tls(key: str, arg: Any) -> None: ... def _get_obj_in_tls(key: str) -> Any: ... def _is_key_in_tls(key: str) -> _bool: ... def _select_batch_norm_backend(*args, **kwargs) -> BatchNormBackend: ... def _select_conv_backend(*args, **kwargs) -> ConvBackend: ... def _conv_determine_backend_memory_format( input: Tensor, weight: Tensor, backend: ConvBackend, ) -> memory_format: ... def _has_storage(x: Tensor) -> _bool: ... def _construct_storage_from_data_pointer( data_ptr: _int, device: torch.device, size: _int, ) -> Storage: ... def _should_allow_numbers_as_tensors(func_name: str) -> _bool: ... def _group_tensors_by_device_and_dtype( nested_tensorlists: list[list[Tensor | None]], with_indices: _bool = False, ) -> dict[ tuple[torch.device, torch.dtype], tuple[list[list[Tensor | None]], list[_int]], ]: ... def _initCrashHandler() -> None: ... # NB: There is no Capsule type in typing, see # https://github.com/python/cpython/issues/109562 def _to_dlpack( data: Tensor, dl_device: tuple[IntEnum, _int] | None = None, copy: _bool | None = None, ) -> Any: ... # THPModule_toDLPack def _to_dlpack_versioned( data: Tensor, dl_device: tuple[IntEnum, _int] | None = None, copy: _bool | None = None, ) -> Any: ... # THPModule_toDLPackVersioned def _from_dlpack(data: Any) -> Tensor: ... # THPModule_fromDLPack def _torchDeviceToDLDevice( device: torch.device, ) -> tuple[_int, _int]: ... # THPModule_torchDeviceToDLDevice def _get_cpp_backtrace( frames_to_skip: _int, maximum_number_of_frames: _int, ) -> str: ... # THPModule_getCppBacktrace def set_flush_denormal(arg: _bool) -> _bool: ... # THPModule_setFlushDenormal def get_default_dtype() -> _dtype: ... # THPModule_getDefaultDtype def _get_default_device() -> str: ... # THPModule_getDefaultDevice def _get_qengine() -> _int: ... # THPModule_qEngine def _set_qengine(qengine: _int) -> None: ... # THPModule_setQEngine def _supported_qengines() -> list[_int]: ... # THPModule_supportedQEngines def _is_xnnpack_enabled() -> _bool: ... # THPModule_isEnabledXNNPACK def _check_sparse_tensor_invariants() -> ( _bool ): ... # THPModule_checkSparseTensorInvariants def _set_check_sparse_tensor_invariants( arg: _bool, ) -> None: ... # THPModule_setCheckSparseTensorInvariants def _is_default_mobile_cpu_allocator_set() -> ( _bool ): ... # THPModule_isDefaultMobileCPUAllocatorSet def _set_default_mobile_cpu_allocator() -> ( None ): ... # THPModule_setDefaultMobileCPUAllocator def _unset_default_mobile_cpu_allocator() -> ( None ): ... # THPModule_unsetDefaultMobileCPUAllocator def _is_torch_function_enabled() -> _bool: ... # THPModule_isEnabledTorchFunction def _is_torch_function_all_disabled() -> ( _bool ): ... # THPModule_isAllDisabledTorchFunction def _has_torch_function( args: Iterable[Any], ) -> _bool: ... # THPModule_has_torch_function def _has_torch_function_unary(Any) -> _bool: ... # THPModule_has_torch_function_unary def _has_torch_function_variadic( *args: Any, ) -> _bool: ... # THPModule_has_torch_function_variadic def _vmapmode_increment_nesting() -> _int: ... # THPModule_vmapmode_increment_nesting def _vmapmode_decrement_nesting() -> _int: ... # THPModule_vmapmode_decrement_nesting def _log_api_usage_once(str) -> None: ... # LogAPIUsageOnceFromPython def _log_api_usage_metadata( event: str, metadata_map: dict[str, str], ) -> None: ... # LogAPIUsageMetadataFromPython def _demangle(str) -> str: ... # c10::demangle def _disabled_torch_function_impl( func: Callable, types: Iterable[type], args: tuple, kwargs: dict, ) -> Any: ... # THPModule_disable_torch_function def _disabled_torch_dispatch_impl( func: Callable, types: Iterable[type], args: tuple, kwargs: dict, ) -> Any: ... # THPModule_disable_dispatch_function def _get_linalg_preferred_backend() -> _LinalgBackend: ... def _set_linalg_preferred_backend(arg: _LinalgBackend): ... def _get_fp32_precision_getter(backend: str, op: str) -> str: ... def _set_fp32_precision_setter(backend: str, op: str, value: str) -> str: ... class _LinalgBackend: Default: _LinalgBackend Cusolver: _LinalgBackend Magma: _LinalgBackend # mypy error: # Detected enum "torch._C.BatchNormBackend" in a type stub with zero # members. There is a chance this is due to a recent change in the semantics # of enum membership. If so, use `member = value` to mark an enum member, # instead of `member: type` class BatchNormBackend(Enum): ... # type: ignore[misc] def _get_blas_preferred_backend() -> _BlasBackend: ... def _set_blas_preferred_backend(arg: _BlasBackend): ... class _BlasBackend: Default: _BlasBackend Cublas: _BlasBackend Cublaslt: _BlasBackend Ck: _BlasBackend def _get_rocm_fa_preferred_backend() -> torch._C._ROCmFABackend: ... def _set_rocm_fa_preferred_backend(arg: torch._C._ROCmFABackend): ... class _ROCmFABackend: Default: _ROCmFABackend AOTriton: _ROCmFABackend Ck: _ROCmFABackend # mypy error: # Error (MYPY) [misc] # Detected enum "torch._C.ConvBackend" in a type stub with zero members. # There is a chance this is due to a recent change in the semantics of enum # membership. If so, use `member = value` to mark an enum member, instead of # `member: type` class ConvBackend(Enum): ... # type: ignore[misc] class Tag(Enum): core = 0 cudagraph_unsafe = 1 data_dependent_output = 2 dynamic_output_shape = 3 flexible_layout = 4 generated = 5 inplace_view = 6 maybe_aliasing_or_mutating = 7 needs_contiguous_strides = 8 needs_exact_strides = 9 needs_fixed_stride_order = 10 nondeterministic_bitwise = 11 nondeterministic_seeded = 12 pointwise = 13 pt2_compliant_tag = 14 view_copy = 15 # Defined in `valgrind.h` and `callgrind.h` respectively. def _valgrind_supported_platform() -> _bool: ... # NVALGRIND def _valgrind_toggle() -> None: ... # CALLGRIND_TOGGLE_COLLECT def _valgrind_toggle_and_dump_stats() -> ( None ): ... # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS has_openmp: _bool has_mkl: _bool _has_kleidiai: _bool _has_mps: _bool has_lapack: _bool _has_cuda: _bool _has_magma: _bool _has_xpu: _bool _has_mkldnn: _bool _has_cudnn: _bool _has_cusparselt: _bool has_spectral: _bool _GLIBCXX_USE_CXX11_ABI: _bool default_generator: Generator # Defined in torch/csrc/autograd/init.cpp def _set_grad_enabled(enabled: _bool) -> None: ... def is_grad_enabled() -> _bool: ... def _set_fwd_grad_enabled(enabled: _bool) -> None: ... def _is_fwd_grad_enabled() -> _bool: ... def _any_requires_grad(*args, **kwargs) -> _bool: ... def _any_output_is_alias_to_input_or_output(*args, **kwargs) -> _bool: ... def is_inference_mode_enabled() -> _bool: ... @overload def set_autocast_enabled(device_type: str, enabled: _bool) -> None: ... @overload def set_autocast_enabled(enabled: _bool) -> None: ... @overload def is_autocast_enabled(device_type: str) -> _bool: ... @overload def is_autocast_enabled() -> _bool: ... def set_autocast_dtype(device_type: str, dtype: _dtype) -> None: ... def get_autocast_dtype(device_type: str) -> _dtype: ... def clear_autocast_cache() -> None: ... def set_autocast_cpu_enabled(enabled: _bool) -> None: ... def is_autocast_cpu_enabled() -> _bool: ... def _is_any_autocast_enabled() -> _bool: ... def _is_autocast_available(device_type: str) -> _bool: ... def set_autocast_cpu_dtype(dtype: _dtype) -> None: ... def set_autocast_gpu_dtype(dtype: _dtype) -> None: ... def get_autocast_cpu_dtype() -> _dtype: ... def get_autocast_gpu_dtype() -> _dtype: ... def autocast_increment_nesting() -> _int: ... def autocast_decrement_nesting() -> _int: ... def is_autocast_cache_enabled() -> _bool: ... def set_autocast_cache_enabled(enabled: _bool) -> None: ... def _increment_version(tensors: Iterable[Tensor]) -> None: ... def set_anomaly_enabled(enabled: _bool, check_nan: _bool = True) -> None: ... def is_anomaly_enabled() -> _bool: ... def is_anomaly_check_nan_enabled() -> _bool: ... def _is_multithreading_enabled() -> _bool: ... def _set_multithreading_enabled(enabled: _bool) -> None: ... def _set_view_replay_enabled(enabled: _bool) -> None: ... def _is_view_replay_enabled() -> _bool: ... def _enter_dual_level() -> _int: ... def _exit_dual_level(level: _int) -> None: ... def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ... def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ... def __set_forward_AD_enabled(enabled: _bool) -> None: ... def __is_forward_AD_enabled() -> _bool: ... def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ... def _reset_default_hooks() -> None: ... def _is_torch_function_mode_enabled() -> _bool: ... def _push_on_torch_function_stack(cls: Any) -> None: ... def _pop_torch_function_stack() -> Any: ... def _get_function_stack_at(idx: _int) -> Any: ... def _len_torch_function_stack() -> _int: ... def _set_torch_dispatch_mode(cls: Any) -> None: ... def _push_on_torch_dispatch_stack(cls: TorchDispatchMode) -> None: ... def _pop_torch_dispatch_stack(mode_key: _TorchDispatchModeKey | None = None) -> Any: ... def _get_dispatch_mode(mode_key: _TorchDispatchModeKey | None) -> Any: ... def _unset_dispatch_mode(mode: _TorchDispatchModeKey) -> TorchDispatchMode | None: ... def _set_dispatch_mode(mode: TorchDispatchMode) -> None: ... def _get_dispatch_stack_at(idx: _int) -> Any: ... def _len_torch_dispatch_stack() -> _int: ... def _activate_gpu_trace() -> None: ... class _DisableTorchDispatch: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _EnableTorchFunction: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _EnablePythonDispatcher: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _DisablePythonDispatcher: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _EnablePreDispatch: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _DisableFuncTorch: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _DisableAutocast: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _InferenceMode: def __init__(self, enabled: _bool) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... def _set_autograd_fallback_mode(mode: str) -> None: ... def _get_autograd_fallback_mode() -> str: ... # Defined in torch/csrc/jit/python/script_init.cpp class LoggerBase: ... class NoopLogger(LoggerBase): ... class LockingLogger(LoggerBase): ... class AggregationType(Enum): SUM = 0 AVG = 1 class FileCheck: def run(self, test_string: str) -> None: ... def check(self, test_string: str) -> FileCheck: ... def check_not(self, test_string: str) -> FileCheck: ... def check_same(self, test_string: str) -> FileCheck: ... def check_next(self, test_string: str) -> FileCheck: ... def check_count( self, test_string: str, count: _int, exactly: _bool = False, ) -> FileCheck: ... def check_dag(self, test_string: str) -> FileCheck: ... def check_source_highlighted(self, test_string: str) -> FileCheck: ... def check_regex(self, test_string: str) -> FileCheck: ... # Defined in torch/csrc/jit/python/init.cpp class PyTorchFileReader: @overload def __init__(self, name: str) -> None: ... @overload def __init__(self, buffer: IO[bytes]) -> None: ... def get_record(self, name: str) -> bytes: ... def get_all_records(self) -> list[str]: ... def serialization_id(self) -> str: ... class PyTorchFileWriter: @overload def __init__( self, name: str, compute_crc32: _bool = True, storage_alignment: _int = 64, ) -> None: ... @overload def __init__( self, buffer: IO[bytes], compute_crc32: _bool = True, storage_alignment: _int = 64, ) -> None: ... def write_record( self, name: str, data: Storage | bytes | _int, size: _int, ) -> None: ... def write_end_of_file(self) -> None: ... def set_min_version(self, version: _int) -> None: ... def get_all_written_records(self) -> list[str]: ... def archive_name(self) -> str: ... def serialization_id(self) -> str: ... def _jit_get_inline_everything_mode() -> _bool: ... def _jit_set_inline_everything_mode(enabled: _bool) -> None: ... def _jit_get_logging_option() -> str: ... def _jit_set_logging_option(option: str) -> None: ... def _jit_set_logging_stream(stream_name: str) -> None: ... def _jit_pass_cse(Graph) -> _bool: ... def _jit_pass_dce(Graph) -> None: ... def _jit_pass_dce_graph(Graph) -> None: ... def _jit_pass_lint(Graph) -> None: ... # Defined in torch/csrc/jit/python/python_custom_class.cpp def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ... # Defined in torch/csrc/Module.cpp def _rename_privateuse1_backend(backend: str) -> None: ... def _get_privateuse1_backend_name() -> str: ... # Defined in torch/csrc/Generator.cpp class Generator: device: _device def __init__(self, device: DeviceLikeType | None = None) -> None: ... def __reduce__( self, ) -> tuple[type[Generator], tuple[_device], tuple[_int, _int | None, Tensor]]: ... def __setstate__(self, state: tuple[_int, _int | None, Tensor]) -> None: ... def get_state(self) -> Tensor: ... def set_state(self, _new_state: Tensor) -> Generator: ... def clone_state(self) -> Generator: ... def graphsafe_get_state(self) -> Generator: ... def graphsafe_set_state(self, _new_state: Generator) -> Generator: ... def set_offset(self, offset: _int) -> Generator: ... def get_offset(self) -> _int: ... def manual_seed(self, seed: _int) -> Generator: ... def seed(self) -> _int: ... def initial_seed(self) -> _int: ... # Defined in torch/csrc/utils/python_dispatch.cpp class _DispatchOperatorHandle: def schema(self) -> FunctionSchema: ... def debug(self) -> str: ... def redispatch_boxed(self, keyset: DispatchKeySet, *args, **kwargs) -> Any: ... class _DispatchModule: def reset(self) -> None: ... def def_(self, schema: str, alias: str = "") -> _DispatchModule: ... def def_legacy(self, schema: str) -> _DispatchModule: ... def def_name_t_t( self, name: str, dispatch: str, debug: str = "default_def_name_t_t", ) -> _DispatchModule: ... def def_schema_t_t( self, schema: str, dispatch: str, alias: str, debug: str = "default_def_schema_t_t", ) -> _DispatchModule: ... def impl_t_t( self, name: str, dispatch: str, debug: str = "impl_t_t", ) -> _DispatchModule: ... def impl_with_aoti_compile( self, ns: str, op_name_with_overload: str, dispatch: _dispatchkey, ) -> None: ... def impl(self, name: str, dispatch: _dispatchkey, func: Callable) -> None: ... def define(self, schema: str, alias: str = "") -> str: ... def fallback_fallthrough(self, dispatch: str = "") -> _DispatchModule: ... def fallback( self, dispatch: _dispatchkey, func: Callable, with_keyset: _bool = False, ) -> None: ... _after_ADInplaceOrView_keyset: DispatchKeySet _after_autograd_keyset: DispatchKeySet class _SafeKernelFunction: def call_boxed(self, keyset: DispatchKeySet, *args, **kwargs) -> Any: ... @property def op_handle(self) -> _DispatchOperatorHandle: ... def _dispatch_library( kind: str, name: str, dispatch: str, file: str = "", linenum: Any = 0, ) -> _DispatchModule: ... def _dispatch_dump(name: str) -> str: ... def _dispatch_dump_table(name: str) -> str: ... def _dispatch_check_invariants(name: str) -> None: ... def _dispatch_check_all_invariants() -> None: ... def _dispatch_call_boxed(handle: _DispatchOperatorHandle, *args, **kwargs) -> Any: ... def _dispatch_find_schema_or_throw( name: str, overload_name: str, ) -> _DispatchOperatorHandle: ... def _dispatch_set_report_error_callback( handle: _DispatchOperatorHandle, callback: Callable, ) -> None: ... def _dispatch_has_kernel(name: str) -> _bool: ... def _dispatch_has_kernel_for_dispatch_key( name: str, dispatch: _dispatchkey, ) -> _bool: ... def _dispatch_has_kernel_for_any_dispatch_key( name: str, dispatch_key_set: DispatchKeySet, ) -> _bool: ... def _dispatch_kernel_for_dispatch_key_is_fallthrough( name: str, dispatch: _dispatchkey, ) -> _bool: ... def _dispatch_has_computed_kernel_for_dispatch_key( name: str, dispatch: _dispatchkey, ) -> _bool: ... def _dispatch_get_computed_kernel_for_dispatch_key( name: str, dispatch: _dispatchkey, ) -> _SafeKernelFunction: ... def _dispatch_find_dangling_impls() -> list[str]: ... def _dispatch_get_all_op_names() -> list[str]: ... def _dispatch_tls_set_dispatch_key_excluded( dispatch: _dispatchkey, val: _bool, ) -> None: ... def _dispatch_tls_is_dispatch_key_excluded(dispatch: _dispatchkey) -> _bool: ... def _dispatch_tls_set_dispatch_key_included( dispatch: _dispatchkey, val: _bool, ) -> None: ... def _dispatch_tls_is_dispatch_key_included(dispatch: _dispatchkey) -> _bool: ... def _dispatch_isTensorSubclassLike(tensor: Tensor) -> _bool: ... def _dispatch_key_name(dispatch: _dispatchkey) -> str: ... def _dispatch_key_for_device(device_type: str) -> str: ... def _parse_dispatch_key(key: str) -> DispatchKey | None: ... def _dispatch_key_parse(dispatch: _dispatchkey) -> DispatchKey: ... def _dispatch_num_backends() -> _int: ... def _dispatch_pystub(name: str, overload: str) -> tuple[str, str] | None: ... def _dispatch_is_alias_key(dispatch: _dispatchkey) -> _bool: ... def _functionality_to_backend_keys(dispatch: _dispatchkey) -> list[DispatchKey]: ... def _functionalization_reapply_views_tls() -> _bool: ... def _only_lift_cpu_tensors() -> _bool: ... def _set_only_lift_cpu_tensors(value: _bool) -> None: ... def _set_throw_on_mutable_data_ptr(tensor: Tensor) -> None: ... def _set_warn_deprecated_on_mutable_data_ptr(tensor: Tensor) -> None: ... class DispatchKey(Enum): Undefined = ... FPGA = ... MAIA = ... Vulkan = ... Metal = ... MKLDNN = ... OpenGL = ... OpenCL = ... IDEEP = ... CustomRNGKeyId = ... MkldnnCPU = ... Sparse = ... SparseCsr = ... NestedTensor = ... Dense = ... PythonTLSSnapshot = ... PreDispatch = ... PythonDispatcher = ... Python = ... FuncTorchDynamicLayerBackMode = ... ZeroTensor = ... Conjugate = ... Negative = ... BackendSelect = ... Named = ... AutogradOther = ... AutogradFunctionality = ... AutogradNestedTensor = ... Tracer = ... Autocast = ... AutocastCPU = ... AutocastCUDA = ... Batched = ... VmapMode = ... FuncTorchGradWrapper = ... FuncTorchBatched = ... BatchedNestedTensor = ... FuncTorchVmapMode = ... FuncTorchDynamicLayerFrontMode = ... Functionalize = ... TESTING_ONLY_GenericWrapper = ... TESTING_ONLY_GenericMode = ... ADInplaceOrView = ... Autograd = ... CompositeImplicitAutograd = ... CompositeImplicitAutogradNestedTensor = ... CompositeExplicitAutograd = ... CompositeExplicitAutogradNonFunctional = ... FuncTorchBatchedDecomposition = ... CPU = ... CUDA = ... HIP = ... XLA = ... MTIA = ... MPS = ... IPU = ... XPU = ... HPU = ... VE = ... Lazy = ... Meta = ... PrivateUse1 = ... PrivateUse2 = ... PrivateUse3 = ... QuantizedCPU = ... QuantizedCUDA = ... QuantizedHIP = ... QuantizedXLA = ... QuantizedMTIA = ... QuantizedMPS = ... QuantizedIPU = ... QuantizedXPU = ... QuantizedHPU = ... QuantizedVE = ... QuantizedLazy = ... QuantizedMeta = ... QuantizedPrivateUse1 = ... QuantizedPrivateUse2 = ... QuantizedPrivateUse3 = ... SparseCPU = ... SparseCUDA = ... SparseHIP = ... SparseXLA = ... SparseMTIA = ... SparseMPS = ... SparseIPU = ... SparseXPU = ... SparseHPU = ... SparseVE = ... SparseLazy = ... SparseMeta = ... SparsePrivateUse1 = ... SparsePrivateUse2 = ... SparsePrivateUse3 = ... SparseCsrCPU = ... SparseCsrCUDA = ... SparseCsrHIP = ... SparseCsrXLA = ... SparseCsrMTIA = ... SparseCsrMPS = ... SparseCsrIPU = ... SparseCsrXPU = ... SparseCsrHPU = ... SparseCsrVE = ... SparseCsrLazy = ... SparseCsrMeta = ... SparseCsrPrivateUse1 = ... SparseCsrPrivateUse2 = ... SparseCsrPrivateUse3 = ... NestedTensorCPU = ... NestedTensorCUDA = ... NestedTensorHIP = ... NestedTensorXLA = ... NestedTensorMTIA = ... NestedTensorMPS = ... NestedTensorIPU = ... NestedTensorXPU = ... NestedTensorHPU = ... NestedTensorVE = ... NestedTensorLazy = ... NestedTensorMeta = ... NestedTensorPrivateUse1 = ... NestedTensorPrivateUse2 = ... NestedTensorPrivateUse3 = ... AutogradCPU = ... AutogradCUDA = ... AutogradHIP = ... AutogradXLA = ... AutogradMTIA = ... AutogradMPS = ... AutogradIPU = ... AutogradXPU = ... AutogradHPU = ... AutogradVE = ... AutogradLazy = ... AutogradMeta = ... AutogradPrivateUse1 = ... AutogradPrivateUse2 = ... AutogradPrivateUse3 = ... class DispatchKeySet: def __init__(self, key: DispatchKey) -> None: ... def __or__(self, other: DispatchKeySet) -> DispatchKeySet: ... def __sub__(self, other: DispatchKeySet) -> DispatchKeySet: ... def __and__(self, other: DispatchKeySet) -> DispatchKeySet: ... def raw_repr(self) -> _int: ... @staticmethod def from_raw_repr(raw: _int) -> DispatchKeySet: ... def highestPriorityTypeId(self) -> DispatchKey: ... def has(self, k: _dispatchkey) -> _bool: ... def add(self, k: _dispatchkey) -> DispatchKeySet: ... def remove(self, k: _dispatchkey) -> DispatchKeySet: ... _dispatch_autogradother_backends: DispatchKeySet _additional_keys_to_prop_for_wrapper_tensors: DispatchKeySet def _dispatch_has_backend_fallback(dispatch: _dispatchkey) -> _bool: ... def _dispatch_keyset_full_after(t: _dispatchkey) -> DispatchKeySet: ... def _dispatch_keyset_full() -> DispatchKeySet: ... def _dispatch_keyset_to_string(keyset: DispatchKeySet) -> str: ... def _dispatch_get_backend_keyset_from_autograd( dispatch: _dispatchkey, ) -> DispatchKeySet: ... def _dispatch_keys(tensor: Tensor) -> DispatchKeySet: ... def _dispatch_tls_local_exclude_set() -> DispatchKeySet: ... def _dispatch_tls_local_include_set() -> DispatchKeySet: ... def _dispatch_is_included_in_alias( dispatch_a: _dispatchkey, dispatch_b: _dispatchkey, ) -> _bool: ... def _propagate_xla_data(a: Tensor, b: Tensor) -> None: ... def _replace_(a: Tensor, b: Tensor) -> None: ... def _commit_update(a: Tensor) -> None: ... class _ExcludeDispatchKeyGuard: def __init__(self, keyset: DispatchKeySet) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _IncludeDispatchKeyGuard: def __init__(self, k: DispatchKey) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _ForceDispatchKeyGuard: def __init__(self, include: DispatchKeySet, exclude: DispatchKeySet) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _PreserveDispatchKeyGuard: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _AutoDispatchBelowAutograd: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... class _AutoDispatchBelowADInplaceOrView: def __init__(self) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ... def _dispatch_get_registrations_for_dispatch_key( dispatch_key: str = "", ) -> list[str]: ... def _are_functorch_transforms_active() -> _bool: ... # Define in torch/csrc/autograd/init.cpp def _set_python_dispatcher(dispatcher: object) -> None: ... def _get_nested_int(id: _int, coeff: _int) -> SymInt: ... def _get_constant_bool_symnode(val: _bool) -> Any: ... class _TorchDispatchModeKey(Enum): FAKE = ... PROXY = ... FUNCTIONAL = ... class _SetExcludeDispatchKeyGuard: def __init__(self, k: DispatchKey, enabled: _bool) -> None: ... def __enter__(self): ... def __exit__(self, *exc_info: object) -> None: ... def _get_dtensor_allow_implicit_replication() -> _bool: ... def _set_dtensor_allow_implicit_replication(value: _bool) -> None: ... # Defined in torch/csrc/utils/schema_info.h class _SchemaInfo: def __init__(self, schema: FunctionSchema) -> None: ... @overload def is_mutable(self) -> _bool: ... @overload def is_mutable(self, name: str) -> _bool: ... def has_argument(self, name: str) -> _bool: ... # Defined in torch/csrc/utils/init.cpp class BenchmarkConfig: num_calling_threads: _int num_worker_threads: _int num_warmup_iters: _int num_iters: _int profiler_output_path: str class BenchmarkExecutionStats: latency_avg_ms: _float num_iters: _int class ThroughputBenchmark: def __init__(self, module: Any) -> None: ... def add_input(self, *args: Any, **kwargs: Any) -> None: ... def run_once(self, *args: Any, **kwargs: Any) -> Any: ... def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ... # Defined in torch/csrc/Storage.cpp class StorageBase: ... # TODO: where class DoubleTensor(Tensor): ... class FloatTensor(Tensor): ... class BFloat16Tensor(Tensor): ... class LongTensor(Tensor): ... class IntTensor(Tensor): ... class ShortTensor(Tensor): ... class HalfTensor(Tensor): ... class CharTensor(Tensor): ... class ByteTensor(Tensor): ... class BoolTensor(Tensor): ... # Defined in torch/csrc/autograd/python_engine.cpp class _ImperativeEngine: def queue_callback(self, callback: Callable[[], None]) -> None: ... def run_backward(self, *args: Any, **kwargs: Any) -> tuple[Tensor, ...]: ... def is_checkpoint_valid(self) -> _bool: ... # Defined in torch/csrc/autograd/python_variable.cpp class _TensorMeta(type): ... _Index: TypeAlias = SupportsIndex | _bool | _int | slice | EllipsisType | Tensor | None | _NestedSequence[_bool | _int | slice | EllipsisType | Tensor | None] # fmt: skip # Defined in torch/csrc/autograd/python_variable.cpp class TensorBase(metaclass=_TensorMeta): requires_grad: _bool retains_grad: _bool shape: Size data: Tensor names: list[str] device: _device dtype: _dtype layout: _layout real: Tensor imag: Tensor T: Tensor H: Tensor mT: Tensor mH: Tensor ndim: _int output_nr: _int _version: _int _base: Tensor | None _cdata: _int grad_fn: _Node | None _grad_fn: Any _grad: Tensor | None grad: Tensor | None _backward_hooks: dict[_int, Callable[[Tensor], Tensor | None]] | None nbytes: _int itemsize: _int _has_symbolic_sizes_strides: _bool def _view_func_unsafe( self, new_base: Tensor, symint_visitor_fn: Callable[[_int], _int] | None = None, tensor_visitor_fn: Callable[[Tensor], Tensor] | None = None, ): ... def __abs__(self) -> Tensor: ... def __add__(self, other: Tensor | Number | _complex) -> Tensor: ... @overload def __and__(self, other: Tensor) -> Tensor: ... @overload def __and__(self, other: Number | _complex) -> Tensor: ... @overload def __and__(self, other: Tensor | _int) -> Tensor: ... def __bool__(self) -> _bool: ... def __complex__(self) -> _complex: ... def __contains__(self, item: Any, /) -> _bool: ... def __div__(self, other: Tensor | Number | _complex) -> Tensor: ... @overload def __eq__(self, other: Tensor | Number | _complex) -> Tensor: ... # type: ignore[overload-overlap] @overload def __eq__(self, other: object) -> _bool: ... def __float__(self) -> _float: ... def __floordiv__(self, other: Tensor | Number | _complex) -> Tensor: ... def __ge__(self, other: Tensor | Number | _complex) -> Tensor: ... def __getitem__(self, indices: _Index | tuple[_Index, ...], /) -> Tensor: ... def __gt__(self, other: Tensor | Number | _complex) -> Tensor: ... def __iadd__(self, other: Tensor | Number | _complex) -> Tensor: ... # noqa: PYI034 @overload def __iand__(self, other: Tensor) -> Tensor: ... @overload def __iand__(self, other: Number | _complex) -> Tensor: ... @overload def __iand__(self, other: Tensor | _int) -> Tensor: ... def __idiv__(self, other: Tensor | Number | _complex) -> Tensor: ... # noqa: PYI034 def __ifloordiv__(self, other: Tensor | Number | _complex) -> Tensor: ... # noqa: PYI034 @overload def __ilshift__(self, other: Tensor) -> Tensor: ... @overload def __ilshift__(self, other: Number | _complex) -> Tensor: ... @overload def __ilshift__(self, other: Tensor | _int) -> Tensor: ... def __imod__(self, other: Tensor | Number | _complex) -> Tensor: ... # noqa: PYI034 def __imul__(self, other: Tensor | Number | _complex) -> Tensor: ... # noqa: PYI034 def __index__(self) -> _int: ... @overload def __init__( self, *args: Any, device: DeviceLikeType | None = None, ) -> None: ... @overload def __init__(self, storage: Storage) -> None: ... @overload def __init__(self, other: Tensor) -> None: ... @overload def __init__( self, size: _size, *, device: DeviceLikeType | None = None, ) -> None: ... def __int__(self) -> _int: ... def __invert__(self) -> Tensor: ... @overload def __ior__(self, other: Tensor) -> Tensor: ... @overload def __ior__(self, other: Number | _complex) -> Tensor: ... @overload def __ior__(self, other: Tensor | _int) -> Tensor: ... @overload def __irshift__(self, other: Tensor) -> Tensor: ... @overload def __irshift__(self, other: Number | _complex) -> Tensor: ... @overload def __irshift__(self, other: Tensor | _int) -> Tensor: ... def __isub__(self, other: Tensor | Number | _complex) -> Tensor: ... # noqa: PYI034 @overload def __ixor__(self, other: Tensor) -> Tensor: ... @overload def __ixor__(self, other: Number | _complex) -> Tensor: ... @overload def __ixor__(self, other: Tensor | _int) -> Tensor: ... def __le__(self, other: Tensor | Number | _complex) -> Tensor: ... def __long__(self) -> _int: ... @overload def __lshift__(self, other: Tensor) -> Tensor: ... @overload def __lshift__(self, other: Number | _complex) -> Tensor: ... @overload def __lshift__(self, other: Tensor | _int) -> Tensor: ... def __lt__(self, other: Tensor | Number | _complex) -> Tensor: ... def __matmul__(self, other: Tensor | Number | _complex) -> Tensor: ... def __mod__(self, other: Tensor | Number | _complex) -> Tensor: ... def __mul__(self, other: Tensor | Number | _complex) -> Tensor: ... @overload def __ne__(self, other: Tensor | Number | _complex) -> Tensor: ... # type: ignore[overload-overlap] @overload def __ne__(self, other: object) -> _bool: ... def __neg__(self) -> Tensor: ... def __new__(cls, *args, **kwargs) -> Self: ... def __nonzero__(self) -> _bool: ... @overload def __or__(self, other: Tensor) -> Tensor: ... @overload def __or__(self, other: Number | _complex) -> Tensor: ... @overload def __or__(self, other: Tensor | _int) -> Tensor: ... def __pow__(self, other: Tensor | Number | _complex) -> Tensor: ... def __radd__(self, other: Tensor | Number | _complex) -> Tensor: ... def __rand__(self, other: Tensor | _int) -> Tensor: ... def __rfloordiv__(self, other: Tensor | Number | _complex) -> Tensor: ... def __rmul__(self, other: Tensor | Number | _complex) -> Tensor: ... def __ror__(self, other: Tensor | _int) -> Tensor: ... def __rpow__(self, other: Tensor | Number | _complex) -> Tensor: ... # type: ignore[has-type] @overload def __rshift__(self, other: Tensor) -> Tensor: ... @overload def __rshift__(self, other: Number | _complex) -> Tensor: ... @overload def __rshift__(self, other: Tensor | _int) -> Tensor: ... def __rsub__(self, other: Tensor | Number | _complex) -> Tensor: ... def __rtruediv__(self, other: Tensor | Number | _complex) -> Tensor: ... def __rxor__(self, other: Tensor | _int) -> Tensor: ... def __setitem__( self, indices: _Index | tuple[_Index, ...], value: Tensor | Number, /, ) -> None: ... def __sub__(self, other: Tensor | Number | _complex) -> Tensor: ... def __truediv__(self, other: Tensor | Number | _complex) -> Tensor: ... @overload def __xor__(self, other: Tensor) -> Tensor: ... @overload def __xor__(self, other: Number | _complex) -> Tensor: ... @overload def __xor__(self, other: Tensor | _int) -> Tensor: ... def _addmm_activation( self, mat1: Tensor, mat2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, use_gelu: _bool = False, ) -> Tensor: ... def _autocast_to_full_precision( self, cuda_enabled: _bool, cpu_enabled: _bool, ) -> Tensor: ... def _autocast_to_reduced_precision( self, cuda_enabled: _bool, cpu_enabled: _bool, cuda_dtype: _dtype, cpu_dtype: _dtype, ) -> Tensor: ... def _coalesced_(self, coalesced: _bool) -> Tensor: ... def _conj(self) -> Tensor: ... def _conj_physical(self) -> Tensor: ... def _dimI(self) -> _int: ... def _dimV(self) -> _int: ... def _indices(self) -> Tensor: ... def _is_all_true(self) -> Tensor: ... def _is_any_true(self) -> Tensor: ... def _is_view(self) -> _bool: ... def _is_zerotensor(self) -> _bool: ... def _lazy_clone(self) -> Tensor: ... @staticmethod def _make_dtensor( cls: type[S], size: Sequence[_int | SymInt], strides: Sequence[_int | SymInt], local_tensor: Tensor, requires_grad: _bool, ) -> S: ... @staticmethod def _make_subclass( cls: type[S], data: Tensor, require_grad: _bool = False, dispatch_strides: _bool = False, dispatch_device: _bool = False, device_for_backend_keys: _device | None = None, ) -> S: ... @staticmethod def _make_wrapper_subclass( cls: type[S], size: Sequence[_int | SymInt], strides: Sequence[_int | SymInt] | None = None, storage_offset: _int | SymInt | None = None, memory_format: torch.memory_format | None = None, dtype: _dtype | None = None, layout: _layout = strided, device: _device | None = None, pin_memory: _bool = False, requires_grad: _bool = False, dispatch_sizes_strides_policy: str | None = None, dispatch_device: _bool = False, dispatch_layout: _bool = False, _extra_dispatch_keys: torch.DispatchKeySet | None = None, storage_size: _int | SymInt | None = None, ) -> S: ... def _neg_view(self) -> Tensor: ... def _nested_tensor_size(self) -> Tensor: ... def _nested_tensor_storage_offsets(self) -> Tensor: ... def _nested_tensor_strides(self) -> Tensor: ... def _nnz(self) -> _int: ... def _sparse_mask_projection( self, mask: Tensor, accumulate_matches: _bool = False, ) -> Tensor: ... def _to_dense( self, dtype: _dtype | None = None, masked_grad: _bool | None = None, ) -> Tensor: ... @overload def _to_sparse( self, *, layout: _layout | None = None, blocksize: _int | _size | None = None, dense_dim: _int | None = None, ) -> Tensor: ... @overload def _to_sparse(self, sparse_dim: _int) -> Tensor: ... def _to_sparse_bsc( self, blocksize: _int | _size, dense_dim: _int | None = None, ) -> Tensor: ... def _to_sparse_bsr( self, blocksize: _int | _size, dense_dim: _int | None = None, ) -> Tensor: ... def _to_sparse_csc(self, dense_dim: _int | None = None) -> Tensor: ... def _to_sparse_csr(self, dense_dim: _int | None = None) -> Tensor: ... def _values(self) -> Tensor: ... def abs(self) -> Tensor: r""" abs() -> Tensor See :func:`torch.abs` """ def abs_(self) -> Tensor: r""" abs_() -> Tensor In-place version of :meth:`~Tensor.abs` """ def absolute(self) -> Tensor: r""" absolute() -> Tensor Alias for :func:`abs` """ def absolute_(self) -> Tensor: r""" absolute_() -> Tensor In-place version of :meth:`~Tensor.absolute` Alias for :func:`abs_` """ def acos(self) -> Tensor: r""" acos() -> Tensor See :func:`torch.acos` """ def acos_(self) -> Tensor: r""" acos_() -> Tensor In-place version of :meth:`~Tensor.acos` """ def acosh(self) -> Tensor: r""" acosh() -> Tensor See :func:`torch.acosh` """ def acosh_(self) -> Tensor: r""" acosh_() -> Tensor In-place version of :meth:`~Tensor.acosh` """ def add( self, other: Tensor | Number | _complex | torch.SymInt | torch.SymFloat, *, alpha: Number | _complex | None = 1, out: Tensor | None = None, ) -> Tensor: r""" add(other, *, alpha=1) -> Tensor Add a scalar or tensor to :attr:`self` tensor. If both :attr:`alpha` and :attr:`other` are specified, each element of :attr:`other` is scaled by :attr:`alpha` before being used. When :attr:`other` is a tensor, the shape of :attr:`other` must be :ref:`broadcastable ` with the shape of the underlying tensor See :func:`torch.add` """ def add_( self, other: Tensor | Number | _complex | torch.SymInt | torch.SymFloat, *, alpha: Number | _complex | None = 1, ) -> Tensor: r""" add_(other, *, alpha=1) -> Tensor In-place version of :meth:`~Tensor.add` """ def addbmm( self, batch1: Tensor, batch2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor See :func:`torch.addbmm` """ def addbmm_( self, batch1: Tensor, batch2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addbmm` """ def addcdiv( self, tensor1: Tensor, tensor2: Tensor, *, value: Number | _complex = 1, ) -> Tensor: r""" addcdiv(tensor1, tensor2, *, value=1) -> Tensor See :func:`torch.addcdiv` """ def addcdiv_( self, tensor1: Tensor, tensor2: Tensor, *, value: Number | _complex = 1, ) -> Tensor: r""" addcdiv_(tensor1, tensor2, *, value=1) -> Tensor In-place version of :meth:`~Tensor.addcdiv` """ def addcmul( self, tensor1: Tensor, tensor2: Tensor, *, value: Number | _complex = 1, ) -> Tensor: r""" addcmul(tensor1, tensor2, *, value=1) -> Tensor See :func:`torch.addcmul` """ def addcmul_( self, tensor1: Tensor, tensor2: Tensor, *, value: Number | _complex = 1, ) -> Tensor: r""" addcmul_(tensor1, tensor2, *, value=1) -> Tensor In-place version of :meth:`~Tensor.addcmul` """ def addmm( self, mat1: Tensor, mat2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor See :func:`torch.addmm` """ def addmm_( self, mat1: Tensor, mat2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addmm_(mat1, mat2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addmm` """ def addmv( self, mat: Tensor, vec: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addmv(mat, vec, *, beta=1, alpha=1) -> Tensor See :func:`torch.addmv` """ def addmv_( self, mat: Tensor, vec: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addmv_(mat, vec, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addmv` """ def addr( self, vec1: Tensor, vec2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addr(vec1, vec2, *, beta=1, alpha=1) -> Tensor See :func:`torch.addr` """ def addr_( self, vec1: Tensor, vec2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" addr_(vec1, vec2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addr` """ def adjoint(self) -> Tensor: r""" adjoint() -> Tensor Alias for :func:`adjoint` """ def align_as(self, other: Tensor) -> Tensor: r""" align_as(other) -> Tensor Permutes the dimensions of the :attr:`self` tensor to match the dimension order in the :attr:`other` tensor, adding size-one dims for any new names. This operation is useful for explicit broadcasting by names (see examples). All of the dims of :attr:`self` must be named in order to use this method. The resulting tensor is a view on the original tensor. All dimension names of :attr:`self` must be present in ``other.names``. :attr:`other` may contain named dimensions that are not in ``self.names``; the output tensor has a size-one dimension for each of those new names. To align a tensor to a specific order, use :meth:`~Tensor.align_to`. Examples:: # Example 1: Applying a mask >>> mask = torch.randint(2, [127, 128], dtype=torch.bool).refine_names('W', 'H') >>> imgs = torch.randn(32, 128, 127, 3, names=('N', 'H', 'W', 'C')) >>> imgs.masked_fill_(mask.align_as(imgs), 0) # Example 2: Applying a per-channel-scale >>> def scale_channels(input, scale): >>> scale = scale.refine_names('C') >>> return input * scale.align_as(input) >>> num_channels = 3 >>> scale = torch.randn(num_channels, names=('C',)) >>> imgs = torch.rand(32, 128, 128, num_channels, names=('N', 'H', 'W', 'C')) >>> more_imgs = torch.rand(32, num_channels, 128, 128, names=('N', 'C', 'H', 'W')) >>> videos = torch.randn(3, num_channels, 128, 128, 128, names=('N', 'C', 'H', 'W', 'D')) # scale_channels is agnostic to the dimension order of the input >>> scale_channels(imgs, scale) >>> scale_channels(more_imgs, scale) >>> scale_channels(videos, scale) .. warning:: The named tensor API is experimental and subject to change. """ @overload def align_to( self, order: Sequence[str | EllipsisType | None], ellipsis_idx: _int, ) -> Tensor: ... @overload def align_to(self, names: Sequence[str | EllipsisType | None]) -> Tensor: ... @overload def all(self) -> Tensor: r""" all(dim=None, keepdim=False) -> Tensor See :func:`torch.all` """ @overload def all(self, dim: _size | None = None, keepdim: _bool = False) -> Tensor: r""" all(dim=None, keepdim=False) -> Tensor See :func:`torch.all` """ @overload def all(self, dim: _int, keepdim: _bool = False) -> Tensor: r""" all(dim=None, keepdim=False) -> Tensor See :func:`torch.all` """ @overload def all( self, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> Tensor: r""" all(dim=None, keepdim=False) -> Tensor See :func:`torch.all` """ def allclose( self, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False, ) -> _bool: r""" allclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor See :func:`torch.allclose` """ def amax(self, dim: _int | _size = (), keepdim: _bool = False) -> Tensor: r""" amax(dim=None, keepdim=False) -> Tensor See :func:`torch.amax` """ def amin(self, dim: _int | _size = (), keepdim: _bool = False) -> Tensor: r""" amin(dim=None, keepdim=False) -> Tensor See :func:`torch.amin` """ def aminmax( self, *, dim: _int | None = None, keepdim: _bool = False, ) -> torch.return_types.aminmax: r""" aminmax(*, dim=None, keepdim=False) -> (Tensor min, Tensor max) See :func:`torch.aminmax` """ def angle(self) -> Tensor: r""" angle() -> Tensor See :func:`torch.angle` """ @overload def any(self) -> Tensor: r""" any(dim=None, keepdim=False) -> Tensor See :func:`torch.any` """ @overload def any(self, dim: _size | None = None, keepdim: _bool = False) -> Tensor: r""" any(dim=None, keepdim=False) -> Tensor See :func:`torch.any` """ @overload def any(self, dim: _int, keepdim: _bool = False) -> Tensor: r""" any(dim=None, keepdim=False) -> Tensor See :func:`torch.any` """ @overload def any( self, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> Tensor: r""" any(dim=None, keepdim=False) -> Tensor See :func:`torch.any` """ def apply_(self, callable: Callable) -> Tensor: r""" apply_(callable) -> Tensor Applies the function :attr:`callable` to each element in the tensor, replacing each element with the value returned by :attr:`callable`. .. note:: This function only works with CPU tensors and should not be used in code sections that require high performance. """ def arccos(self) -> Tensor: r""" arccos() -> Tensor See :func:`torch.arccos` """ def arccos_(self) -> Tensor: r""" arccos_() -> Tensor In-place version of :meth:`~Tensor.arccos` """ def arccosh(self) -> Tensor: r""" acosh() -> Tensor See :func:`torch.arccosh` """ def arccosh_(self) -> Tensor: r""" acosh_() -> Tensor In-place version of :meth:`~Tensor.arccosh` """ def arcsin(self) -> Tensor: r""" arcsin() -> Tensor See :func:`torch.arcsin` """ def arcsin_(self) -> Tensor: r""" arcsin_() -> Tensor In-place version of :meth:`~Tensor.arcsin` """ def arcsinh(self) -> Tensor: r""" arcsinh() -> Tensor See :func:`torch.arcsinh` """ def arcsinh_(self) -> Tensor: r""" arcsinh_() -> Tensor In-place version of :meth:`~Tensor.arcsinh` """ def arctan(self) -> Tensor: r""" arctan() -> Tensor See :func:`torch.arctan` """ def arctan2(self, other: Tensor) -> Tensor: r""" arctan2(other) -> Tensor See :func:`torch.arctan2` """ def arctan2_(self, other: Tensor) -> Tensor: r""" atan2_(other) -> Tensor In-place version of :meth:`~Tensor.arctan2` """ def arctan_(self) -> Tensor: r""" arctan_() -> Tensor In-place version of :meth:`~Tensor.arctan` """ def arctanh(self) -> Tensor: r""" arctanh() -> Tensor See :func:`torch.arctanh` """ def arctanh_(self) -> Tensor: r""" arctanh_(other) -> Tensor In-place version of :meth:`~Tensor.arctanh` """ def argmax(self, dim: _int | None = None, keepdim: _bool = False) -> Tensor: r""" argmax(dim=None, keepdim=False) -> LongTensor See :func:`torch.argmax` """ def argmin(self, dim: _int | None = None, keepdim: _bool = False) -> Tensor: r""" argmin(dim=None, keepdim=False) -> LongTensor See :func:`torch.argmin` """ @overload def argsort( self, *, stable: _bool, dim: _int = -1, descending: _bool = False, ) -> Tensor: r""" argsort(dim=-1, descending=False) -> LongTensor See :func:`torch.argsort` """ @overload def argsort(self, dim: _int = -1, descending: _bool = False) -> Tensor: r""" argsort(dim=-1, descending=False) -> LongTensor See :func:`torch.argsort` """ @overload def argsort( self, dim: str | EllipsisType | None, descending: _bool = False, ) -> Tensor: r""" argsort(dim=-1, descending=False) -> LongTensor See :func:`torch.argsort` """ def argwhere(self) -> Tensor: r""" argwhere() -> Tensor See :func:`torch.argwhere` """ def as_strided( self, size: Sequence[_int | SymInt], stride: Sequence[_int | SymInt], storage_offset: _int | SymInt | None = None, ) -> Tensor: r""" as_strided(size, stride, storage_offset=None) -> Tensor See :func:`torch.as_strided` """ def as_strided_( self, size: Sequence[_int | SymInt], stride: Sequence[_int | SymInt], storage_offset: _int | SymInt | None = None, ) -> Tensor: r""" as_strided_(size, stride, storage_offset=None) -> Tensor In-place version of :meth:`~Tensor.as_strided` """ def as_strided_scatter( self, src: Tensor, size: Sequence[_int | SymInt], stride: Sequence[_int | SymInt], storage_offset: _int | SymInt | None = None, ) -> Tensor: r""" as_strided_scatter(src, size, stride, storage_offset=None) -> Tensor See :func:`torch.as_strided_scatter` """ def as_subclass(self, cls: type[S]) -> S: r""" as_subclass(cls) -> Tensor Makes a ``cls`` instance with the same data pointer as ``self``. Changes in the output mirror changes in ``self``, and the output stays attached to the autograd graph. ``cls`` must be a subclass of ``Tensor``. """ def asin(self) -> Tensor: r""" asin() -> Tensor See :func:`torch.asin` """ def asin_(self) -> Tensor: r""" asin_() -> Tensor In-place version of :meth:`~Tensor.asin` """ def asinh(self) -> Tensor: r""" asinh() -> Tensor See :func:`torch.asinh` """ def asinh_(self) -> Tensor: r""" asinh_() -> Tensor In-place version of :meth:`~Tensor.asinh` """ def atan(self) -> Tensor: r""" atan() -> Tensor See :func:`torch.atan` """ def atan2(self, other: Tensor) -> Tensor: r""" atan2(other) -> Tensor See :func:`torch.atan2` """ def atan2_(self, other: Tensor) -> Tensor: r""" atan2_(other) -> Tensor In-place version of :meth:`~Tensor.atan2` """ def atan_(self) -> Tensor: r""" atan_() -> Tensor In-place version of :meth:`~Tensor.atan` """ def atanh(self) -> Tensor: r""" atanh() -> Tensor See :func:`torch.atanh` """ def atanh_(self) -> Tensor: r""" atanh_(other) -> Tensor In-place version of :meth:`~Tensor.atanh` """ def baddbmm( self, batch1: Tensor, batch2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" baddbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor See :func:`torch.baddbmm` """ def baddbmm_( self, batch1: Tensor, batch2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" baddbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.baddbmm` """ @overload def bernoulli(self, *, generator: Generator | None = None) -> Tensor: r""" bernoulli(*, generator=None) -> Tensor Returns a result tensor where each :math:`\texttt{result[i]}` is independently sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have floating point ``dtype``, and the result will have the same ``dtype``. See :func:`torch.bernoulli` """ @overload def bernoulli( self, p: _float, *, generator: Generator | None = None, ) -> Tensor: r""" bernoulli(*, generator=None) -> Tensor Returns a result tensor where each :math:`\texttt{result[i]}` is independently sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have floating point ``dtype``, and the result will have the same ``dtype``. See :func:`torch.bernoulli` """ @overload def bernoulli_( self, p: Tensor, *, generator: Generator | None = None, ) -> Tensor: r""" bernoulli_(p=0.5, *, generator=None) -> Tensor Fills each location of :attr:`self` with an independent sample from :math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral ``dtype``. :attr:`p` should either be a scalar or tensor containing probabilities to be used for drawing the binary random number. If it is a tensor, the :math:`\text{i}^{th}` element of :attr:`self` tensor will be set to a value sampled from :math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`. In this case `p` must have floating point ``dtype``. See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli` """ @overload def bernoulli_( self, p: _float = 0.5, *, generator: Generator | None = None, ) -> Tensor: r""" bernoulli_(p=0.5, *, generator=None) -> Tensor Fills each location of :attr:`self` with an independent sample from :math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral ``dtype``. :attr:`p` should either be a scalar or tensor containing probabilities to be used for drawing the binary random number. If it is a tensor, the :math:`\text{i}^{th}` element of :attr:`self` tensor will be set to a value sampled from :math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`. In this case `p` must have floating point ``dtype``. See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli` """ def bfloat16(self) -> Tensor: r""" bfloat16(memory_format=torch.preserve_format) -> Tensor ``self.bfloat16()`` is equivalent to ``self.to(torch.bfloat16)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def bincount( self, weights: Tensor | None = None, minlength: _int | SymInt = 0, ) -> Tensor: r""" bincount(weights=None, minlength=0) -> Tensor See :func:`torch.bincount` """ @overload def bitwise_and(self, other: Tensor) -> Tensor: r""" bitwise_and() -> Tensor See :func:`torch.bitwise_and` """ @overload def bitwise_and(self, other: Number | _complex) -> Tensor: r""" bitwise_and() -> Tensor See :func:`torch.bitwise_and` """ @overload def bitwise_and_(self, other: Tensor) -> Tensor: r""" bitwise_and_() -> Tensor In-place version of :meth:`~Tensor.bitwise_and` """ @overload def bitwise_and_(self, other: Number | _complex) -> Tensor: r""" bitwise_and_() -> Tensor In-place version of :meth:`~Tensor.bitwise_and` """ @overload def bitwise_left_shift(self, other: Tensor) -> Tensor: r""" bitwise_left_shift(other) -> Tensor See :func:`torch.bitwise_left_shift` """ @overload def bitwise_left_shift(self, other: Number | _complex) -> Tensor: r""" bitwise_left_shift(other) -> Tensor See :func:`torch.bitwise_left_shift` """ @overload def bitwise_left_shift_(self, other: Tensor) -> Tensor: r""" bitwise_left_shift_(other) -> Tensor In-place version of :meth:`~Tensor.bitwise_left_shift` """ @overload def bitwise_left_shift_(self, other: Number | _complex) -> Tensor: r""" bitwise_left_shift_(other) -> Tensor In-place version of :meth:`~Tensor.bitwise_left_shift` """ def bitwise_not(self) -> Tensor: r""" bitwise_not() -> Tensor See :func:`torch.bitwise_not` """ def bitwise_not_(self) -> Tensor: r""" bitwise_not_() -> Tensor In-place version of :meth:`~Tensor.bitwise_not` """ @overload def bitwise_or(self, other: Tensor) -> Tensor: r""" bitwise_or() -> Tensor See :func:`torch.bitwise_or` """ @overload def bitwise_or(self, other: Number | _complex) -> Tensor: r""" bitwise_or() -> Tensor See :func:`torch.bitwise_or` """ @overload def bitwise_or_(self, other: Tensor) -> Tensor: r""" bitwise_or_() -> Tensor In-place version of :meth:`~Tensor.bitwise_or` """ @overload def bitwise_or_(self, other: Number | _complex) -> Tensor: r""" bitwise_or_() -> Tensor In-place version of :meth:`~Tensor.bitwise_or` """ @overload def bitwise_right_shift(self, other: Tensor) -> Tensor: r""" bitwise_right_shift(other) -> Tensor See :func:`torch.bitwise_right_shift` """ @overload def bitwise_right_shift(self, other: Number | _complex) -> Tensor: r""" bitwise_right_shift(other) -> Tensor See :func:`torch.bitwise_right_shift` """ @overload def bitwise_right_shift_(self, other: Tensor) -> Tensor: r""" bitwise_right_shift_(other) -> Tensor In-place version of :meth:`~Tensor.bitwise_right_shift` """ @overload def bitwise_right_shift_(self, other: Number | _complex) -> Tensor: r""" bitwise_right_shift_(other) -> Tensor In-place version of :meth:`~Tensor.bitwise_right_shift` """ @overload def bitwise_xor(self, other: Tensor) -> Tensor: r""" bitwise_xor() -> Tensor See :func:`torch.bitwise_xor` """ @overload def bitwise_xor(self, other: Number | _complex) -> Tensor: r""" bitwise_xor() -> Tensor See :func:`torch.bitwise_xor` """ @overload def bitwise_xor_(self, other: Tensor) -> Tensor: r""" bitwise_xor_() -> Tensor In-place version of :meth:`~Tensor.bitwise_xor` """ @overload def bitwise_xor_(self, other: Number | _complex) -> Tensor: r""" bitwise_xor_() -> Tensor In-place version of :meth:`~Tensor.bitwise_xor` """ def bmm(self, mat2: Tensor) -> Tensor: r""" bmm(batch2) -> Tensor See :func:`torch.bmm` """ def bool(self) -> Tensor: r""" bool(memory_format=torch.preserve_format) -> Tensor ``self.bool()`` is equivalent to ``self.to(torch.bool)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ @overload def broadcast_to(self, size: Sequence[_int | SymInt]) -> Tensor: r""" broadcast_to(shape) -> Tensor See :func:`torch.broadcast_to`. """ @overload def broadcast_to(self, *size: _int | SymInt) -> Tensor: r""" broadcast_to(shape) -> Tensor See :func:`torch.broadcast_to`. """ def byte(self) -> Tensor: r""" byte(memory_format=torch.preserve_format) -> Tensor ``self.byte()`` is equivalent to ``self.to(torch.uint8)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def cauchy_( self, median: _float = 0, sigma: _float = 1, *, generator: Generator | None = None, ) -> Tensor: r""" cauchy_(median=0, sigma=1, *, generator=None) -> Tensor Fills the tensor with numbers drawn from the Cauchy distribution: .. math:: f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2} .. note:: Sigma (:math:`\sigma`) is used to denote the scale parameter in Cauchy distribution. """ def ccol_indices(self) -> Tensor: ... def ceil(self) -> Tensor: r""" ceil() -> Tensor See :func:`torch.ceil` """ def ceil_(self) -> Tensor: r""" ceil_() -> Tensor In-place version of :meth:`~Tensor.ceil` """ def chalf(self, *, memory_format: memory_format | None = None) -> Tensor: r""" chalf(memory_format=torch.preserve_format) -> Tensor ``self.chalf()`` is equivalent to ``self.to(torch.complex32)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def char(self) -> Tensor: r""" char(memory_format=torch.preserve_format) -> Tensor ``self.char()`` is equivalent to ``self.to(torch.int8)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def cholesky(self, upper: _bool = False) -> Tensor: r""" cholesky(upper=False) -> Tensor See :func:`torch.cholesky` """ def cholesky_inverse(self, upper: _bool = False) -> Tensor: r""" cholesky_inverse(upper=False) -> Tensor See :func:`torch.cholesky_inverse` """ def cholesky_solve(self, input2: Tensor, upper: _bool = False) -> Tensor: r""" cholesky_solve(input2, upper=False) -> Tensor See :func:`torch.cholesky_solve` """ def chunk(self, chunks: _int, dim: _int = 0) -> tuple[Tensor, ...]: r""" chunk(chunks, dim=0) -> List of Tensors See :func:`torch.chunk` """ @overload def clamp( self, min: Tensor | None = None, max: Tensor | None = None, ) -> Tensor: r""" clamp(min=None, max=None) -> Tensor See :func:`torch.clamp` """ @overload def clamp( self, min: Number | _complex | None = None, max: Number | _complex | None = None, ) -> Tensor: r""" clamp(min=None, max=None) -> Tensor See :func:`torch.clamp` """ @overload def clamp_( self, min: Tensor | None = None, max: Tensor | None = None, ) -> Tensor: r""" clamp_(min=None, max=None) -> Tensor In-place version of :meth:`~Tensor.clamp` """ @overload def clamp_( self, min: Number | _complex | None = None, max: Number | _complex | None = None, ) -> Tensor: r""" clamp_(min=None, max=None) -> Tensor In-place version of :meth:`~Tensor.clamp` """ @overload def clamp_max(self, max: Tensor) -> Tensor: ... @overload def clamp_max(self, max: Number | _complex) -> Tensor: ... @overload def clamp_max_(self, max: Tensor) -> Tensor: ... @overload def clamp_max_(self, max: Number | _complex) -> Tensor: ... @overload def clamp_min(self, min: Tensor) -> Tensor: ... @overload def clamp_min(self, min: Number | _complex) -> Tensor: ... @overload def clamp_min_(self, min: Tensor) -> Tensor: ... @overload def clamp_min_(self, min: Number | _complex) -> Tensor: ... @overload def clip( self, min: Tensor | None = None, max: Tensor | None = None, ) -> Tensor: r""" clip(min=None, max=None) -> Tensor Alias for :meth:`~Tensor.clamp`. """ @overload def clip( self, min: Number | _complex | None = None, max: Number | _complex | None = None, ) -> Tensor: r""" clip(min=None, max=None) -> Tensor Alias for :meth:`~Tensor.clamp`. """ @overload def clip_( self, min: Tensor | None = None, max: Tensor | None = None, ) -> Tensor: r""" clip_(min=None, max=None) -> Tensor Alias for :meth:`~Tensor.clamp_`. """ @overload def clip_( self, min: Number | _complex | None = None, max: Number | _complex | None = None, ) -> Tensor: r""" clip_(min=None, max=None) -> Tensor Alias for :meth:`~Tensor.clamp_`. """ def clone(self, *, memory_format: memory_format | None = None) -> Tensor: r""" clone(*, memory_format=torch.preserve_format) -> Tensor See :func:`torch.clone` """ def coalesce(self) -> Tensor: r""" coalesce() -> Tensor Returns a coalesced copy of :attr:`self` if :attr:`self` is an :ref:`uncoalesced tensor `. Returns :attr:`self` if :attr:`self` is a coalesced tensor. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. """ def col_indices(self) -> Tensor: r""" col_indices() -> IntTensor Returns the tensor containing the column indices of the :attr:`self` tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. The ``col_indices`` tensor is strictly of shape (:attr:`self`.nnz()) and of type ``int32`` or ``int64``. When using MKL routines such as sparse matrix multiplication, it is necessary to use ``int32`` indexing in order to avoid downcasting and potentially losing information. Example:: >>> csr = torch.eye(5,5).to_sparse_csr() >>> csr.col_indices() tensor([0, 1, 2, 3, 4], dtype=torch.int32) """ def conj(self) -> Tensor: r""" conj() -> Tensor See :func:`torch.conj` """ def conj_physical(self) -> Tensor: r""" conj_physical() -> Tensor See :func:`torch.conj_physical` """ def conj_physical_(self) -> Tensor: r""" conj_physical_() -> Tensor In-place version of :meth:`~Tensor.conj_physical` """ def contiguous( self, memory_format: torch.memory_format = torch.contiguous_format, ) -> Tensor: r""" contiguous(memory_format=torch.contiguous_format) -> Tensor Returns a contiguous in memory tensor containing the same data as :attr:`self` tensor. If :attr:`self` tensor is already in the specified memory format, this function returns the :attr:`self` tensor. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.contiguous_format``. """ def copy_(self, other: Tensor, non_blocking: _bool = False) -> Tensor: r""" copy_(src, non_blocking=False) -> Tensor Copies the elements from :attr:`src` into :attr:`self` tensor and returns :attr:`self`. The :attr:`src` tensor must be :ref:`broadcastable ` with the :attr:`self` tensor. It may be of a different data type or reside on a different device. Args: src (Tensor): the source tensor to copy from non_blocking (bool, optional): if ``True`` and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. Default: ``False`` """ @overload def copysign(self, other: Tensor) -> Tensor: r""" copysign(other) -> Tensor See :func:`torch.copysign` """ @overload def copysign(self, other: Number | _complex) -> Tensor: r""" copysign(other) -> Tensor See :func:`torch.copysign` """ @overload def copysign_(self, other: Tensor) -> Tensor: r""" copysign_(other) -> Tensor In-place version of :meth:`~Tensor.copysign` """ @overload def copysign_(self, other: Number | _complex) -> Tensor: r""" copysign_(other) -> Tensor In-place version of :meth:`~Tensor.copysign` """ def corrcoef(self) -> Tensor: r""" corrcoef() -> Tensor See :func:`torch.corrcoef` """ def cos(self) -> Tensor: r""" cos() -> Tensor See :func:`torch.cos` """ def cos_(self) -> Tensor: r""" cos_() -> Tensor In-place version of :meth:`~Tensor.cos` """ def cosh(self) -> Tensor: r""" cosh() -> Tensor See :func:`torch.cosh` """ def cosh_(self) -> Tensor: r""" cosh_() -> Tensor In-place version of :meth:`~Tensor.cosh` """ @overload def count_nonzero(self, dim: _int | None = None) -> Tensor: r""" count_nonzero(dim=None) -> Tensor See :func:`torch.count_nonzero` """ @overload def count_nonzero(self, dim: _size) -> Tensor: r""" count_nonzero(dim=None) -> Tensor See :func:`torch.count_nonzero` """ @overload def count_nonzero(self, *dim: _int) -> Tensor: r""" count_nonzero(dim=None) -> Tensor See :func:`torch.count_nonzero` """ def cov( self, *, correction: _int = 1, fweights: Tensor | None = None, aweights: Tensor | None = None, ) -> Tensor: r""" cov(*, correction=1, fweights=None, aweights=None) -> Tensor See :func:`torch.cov` """ def cpu( self, memory_format: torch.memory_format = torch.preserve_format, ) -> Tensor: r""" cpu(memory_format=torch.preserve_format) -> Tensor Returns a copy of this object in CPU memory. If this object is already in CPU memory, then no copy is performed and the original object is returned. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def cross(self, other: Tensor, dim: _int | None = None) -> Tensor: r""" cross(other, dim=None) -> Tensor See :func:`torch.cross` """ def crow_indices(self) -> Tensor: r""" crow_indices() -> IntTensor Returns the tensor containing the compressed row indices of the :attr:`self` tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. The ``crow_indices`` tensor is strictly of shape (:attr:`self`.size(0) + 1) and of type ``int32`` or ``int64``. When using MKL routines such as sparse matrix multiplication, it is necessary to use ``int32`` indexing in order to avoid downcasting and potentially losing information. Example:: >>> csr = torch.eye(5,5).to_sparse_csr() >>> csr.crow_indices() tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32) """ def cuda( self, device: _device | _int | str | None = None, non_blocking: _bool = False, memory_format: torch.memory_format = torch.preserve_format, ) -> Tensor: r""" cuda(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor Returns a copy of this object in CUDA memory. If this object is already in CUDA memory and on the correct device, then no copy is performed and the original object is returned. Args: device (:class:`torch.device`, optional): The destination GPU device. Defaults to the current CUDA device. non_blocking (bool, optional): If ``True`` and the source is in pinned memory, the copy will be asynchronous with respect to the host. Otherwise, the argument has no effect. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ @overload def cummax(self, dim: _int) -> torch.return_types.cummax: r""" cummax(dim) -> (Tensor, Tensor) See :func:`torch.cummax` """ @overload def cummax( self, dim: str | EllipsisType | None, ) -> torch.return_types.cummax: r""" cummax(dim) -> (Tensor, Tensor) See :func:`torch.cummax` """ @overload def cummin(self, dim: _int) -> torch.return_types.cummin: r""" cummin(dim) -> (Tensor, Tensor) See :func:`torch.cummin` """ @overload def cummin( self, dim: str | EllipsisType | None, ) -> torch.return_types.cummin: r""" cummin(dim) -> (Tensor, Tensor) See :func:`torch.cummin` """ @overload def cumprod(self, dim: _int, *, dtype: _dtype | None = None) -> Tensor: r""" cumprod(dim, dtype=None) -> Tensor See :func:`torch.cumprod` """ @overload def cumprod( self, dim: str | EllipsisType | None, *, dtype: _dtype | None = None, ) -> Tensor: r""" cumprod(dim, dtype=None) -> Tensor See :func:`torch.cumprod` """ @overload def cumprod_(self, dim: _int, *, dtype: _dtype | None = None) -> Tensor: r""" cumprod_(dim, dtype=None) -> Tensor In-place version of :meth:`~Tensor.cumprod` """ @overload def cumprod_( self, dim: str | EllipsisType | None, *, dtype: _dtype | None = None, ) -> Tensor: r""" cumprod_(dim, dtype=None) -> Tensor In-place version of :meth:`~Tensor.cumprod` """ @overload def cumsum(self, dim: _int, *, dtype: _dtype | None = None) -> Tensor: r""" cumsum(dim, dtype=None) -> Tensor See :func:`torch.cumsum` """ @overload def cumsum( self, dim: str | EllipsisType | None, *, dtype: _dtype | None = None, ) -> Tensor: r""" cumsum(dim, dtype=None) -> Tensor See :func:`torch.cumsum` """ @overload def cumsum_(self, dim: _int, *, dtype: _dtype | None = None) -> Tensor: r""" cumsum_(dim, dtype=None) -> Tensor In-place version of :meth:`~Tensor.cumsum` """ @overload def cumsum_( self, dim: str | EllipsisType | None, *, dtype: _dtype | None = None, ) -> Tensor: r""" cumsum_(dim, dtype=None) -> Tensor In-place version of :meth:`~Tensor.cumsum` """ def data_ptr(self) -> _int: r""" data_ptr() -> int Returns the address of the first element of :attr:`self` tensor. """ def deg2rad(self) -> Tensor: r""" deg2rad() -> Tensor See :func:`torch.deg2rad` """ def deg2rad_(self) -> Tensor: r""" deg2rad_() -> Tensor In-place version of :meth:`~Tensor.deg2rad` """ def dense_dim(self) -> _int: r""" dense_dim() -> int Return the number of dense dimensions in a :ref:`sparse tensor ` :attr:`self`. .. note:: Returns ``len(self.shape)`` if :attr:`self` is not a sparse tensor. See also :meth:`Tensor.sparse_dim` and :ref:`hybrid tensors `. """ def dequantize(self) -> Tensor: r""" dequantize() -> Tensor Given a quantized Tensor, dequantize it and return the dequantized float Tensor. """ def det(self) -> Tensor: r""" det() -> Tensor See :func:`torch.det` """ def detach(self) -> Tensor: ... def detach_(self) -> Tensor: ... def diag(self, diagonal: _int = 0) -> Tensor: r""" diag(diagonal=0) -> Tensor See :func:`torch.diag` """ def diag_embed( self, offset: _int = 0, dim1: _int = -2, dim2: _int = -1, ) -> Tensor: r""" diag_embed(offset=0, dim1=-2, dim2=-1) -> Tensor See :func:`torch.diag_embed` """ def diagflat(self, offset: _int = 0) -> Tensor: r""" diagflat(offset=0) -> Tensor See :func:`torch.diagflat` """ @overload def diagonal( self, *, outdim: str | EllipsisType | None, dim1: str | EllipsisType | None, dim2: str | EllipsisType | None, offset: _int = 0, ) -> Tensor: r""" diagonal(offset=0, dim1=0, dim2=1) -> Tensor See :func:`torch.diagonal` """ @overload def diagonal( self, offset: _int = 0, dim1: _int = 0, dim2: _int = 1, ) -> Tensor: r""" diagonal(offset=0, dim1=0, dim2=1) -> Tensor See :func:`torch.diagonal` """ def diagonal_scatter( self, src: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1, ) -> Tensor: r""" diagonal_scatter(src, offset=0, dim1=0, dim2=1) -> Tensor See :func:`torch.diagonal_scatter` """ def diff( self, n: _int = 1, dim: _int = -1, prepend: Tensor | None = None, append: Tensor | None = None, ) -> Tensor: r""" diff(n=1, dim=-1, prepend=None, append=None) -> Tensor See :func:`torch.diff` """ def digamma(self) -> Tensor: r""" digamma() -> Tensor See :func:`torch.digamma` """ def digamma_(self) -> Tensor: r""" digamma_() -> Tensor In-place version of :meth:`~Tensor.digamma` """ def dim(self) -> _int: r""" dim() -> int Returns the number of dimensions of :attr:`self` tensor. """ def dist(self, other: Tensor, p: Number | _complex = 2) -> Tensor: r""" dist(other, p=2) -> Tensor See :func:`torch.dist` """ def div( self, other: Tensor | Number, *, rounding_mode: str | None = None, ) -> Tensor: r""" div(value, *, rounding_mode=None) -> Tensor See :func:`torch.div` """ def div_( self, other: Tensor | Number, *, rounding_mode: str | None = None, ) -> Tensor: r""" div_(value, *, rounding_mode=None) -> Tensor In-place version of :meth:`~Tensor.div` """ @overload def divide(self, other: Tensor) -> Tensor: r""" divide(value, *, rounding_mode=None) -> Tensor See :func:`torch.divide` """ @overload def divide(self, other: Tensor, *, rounding_mode: str | None) -> Tensor: r""" divide(value, *, rounding_mode=None) -> Tensor See :func:`torch.divide` """ @overload def divide( self, other: Number | _complex, *, rounding_mode: str | None, ) -> Tensor: r""" divide(value, *, rounding_mode=None) -> Tensor See :func:`torch.divide` """ @overload def divide(self, other: Number | _complex) -> Tensor: r""" divide(value, *, rounding_mode=None) -> Tensor See :func:`torch.divide` """ @overload def divide_(self, other: Tensor) -> Tensor: r""" divide_(value, *, rounding_mode=None) -> Tensor In-place version of :meth:`~Tensor.divide` """ @overload def divide_(self, other: Tensor, *, rounding_mode: str | None) -> Tensor: r""" divide_(value, *, rounding_mode=None) -> Tensor In-place version of :meth:`~Tensor.divide` """ @overload def divide_( self, other: Number | _complex, *, rounding_mode: str | None, ) -> Tensor: r""" divide_(value, *, rounding_mode=None) -> Tensor In-place version of :meth:`~Tensor.divide` """ @overload def divide_(self, other: Number | _complex) -> Tensor: r""" divide_(value, *, rounding_mode=None) -> Tensor In-place version of :meth:`~Tensor.divide` """ def dot(self, tensor: Tensor) -> Tensor: r""" dot(other) -> Tensor See :func:`torch.dot` """ def double(self) -> Tensor: r""" double(memory_format=torch.preserve_format) -> Tensor ``self.double()`` is equivalent to ``self.to(torch.float64)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ @overload def dsplit(self, sections: _int) -> tuple[Tensor, ...]: r""" dsplit(split_size_or_sections) -> List of Tensors See :func:`torch.dsplit` """ @overload def dsplit(self, indices: _size) -> tuple[Tensor, ...]: r""" dsplit(split_size_or_sections) -> List of Tensors See :func:`torch.dsplit` """ @overload def dsplit(self, *indices: _int) -> tuple[Tensor, ...]: r""" dsplit(split_size_or_sections) -> List of Tensors See :func:`torch.dsplit` """ def element_size(self) -> _int: r""" element_size() -> int Returns the size in bytes of an individual element. Example:: >>> torch.tensor([]).element_size() 4 >>> torch.tensor([], dtype=torch.uint8).element_size() 1 """ @overload def eq(self, other: Tensor) -> Tensor: r""" eq(other) -> Tensor See :func:`torch.eq` """ @overload def eq(self, other: Number | _complex) -> Tensor: r""" eq(other) -> Tensor See :func:`torch.eq` """ @overload def eq_(self, other: Tensor) -> Tensor: r""" eq_(other) -> Tensor In-place version of :meth:`~Tensor.eq` """ @overload def eq_(self, other: Number | _complex) -> Tensor: r""" eq_(other) -> Tensor In-place version of :meth:`~Tensor.eq` """ def equal(self, other: Tensor) -> _bool: r""" equal(other) -> bool See :func:`torch.equal` """ def erf(self) -> Tensor: r""" erf() -> Tensor See :func:`torch.erf` """ def erf_(self) -> Tensor: r""" erf_() -> Tensor In-place version of :meth:`~Tensor.erf` """ def erfc(self) -> Tensor: r""" erfc() -> Tensor See :func:`torch.erfc` """ def erfc_(self) -> Tensor: r""" erfc_() -> Tensor In-place version of :meth:`~Tensor.erfc` """ def erfinv(self) -> Tensor: r""" erfinv() -> Tensor See :func:`torch.erfinv` """ def erfinv_(self) -> Tensor: r""" erfinv_() -> Tensor In-place version of :meth:`~Tensor.erfinv` """ def exp(self) -> Tensor: r""" exp() -> Tensor See :func:`torch.exp` """ def exp2(self) -> Tensor: r""" exp2() -> Tensor See :func:`torch.exp2` """ def exp2_(self) -> Tensor: r""" exp2_() -> Tensor In-place version of :meth:`~Tensor.exp2` """ def exp_(self) -> Tensor: r""" exp_() -> Tensor In-place version of :meth:`~Tensor.exp` """ @overload def expand( self, size: Sequence[_int | SymInt], *, implicit: _bool = False, ) -> Tensor: r""" expand(*sizes) -> Tensor Returns a new view of the :attr:`self` tensor with singleton dimensions expanded to a larger size. Passing -1 as the size for a dimension means not changing the size of that dimension. Tensor can be also expanded to a larger number of dimensions, and the new ones will be appended at the front. For the new dimensions, the size cannot be set to -1. Expanding a tensor does not allocate new memory, but only creates a new view on the existing tensor where a dimension of size one is expanded to a larger size by setting the ``stride`` to 0. Any dimension of size 1 can be expanded to an arbitrary value without allocating new memory. Args: *sizes (torch.Size or int...): the desired expanded size .. warning:: More than one element of an expanded tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first. Example:: >>> x = torch.tensor([[1], [2], [3]]) >>> x.size() torch.Size([3, 1]) >>> x.expand(3, 4) tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]]) >>> x.expand(-1, 4) # -1 means not changing the size of that dimension tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]]) """ @overload def expand(self, *size: _int | SymInt, implicit: _bool = False) -> Tensor: r""" expand(*sizes) -> Tensor Returns a new view of the :attr:`self` tensor with singleton dimensions expanded to a larger size. Passing -1 as the size for a dimension means not changing the size of that dimension. Tensor can be also expanded to a larger number of dimensions, and the new ones will be appended at the front. For the new dimensions, the size cannot be set to -1. Expanding a tensor does not allocate new memory, but only creates a new view on the existing tensor where a dimension of size one is expanded to a larger size by setting the ``stride`` to 0. Any dimension of size 1 can be expanded to an arbitrary value without allocating new memory. Args: *sizes (torch.Size or int...): the desired expanded size .. warning:: More than one element of an expanded tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first. Example:: >>> x = torch.tensor([[1], [2], [3]]) >>> x.size() torch.Size([3, 1]) >>> x.expand(3, 4) tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]]) >>> x.expand(-1, 4) # -1 means not changing the size of that dimension tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]]) """ def expand_as(self, other: Tensor) -> Tensor: r""" expand_as(other) -> Tensor Expand this tensor to the same size as :attr:`other`. ``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``. Please see :meth:`~Tensor.expand` for more information about ``expand``. Args: other (:class:`torch.Tensor`): The result tensor has the same size as :attr:`other`. """ def expm1(self) -> Tensor: r""" expm1() -> Tensor See :func:`torch.expm1` """ def expm1_(self) -> Tensor: r""" expm1_() -> Tensor In-place version of :meth:`~Tensor.expm1` """ def exponential_( self, lambd: _float = 1, *, generator: Generator | None = None, ) -> Tensor: r""" exponential_(lambd=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements drawn from the PDF (probability density function): .. math:: f(x) = \lambda e^{-\lambda x}, x > 0 .. note:: In probability theory, exponential distribution is supported on interval [0, :math:`\inf`) (i.e., :math:`x >= 0`) implying that zero can be sampled from the exponential distribution. However, :func:`torch.Tensor.exponential_` does not sample zero, which means that its actual support is the interval (0, :math:`\inf`). Note that :func:`torch.distributions.exponential.Exponential` is supported on the interval [0, :math:`\inf`) and can sample zero. """ @overload def fill_(self, value: Tensor) -> Tensor: r""" fill_(value) -> Tensor Fills :attr:`self` tensor with the specified value. """ @overload def fill_(self, value: Number | _complex) -> Tensor: r""" fill_(value) -> Tensor Fills :attr:`self` tensor with the specified value. """ def fill_diagonal_( self, fill_value: Number | _complex, wrap: _bool = False, ) -> Tensor: r""" fill_diagonal_(fill_value, wrap=False) -> Tensor Fill the main diagonal of a tensor that has at least 2-dimensions. When dims>2, all dimensions of input must be of equal length. This function modifies the input tensor in-place, and returns the input tensor. Arguments: fill_value (Scalar): the fill value wrap (bool, optional): the diagonal 'wrapped' after N columns for tall matrices. Default: ``False`` Example:: >>> a = torch.zeros(3, 3) >>> a.fill_diagonal_(5) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.]]) >>> b = torch.zeros(7, 3) >>> b.fill_diagonal_(5) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) >>> c = torch.zeros(7, 3) >>> c.fill_diagonal_(5, wrap=True) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.], [0., 0., 0.], [5., 0., 0.], [0., 5., 0.], [0., 0., 5.]]) """ def fix(self) -> Tensor: r""" fix() -> Tensor See :func:`torch.fix`. """ def fix_(self) -> Tensor: r""" fix_() -> Tensor In-place version of :meth:`~Tensor.fix` """ @overload def flatten( self, start_dim: _int, end_dim: _int, out_dim: str | EllipsisType | None, ) -> Tensor: r""" flatten(start_dim=0, end_dim=-1) -> Tensor See :func:`torch.flatten` """ @overload def flatten(self, start_dim: _int = 0, end_dim: _int = -1) -> Tensor: r""" flatten(start_dim=0, end_dim=-1) -> Tensor See :func:`torch.flatten` """ @overload def flatten( self, start_dim: str | EllipsisType | None, end_dim: str | EllipsisType | None, out_dim: str | EllipsisType | None, ) -> Tensor: r""" flatten(start_dim=0, end_dim=-1) -> Tensor See :func:`torch.flatten` """ @overload def flatten( self, dims: Sequence[str | EllipsisType | None], out_dim: str | EllipsisType | None, ) -> Tensor: r""" flatten(start_dim=0, end_dim=-1) -> Tensor See :func:`torch.flatten` """ @overload def flip(self, dims: _size) -> Tensor: r""" flip(dims) -> Tensor See :func:`torch.flip` """ @overload def flip(self, *dims: _int) -> Tensor: r""" flip(dims) -> Tensor See :func:`torch.flip` """ def fliplr(self) -> Tensor: r""" fliplr() -> Tensor See :func:`torch.fliplr` """ def flipud(self) -> Tensor: r""" flipud() -> Tensor See :func:`torch.flipud` """ def float(self) -> Tensor: r""" float(memory_format=torch.preserve_format) -> Tensor ``self.float()`` is equivalent to ``self.to(torch.float32)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ @overload def float_power(self, exponent: Tensor) -> Tensor: r""" float_power(exponent) -> Tensor See :func:`torch.float_power` """ @overload def float_power(self, exponent: Number | _complex) -> Tensor: r""" float_power(exponent) -> Tensor See :func:`torch.float_power` """ @overload def float_power_(self, exponent: Tensor) -> Tensor: r""" float_power_(exponent) -> Tensor In-place version of :meth:`~Tensor.float_power` """ @overload def float_power_(self, exponent: Number | _complex) -> Tensor: r""" float_power_(exponent) -> Tensor In-place version of :meth:`~Tensor.float_power` """ def floor(self) -> Tensor: r""" floor() -> Tensor See :func:`torch.floor` """ def floor_(self) -> Tensor: r""" floor_() -> Tensor In-place version of :meth:`~Tensor.floor` """ def floor_divide( self, other: Tensor | Number | torch.SymInt | torch.SymFloat, *, out: Tensor | None = None, ) -> Tensor: r""" floor_divide(value) -> Tensor See :func:`torch.floor_divide` """ def floor_divide_( self, other: Tensor | Number | torch.SymInt | torch.SymFloat, ) -> Tensor: r""" floor_divide_(value) -> Tensor In-place version of :meth:`~Tensor.floor_divide` """ def fmax(self, other: Tensor) -> Tensor: r""" fmax(other) -> Tensor See :func:`torch.fmax` """ def fmin(self, other: Tensor) -> Tensor: r""" fmin(other) -> Tensor See :func:`torch.fmin` """ @overload def fmod(self, other: Tensor) -> Tensor: r""" fmod(divisor) -> Tensor See :func:`torch.fmod` """ @overload def fmod(self, other: Number | _complex) -> Tensor: r""" fmod(divisor) -> Tensor See :func:`torch.fmod` """ @overload def fmod_(self, other: Tensor) -> Tensor: r""" fmod_(divisor) -> Tensor In-place version of :meth:`~Tensor.fmod` """ @overload def fmod_(self, other: Number | _complex) -> Tensor: r""" fmod_(divisor) -> Tensor In-place version of :meth:`~Tensor.fmod` """ def frac(self) -> Tensor: r""" frac() -> Tensor See :func:`torch.frac` """ def frac_(self) -> Tensor: r""" frac_() -> Tensor In-place version of :meth:`~Tensor.frac` """ def frexp(self) -> torch.return_types.frexp: r""" frexp(input) -> (Tensor mantissa, Tensor exponent) See :func:`torch.frexp` """ @overload def gather( self, dim: _int, index: Tensor, *, sparse_grad: _bool = False, ) -> Tensor: r""" gather(dim, index) -> Tensor See :func:`torch.gather` """ @overload def gather( self, dim: str | EllipsisType | None, index: Tensor, *, sparse_grad: _bool = False, ) -> Tensor: r""" gather(dim, index) -> Tensor See :func:`torch.gather` """ def gcd(self, other: Tensor) -> Tensor: r""" gcd(other) -> Tensor See :func:`torch.gcd` """ def gcd_(self, other: Tensor) -> Tensor: r""" gcd_(other) -> Tensor In-place version of :meth:`~Tensor.gcd` """ @overload def ge(self, other: Tensor) -> Tensor: r""" ge(other) -> Tensor See :func:`torch.ge`. """ @overload def ge(self, other: Number | _complex) -> Tensor: r""" ge(other) -> Tensor See :func:`torch.ge`. """ @overload def ge_(self, other: Tensor) -> Tensor: r""" ge_(other) -> Tensor In-place version of :meth:`~Tensor.ge`. """ @overload def ge_(self, other: Number | _complex) -> Tensor: r""" ge_(other) -> Tensor In-place version of :meth:`~Tensor.ge`. """ def geometric_( self, p: _float, *, generator: Generator | None = None, ) -> Tensor: r""" geometric_(p, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements drawn from the geometric distribution: .. math:: P(X=k) = (1 - p)^{k - 1} p, k = 1, 2, ... .. note:: :func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`, whereas :func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success hence draws samples in :math:`\{0, 1, \ldots\}`. """ def geqrf(self) -> torch.return_types.geqrf: r""" geqrf() -> (Tensor, Tensor) See :func:`torch.geqrf` """ def ger(self, vec2: Tensor) -> Tensor: r""" ger(vec2) -> Tensor See :func:`torch.ger` """ def get_device(self) -> _int: r""" get_device() -> Device ordinal (Integer) For CUDA tensors, this function returns the device ordinal of the GPU on which the tensor resides. For CPU tensors, this function returns `-1`. Example:: >>> x = torch.randn(3, 4, 5, device='cuda:0') >>> x.get_device() 0 >>> x.cpu().get_device() -1 """ @overload def greater(self, other: Tensor) -> Tensor: r""" greater(other) -> Tensor See :func:`torch.greater`. """ @overload def greater(self, other: Number | _complex) -> Tensor: r""" greater(other) -> Tensor See :func:`torch.greater`. """ @overload def greater_(self, other: Tensor) -> Tensor: r""" greater_(other) -> Tensor In-place version of :meth:`~Tensor.greater`. """ @overload def greater_(self, other: Number | _complex) -> Tensor: r""" greater_(other) -> Tensor In-place version of :meth:`~Tensor.greater`. """ @overload def greater_equal(self, other: Tensor) -> Tensor: r""" greater_equal(other) -> Tensor See :func:`torch.greater_equal`. """ @overload def greater_equal(self, other: Number | _complex) -> Tensor: r""" greater_equal(other) -> Tensor See :func:`torch.greater_equal`. """ @overload def greater_equal_(self, other: Tensor) -> Tensor: r""" greater_equal_(other) -> Tensor In-place version of :meth:`~Tensor.greater_equal`. """ @overload def greater_equal_(self, other: Number | _complex) -> Tensor: r""" greater_equal_(other) -> Tensor In-place version of :meth:`~Tensor.greater_equal`. """ @overload def gt(self, other: Tensor) -> Tensor: r""" gt(other) -> Tensor See :func:`torch.gt`. """ @overload def gt(self, other: Number | _complex) -> Tensor: r""" gt(other) -> Tensor See :func:`torch.gt`. """ @overload def gt_(self, other: Tensor) -> Tensor: r""" gt_(other) -> Tensor In-place version of :meth:`~Tensor.gt`. """ @overload def gt_(self, other: Number | _complex) -> Tensor: r""" gt_(other) -> Tensor In-place version of :meth:`~Tensor.gt`. """ def half(self) -> Tensor: r""" half(memory_format=torch.preserve_format) -> Tensor ``self.half()`` is equivalent to ``self.to(torch.float16)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def hardshrink(self, lambd: Number | _complex = 0.5) -> Tensor: r""" hardshrink(lambd=0.5) -> Tensor See :func:`torch.nn.functional.hardshrink` """ def has_names(self) -> _bool: r""" Is ``True`` if any of this tensor's dimensions are named. Otherwise, is ``False``. """ @overload def hash_tensor( self, dim: _int | _size = (), *, keepdim: _bool = False, mode: _int = 0, ) -> Tensor: ... @overload def hash_tensor( self, *dim: _int, keepdim: _bool = False, mode: _int = 0, ) -> Tensor: ... def heaviside(self, values: Tensor) -> Tensor: r""" heaviside(values) -> Tensor See :func:`torch.heaviside` """ def heaviside_(self, values: Tensor) -> Tensor: r""" heaviside_(values) -> Tensor In-place version of :meth:`~Tensor.heaviside` """ def histc( self, bins: _int = 100, min: Number | _complex = 0, max: Number | _complex = 0, ) -> Tensor: r""" histc(bins=100, min=0, max=0) -> Tensor See :func:`torch.histc` """ @overload def histogram( self, bins: Tensor, *, weight: Tensor | None = None, density: _bool = False, ) -> torch.return_types.histogram: r""" histogram(input, bins, *, range=None, weight=None, density=False) -> (Tensor, Tensor) See :func:`torch.histogram` """ @overload def histogram( self, bins: _int = 100, *, range: Sequence[_float] | None = None, weight: Tensor | None = None, density: _bool = False, ) -> torch.return_types.histogram: r""" histogram(input, bins, *, range=None, weight=None, density=False) -> (Tensor, Tensor) See :func:`torch.histogram` """ @overload def hsplit(self, sections: _int) -> tuple[Tensor, ...]: r""" hsplit(split_size_or_sections) -> List of Tensors See :func:`torch.hsplit` """ @overload def hsplit(self, indices: _size) -> tuple[Tensor, ...]: r""" hsplit(split_size_or_sections) -> List of Tensors See :func:`torch.hsplit` """ @overload def hsplit(self, *indices: _int) -> tuple[Tensor, ...]: r""" hsplit(split_size_or_sections) -> List of Tensors See :func:`torch.hsplit` """ def hypot(self, other: Tensor) -> Tensor: r""" hypot(other) -> Tensor See :func:`torch.hypot` """ def hypot_(self, other: Tensor) -> Tensor: r""" hypot_(other) -> Tensor In-place version of :meth:`~Tensor.hypot` """ def i0(self) -> Tensor: r""" i0() -> Tensor See :func:`torch.i0` """ def i0_(self) -> Tensor: r""" i0_() -> Tensor In-place version of :meth:`~Tensor.i0` """ def igamma(self, other: Tensor) -> Tensor: r""" igamma(other) -> Tensor See :func:`torch.igamma` """ def igamma_(self, other: Tensor) -> Tensor: r""" igamma_(other) -> Tensor In-place version of :meth:`~Tensor.igamma` """ def igammac(self, other: Tensor) -> Tensor: r""" igammac(other) -> Tensor See :func:`torch.igammac` """ def igammac_(self, other: Tensor) -> Tensor: r""" igammac_(other) -> Tensor In-place version of :meth:`~Tensor.igammac` """ @overload def index_add( self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number | _complex = 1, ) -> Tensor: r""" index_add(dim, index, source, *, alpha=1) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_add_`. """ @overload def index_add( self, dim: str | EllipsisType | None, index: Tensor, source: Tensor, *, alpha: Number | _complex = 1, ) -> Tensor: r""" index_add(dim, index, source, *, alpha=1) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_add_`. """ def index_add_( self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number | _complex = 1, ) -> Tensor: r""" index_add_(dim, index, source, *, alpha=1) -> Tensor Accumulate the elements of :attr:`alpha` times ``source`` into the :attr:`self` tensor by adding to the indices in the order given in :attr:`index`. For example, if ``dim == 0``, ``index[i] == j``, and ``alpha=-1``, then the ``i``\ th row of ``source`` is subtracted from the ``j``\ th row of :attr:`self`. The :attr:`dim`\ th dimension of ``source`` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. For a 3-D tensor the output is given as:: self[index[i], :, :] += alpha * src[i, :, :] # if dim == 0 self[:, index[i], :] += alpha * src[:, i, :] # if dim == 1 self[:, :, index[i]] += alpha * src[:, :, i] # if dim == 2 Note: This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. Args: dim (int): dimension along which to index index (Tensor): indices of ``source`` to select from, should have dtype either `torch.int64` or `torch.int32` source (Tensor): the tensor containing values to add Keyword args: alpha (Number): the scalar multiplier for ``source`` Example:: >>> x = torch.ones(5, 3) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2]) >>> x.index_add_(0, index, t) tensor([[ 2., 3., 4.], [ 1., 1., 1.], [ 8., 9., 10.], [ 1., 1., 1.], [ 5., 6., 7.]]) >>> x.index_add_(0, index, t, alpha=-1) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]]) """ @overload def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: r""" index_copy(dim, index, tensor2) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_copy_`. """ @overload def index_copy( self, dim: str | EllipsisType | None, index: Tensor, source: Tensor, ) -> Tensor: r""" index_copy(dim, index, tensor2) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_copy_`. """ @overload def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: r""" index_copy_(dim, index, tensor) -> Tensor Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting the indices in the order given in :attr:`index`. For example, if ``dim == 0`` and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the ``j``\ th row of :attr:`self`. The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. .. note:: If :attr:`index` contains duplicate entries, multiple elements from :attr:`tensor` will be copied to the same index of :attr:`self`. The result is nondeterministic since it depends on which copy occurs last. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`tensor` to select from tensor (Tensor): the tensor containing values to copy Example:: >>> x = torch.zeros(5, 3) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2]) >>> x.index_copy_(0, index, t) tensor([[ 1., 2., 3.], [ 0., 0., 0.], [ 7., 8., 9.], [ 0., 0., 0.], [ 4., 5., 6.]]) """ @overload def index_copy_( self, dim: str | EllipsisType | None, index: Tensor, source: Tensor, ) -> Tensor: r""" index_copy_(dim, index, tensor) -> Tensor Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting the indices in the order given in :attr:`index`. For example, if ``dim == 0`` and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the ``j``\ th row of :attr:`self`. The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. .. note:: If :attr:`index` contains duplicate entries, multiple elements from :attr:`tensor` will be copied to the same index of :attr:`self`. The result is nondeterministic since it depends on which copy occurs last. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`tensor` to select from tensor (Tensor): the tensor containing values to copy Example:: >>> x = torch.zeros(5, 3) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2]) >>> x.index_copy_(0, index, t) tensor([[ 1., 2., 3.], [ 0., 0., 0.], [ 7., 8., 9.], [ 0., 0., 0.], [ 4., 5., 6.]]) """ @overload def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: r""" index_fill(dim, index, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_fill_`. """ @overload def index_fill( self, dim: str | EllipsisType | None, index: Tensor, value: Tensor, ) -> Tensor: r""" index_fill(dim, index, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_fill_`. """ @overload def index_fill( self, dim: _int, index: Tensor, value: Number | _complex, ) -> Tensor: r""" index_fill(dim, index, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_fill_`. """ @overload def index_fill( self, dim: str | EllipsisType | None, index: Tensor, value: Number | _complex, ) -> Tensor: r""" index_fill(dim, index, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_fill_`. """ @overload def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: r""" index_fill_(dim, index, value) -> Tensor Fills the elements of the :attr:`self` tensor with value :attr:`value` by selecting the indices in the order given in :attr:`index`. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`self` tensor to fill in value (float): the value to fill with Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 2]) >>> x.index_fill_(1, index, -1) tensor([[-1., 2., -1.], [-1., 5., -1.], [-1., 8., -1.]]) """ @overload def index_fill_( self, dim: str | EllipsisType | None, index: Tensor, value: Tensor, ) -> Tensor: r""" index_fill_(dim, index, value) -> Tensor Fills the elements of the :attr:`self` tensor with value :attr:`value` by selecting the indices in the order given in :attr:`index`. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`self` tensor to fill in value (float): the value to fill with Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 2]) >>> x.index_fill_(1, index, -1) tensor([[-1., 2., -1.], [-1., 5., -1.], [-1., 8., -1.]]) """ @overload def index_fill_( self, dim: _int, index: Tensor, value: Number | _complex, ) -> Tensor: r""" index_fill_(dim, index, value) -> Tensor Fills the elements of the :attr:`self` tensor with value :attr:`value` by selecting the indices in the order given in :attr:`index`. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`self` tensor to fill in value (float): the value to fill with Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 2]) >>> x.index_fill_(1, index, -1) tensor([[-1., 2., -1.], [-1., 5., -1.], [-1., 8., -1.]]) """ @overload def index_fill_( self, dim: str | EllipsisType | None, index: Tensor, value: Number | _complex, ) -> Tensor: r""" index_fill_(dim, index, value) -> Tensor Fills the elements of the :attr:`self` tensor with value :attr:`value` by selecting the indices in the order given in :attr:`index`. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`self` tensor to fill in value (float): the value to fill with Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 2]) >>> x.index_fill_(1, index, -1) tensor([[-1., 2., -1.], [-1., 5., -1.], [-1., 8., -1.]]) """ def index_put( self, indices: tuple[Tensor, ...] | list[Tensor] | None, values: Tensor, accumulate: _bool = False, ) -> Tensor: r""" index_put(indices, values, accumulate=False) -> Tensor Out-place version of :meth:`~Tensor.index_put_`. """ def index_put_( self, indices: tuple[Tensor, ...] | list[Tensor] | None, values: Tensor, accumulate: _bool = False, ) -> Tensor: r""" index_put_(indices, values, accumulate=False) -> Tensor Puts values from the tensor :attr:`values` into the tensor :attr:`self` using the indices specified in :attr:`indices` (which is a tuple of Tensors). The expression ``tensor.index_put_(indices, values)`` is equivalent to ``tensor[indices] = values``. Returns :attr:`self`. If :attr:`accumulate` is ``True``, the elements in :attr:`values` are added to :attr:`self`. If accumulate is ``False``, the behavior is undefined if indices contain duplicate elements. Args: indices (tuple of LongTensor): tensors used to index into `self`. values (Tensor): tensor of same dtype as `self`. accumulate (bool): whether to accumulate into self """ def index_reduce( self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True, ) -> Tensor: ... def index_reduce_( self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True, ) -> Tensor: r""" index_reduce_(dim, index, source, reduce, *, include_self=True) -> Tensor Accumulate the elements of ``source`` into the :attr:`self` tensor by accumulating to the indices in the order given in :attr:`index` using the reduction given by the ``reduce`` argument. For example, if ``dim == 0``, ``index[i] == j``, ``reduce == prod`` and ``include_self == True`` then the ``i``\ th row of ``source`` is multiplied by the ``j``\ th row of :attr:`self`. If :obj:`include_self="True"`, the values in the :attr:`self` tensor are included in the reduction, otherwise, rows in the :attr:`self` tensor that are accumulated to are treated as if they were filled with the reduction identities. The :attr:`dim`\ th dimension of ``source`` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. For a 3-D tensor with :obj:`reduce="prod"` and :obj:`include_self=True` the output is given as:: self[index[i], :, :] *= src[i, :, :] # if dim == 0 self[:, index[i], :] *= src[:, i, :] # if dim == 1 self[:, :, index[i]] *= src[:, :, i] # if dim == 2 Note: This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. .. note:: This function only supports floating point tensors. .. warning:: This function is in beta and may change in the near future. Args: dim (int): dimension along which to index index (Tensor): indices of ``source`` to select from, should have dtype either `torch.int64` or `torch.int32` source (FloatTensor): the tensor containing values to accumulate reduce (str): the reduction operation to apply (:obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) Keyword args: include_self (bool): whether the elements from the ``self`` tensor are included in the reduction Example:: >>> x = torch.empty(5, 3).fill_(2) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2, 0]) >>> x.index_reduce_(0, index, t, 'prod') tensor([[20., 44., 72.], [ 2., 2., 2.], [14., 16., 18.], [ 2., 2., 2.], [ 8., 10., 12.]]) >>> x = torch.empty(5, 3).fill_(2) >>> x.index_reduce_(0, index, t, 'prod', include_self=False) tensor([[10., 22., 36.], [ 2., 2., 2.], [ 7., 8., 9.], [ 2., 2., 2.], [ 4., 5., 6.]]) """ @overload def index_select(self, dim: _int, index: Tensor) -> Tensor: r""" index_select(dim, index) -> Tensor See :func:`torch.index_select` """ @overload def index_select( self, dim: str | EllipsisType | None, index: Tensor, ) -> Tensor: r""" index_select(dim, index) -> Tensor See :func:`torch.index_select` """ def indices(self) -> Tensor: r""" indices() -> Tensor Return the indices tensor of a :ref:`sparse COO tensor `. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. See also :meth:`Tensor.values`. .. note:: This method can only be called on a coalesced sparse tensor. See :meth:`Tensor.coalesce` for details. """ def inner(self, other: Tensor) -> Tensor: r""" inner(other) -> Tensor See :func:`torch.inner`. """ def int(self) -> Tensor: r""" int(memory_format=torch.preserve_format) -> Tensor ``self.int()`` is equivalent to ``self.to(torch.int32)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def int_repr(self) -> Tensor: r""" int_repr() -> Tensor Given a quantized Tensor, ``self.int_repr()`` returns a CPU Tensor with uint8_t as data type that stores the underlying uint8_t values of the given Tensor. """ def inverse(self) -> Tensor: r""" inverse() -> Tensor See :func:`torch.inverse` """ def is_coalesced(self) -> _bool: r""" is_coalesced() -> bool Returns ``True`` if :attr:`self` is a :ref:`sparse COO tensor ` that is coalesced, ``False`` otherwise. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. See :meth:`coalesce` and :ref:`uncoalesced tensors `. """ def is_complex(self) -> _bool: r""" is_complex() -> bool Returns True if the data type of :attr:`self` is a complex data type. """ def is_conj(self) -> _bool: r""" is_conj() -> bool Returns True if the conjugate bit of :attr:`self` is set to true. """ def is_contiguous( self, memory_format: torch.memory_format = torch.contiguous_format, ) -> _bool: r""" is_contiguous(memory_format=torch.contiguous_format) -> bool Returns True if :attr:`self` tensor is contiguous in memory in the order specified by memory format. Args: memory_format (:class:`torch.memory_format`, optional): Specifies memory allocation order. Default: ``torch.contiguous_format``. """ is_cpu: _bool r"""Is ``True`` if the Tensor is stored on the CPU, ``False`` otherwise.""" is_cuda: _bool r"""Is ``True`` if the Tensor is stored on the GPU, ``False`` otherwise.""" def is_distributed(self) -> _bool: ... def is_floating_point(self) -> _bool: r""" is_floating_point() -> bool Returns True if the data type of :attr:`self` is a floating point data type. """ def is_inference(self) -> _bool: r""" is_inference() -> bool See :func:`torch.is_inference` """ is_ipu: _bool r"""Is ``True`` if the Tensor is stored on the IPU, ``False`` otherwise.""" is_leaf: _bool r"""All Tensors that have :attr:`requires_grad` which is ``False`` will be leaf Tensors by convention. For Tensors that have :attr:`requires_grad` which is ``True``, they will be leaf Tensors if they were created by the user. This means that they are not the result of an operation and so :attr:`grad_fn` is None. Only leaf Tensors will have their :attr:`grad` populated during a call to :func:`backward`. To get :attr:`grad` populated for non-leaf Tensors, you can use :func:`retain_grad`. Example:: >>> a = torch.rand(10, requires_grad=True) >>> a.is_leaf True >>> b = torch.rand(10, requires_grad=True).cuda() >>> b.is_leaf False # b was created by the operation that cast a cpu Tensor into a cuda Tensor >>> c = torch.rand(10, requires_grad=True) + 2 >>> c.is_leaf False # c was created by the addition operation >>> d = torch.rand(10).cuda() >>> d.is_leaf True # d does not require gradients and so has no operation creating it (that is tracked by the autograd engine) >>> e = torch.rand(10).cuda().requires_grad_() >>> e.is_leaf True # e requires gradients and has no operations creating it >>> f = torch.rand(10, requires_grad=True, device="cuda") >>> f.is_leaf True # f requires grad, has no operation creating it""" is_maia: _bool is_meta: _bool r"""Is ``True`` if the Tensor is a meta tensor, ``False`` otherwise. Meta tensors are like normal tensors, but they carry no data.""" is_mkldnn: _bool is_mps: _bool r"""Is ``True`` if the Tensor is stored on the MPS device, ``False`` otherwise.""" is_mtia: _bool def is_neg(self) -> _bool: r""" is_neg() -> bool Returns True if the negative bit of :attr:`self` is set to true. """ is_nested: _bool def is_nonzero(self) -> _bool: ... def is_pinned(self, device: DeviceLikeType | None = None) -> _bool: r""" Returns true if this tensor resides in pinned memory. By default, the device pinned memory on will be the current :ref:`accelerator`. """ is_quantized: _bool r"""Is ``True`` if the Tensor is quantized, ``False`` otherwise.""" def is_same_size(self, other: Tensor) -> _bool: ... def is_set_to(self, tensor: Tensor) -> _bool: r""" is_set_to(tensor) -> bool Returns True if both tensors are pointing to the exact same memory (same storage, offset, size and stride). """ def is_signed(self) -> _bool: r""" is_signed() -> bool Returns True if the data type of :attr:`self` is a signed data type. """ is_sparse: _bool r"""Is ``True`` if the Tensor uses sparse COO storage layout, ``False`` otherwise.""" is_sparse_csr: _bool r"""Is ``True`` if the Tensor uses sparse CSR storage layout, ``False`` otherwise.""" is_vulkan: _bool is_xpu: _bool r"""Is ``True`` if the Tensor is stored on the XPU, ``False`` otherwise.""" def isclose( self, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False, ) -> Tensor: r""" isclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor See :func:`torch.isclose` """ def isfinite(self) -> Tensor: r""" isfinite() -> Tensor See :func:`torch.isfinite` """ def isinf(self) -> Tensor: r""" isinf() -> Tensor See :func:`torch.isinf` """ def isnan(self) -> Tensor: r""" isnan() -> Tensor See :func:`torch.isnan` """ def isneginf(self) -> Tensor: r""" isneginf() -> Tensor See :func:`torch.isneginf` """ def isposinf(self) -> Tensor: r""" isposinf() -> Tensor See :func:`torch.isposinf` """ def isreal(self) -> Tensor: r""" isreal() -> Tensor See :func:`torch.isreal` """ def istft( self, n_fft: _int, hop_length: _int | None = None, win_length: _int | None = None, window: Tensor | None = None, center: _bool = True, normalized: _bool = False, onesided: _bool | None = None, length: _int | None = None, return_complex: _bool = False, ) -> Tensor: r""" istft(n_fft, hop_length=None, win_length=None, window=None, center=True, normalized=False, onesided=True, length=None) -> Tensor See :func:`torch.istft` """ def item(self) -> Number: r""" item() -> number Returns the value of this tensor as a standard Python number. This only works for tensors with one element. For other cases, see :meth:`~Tensor.tolist`. This operation is not differentiable. Example:: >>> x = torch.tensor([1.0]) >>> x.item() 1.0 """ def kron(self, other: Tensor) -> Tensor: r""" kron(other) -> Tensor See :func:`torch.kron` """ @overload def kthvalue( self, k: _int | SymInt, dim: _int = -1, keepdim: _bool = False, ) -> torch.return_types.kthvalue: r""" kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.kthvalue` """ @overload def kthvalue( self, k: _int | SymInt, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> torch.return_types.kthvalue: r""" kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.kthvalue` """ def lcm(self, other: Tensor) -> Tensor: r""" lcm(other) -> Tensor See :func:`torch.lcm` """ def lcm_(self, other: Tensor) -> Tensor: r""" lcm_(other) -> Tensor In-place version of :meth:`~Tensor.lcm` """ def ldexp(self, other: Tensor) -> Tensor: r""" ldexp(other) -> Tensor See :func:`torch.ldexp` """ def ldexp_(self, other: Tensor) -> Tensor: r""" ldexp_(other) -> Tensor In-place version of :meth:`~Tensor.ldexp` """ @overload def le(self, other: Tensor) -> Tensor: r""" le(other) -> Tensor See :func:`torch.le`. """ @overload def le(self, other: Number | _complex) -> Tensor: r""" le(other) -> Tensor See :func:`torch.le`. """ @overload def le_(self, other: Tensor) -> Tensor: r""" le_(other) -> Tensor In-place version of :meth:`~Tensor.le`. """ @overload def le_(self, other: Number | _complex) -> Tensor: r""" le_(other) -> Tensor In-place version of :meth:`~Tensor.le`. """ @overload def lerp(self, end: Tensor, weight: Tensor) -> Tensor: r""" lerp(end, weight) -> Tensor See :func:`torch.lerp` """ @overload def lerp(self, end: Tensor, weight: Number | _complex) -> Tensor: r""" lerp(end, weight) -> Tensor See :func:`torch.lerp` """ @overload def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: r""" lerp_(end, weight) -> Tensor In-place version of :meth:`~Tensor.lerp` """ @overload def lerp_(self, end: Tensor, weight: Number | _complex) -> Tensor: r""" lerp_(end, weight) -> Tensor In-place version of :meth:`~Tensor.lerp` """ @overload def less(self, other: Tensor) -> Tensor: r""" lt(other) -> Tensor See :func:`torch.less`. """ @overload def less(self, other: Number | _complex) -> Tensor: r""" lt(other) -> Tensor See :func:`torch.less`. """ @overload def less_(self, other: Tensor) -> Tensor: r""" less_(other) -> Tensor In-place version of :meth:`~Tensor.less`. """ @overload def less_(self, other: Number | _complex) -> Tensor: r""" less_(other) -> Tensor In-place version of :meth:`~Tensor.less`. """ @overload def less_equal(self, other: Tensor) -> Tensor: r""" less_equal(other) -> Tensor See :func:`torch.less_equal`. """ @overload def less_equal(self, other: Number | _complex) -> Tensor: r""" less_equal(other) -> Tensor See :func:`torch.less_equal`. """ @overload def less_equal_(self, other: Tensor) -> Tensor: r""" less_equal_(other) -> Tensor In-place version of :meth:`~Tensor.less_equal`. """ @overload def less_equal_(self, other: Number | _complex) -> Tensor: r""" less_equal_(other) -> Tensor In-place version of :meth:`~Tensor.less_equal`. """ def lgamma(self) -> Tensor: r""" lgamma() -> Tensor See :func:`torch.lgamma` """ def lgamma_(self) -> Tensor: r""" lgamma_() -> Tensor In-place version of :meth:`~Tensor.lgamma` """ def log(self) -> Tensor: r""" log() -> Tensor See :func:`torch.log` """ def log10(self) -> Tensor: r""" log10() -> Tensor See :func:`torch.log10` """ def log10_(self) -> Tensor: r""" log10_() -> Tensor In-place version of :meth:`~Tensor.log10` """ def log1p(self) -> Tensor: r""" log1p() -> Tensor See :func:`torch.log1p` """ def log1p_(self) -> Tensor: r""" log1p_() -> Tensor In-place version of :meth:`~Tensor.log1p` """ def log2(self) -> Tensor: r""" log2() -> Tensor See :func:`torch.log2` """ def log2_(self) -> Tensor: r""" log2_() -> Tensor In-place version of :meth:`~Tensor.log2` """ def log_(self) -> Tensor: r""" log_() -> Tensor In-place version of :meth:`~Tensor.log` """ def log_normal_( self, mean: _float = 1, std: _float = 2, *, generator: Generator | None = None, ) -> Tensor: r""" log_normal_(mean=1, std=2, *, generator=None) Fills :attr:`self` tensor with numbers samples from the log-normal distribution parameterized by the given mean :math:`\mu` and standard deviation :math:`\sigma`. Note that :attr:`mean` and :attr:`std` are the mean and standard deviation of the underlying normal distribution, and not of the returned distribution: .. math:: f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} """ @overload def log_softmax(self, dim: _int, dtype: _dtype | None = None) -> Tensor: ... @overload def log_softmax( self, dim: str | EllipsisType | None, *, dtype: _dtype | None = None, ) -> Tensor: ... def logaddexp(self, other: Tensor) -> Tensor: r""" logaddexp(other) -> Tensor See :func:`torch.logaddexp` """ def logaddexp2(self, other: Tensor) -> Tensor: r""" logaddexp2(other) -> Tensor See :func:`torch.logaddexp2` """ @overload def logcumsumexp(self, dim: _int) -> Tensor: r""" logcumsumexp(dim) -> Tensor See :func:`torch.logcumsumexp` """ @overload def logcumsumexp(self, dim: str | EllipsisType | None) -> Tensor: r""" logcumsumexp(dim) -> Tensor See :func:`torch.logcumsumexp` """ def logdet(self) -> Tensor: r""" logdet() -> Tensor See :func:`torch.logdet` """ def logical_and(self, other: Tensor) -> Tensor: r""" logical_and() -> Tensor See :func:`torch.logical_and` """ def logical_and_(self, other: Tensor) -> Tensor: r""" logical_and_() -> Tensor In-place version of :meth:`~Tensor.logical_and` """ def logical_not(self) -> Tensor: r""" logical_not() -> Tensor See :func:`torch.logical_not` """ def logical_not_(self) -> Tensor: r""" logical_not_() -> Tensor In-place version of :meth:`~Tensor.logical_not` """ def logical_or(self, other: Tensor) -> Tensor: r""" logical_or() -> Tensor See :func:`torch.logical_or` """ def logical_or_(self, other: Tensor) -> Tensor: r""" logical_or_() -> Tensor In-place version of :meth:`~Tensor.logical_or` """ def logical_xor(self, other: Tensor) -> Tensor: r""" logical_xor() -> Tensor See :func:`torch.logical_xor` """ def logical_xor_(self, other: Tensor) -> Tensor: r""" logical_xor_() -> Tensor In-place version of :meth:`~Tensor.logical_xor` """ def logit(self, eps: _float | None = None) -> Tensor: r""" logit() -> Tensor See :func:`torch.logit` """ def logit_(self, eps: _float | None = None) -> Tensor: r""" logit_() -> Tensor In-place version of :meth:`~Tensor.logit` """ @overload def logsumexp(self, dim: _int | _size, keepdim: _bool = False) -> Tensor: r""" logsumexp(dim, keepdim=False) -> Tensor See :func:`torch.logsumexp` """ @overload def logsumexp( self, dim: Sequence[str | EllipsisType | None], keepdim: _bool = False, ) -> Tensor: r""" logsumexp(dim, keepdim=False) -> Tensor See :func:`torch.logsumexp` """ def long(self) -> Tensor: r""" long(memory_format=torch.preserve_format) -> Tensor ``self.long()`` is equivalent to ``self.to(torch.int64)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ @overload def lt(self, other: Tensor) -> Tensor: r""" lt(other) -> Tensor See :func:`torch.lt`. """ @overload def lt(self, other: Number | _complex) -> Tensor: r""" lt(other) -> Tensor See :func:`torch.lt`. """ @overload def lt_(self, other: Tensor) -> Tensor: r""" lt_(other) -> Tensor In-place version of :meth:`~Tensor.lt`. """ @overload def lt_(self, other: Number | _complex) -> Tensor: r""" lt_(other) -> Tensor In-place version of :meth:`~Tensor.lt`. """ def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: r""" lu_solve(LU_data, LU_pivots) -> Tensor See :func:`torch.lu_solve` """ def map2_(self, x: Tensor, y: Tensor, callable: Callable) -> Tensor: ... def map_(self, other: Tensor, callable: Callable) -> Tensor: r""" map_(tensor, callable) Applies :attr:`callable` for each element in :attr:`self` tensor and the given :attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and the given :attr:`tensor` must be :ref:`broadcastable `. The :attr:`callable` should have the signature:: def callable(a, b) -> number """ @overload def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: r""" masked_fill(mask, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.masked_fill_` """ @overload def masked_fill(self, mask: Tensor, value: Number | _complex) -> Tensor: r""" masked_fill(mask, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.masked_fill_` """ @overload def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: r""" masked_fill_(mask, value) Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is True. The shape of :attr:`mask` must be :ref:`broadcastable ` with the shape of the underlying tensor. Args: mask (BoolTensor): the boolean mask value (float): the value to fill in with """ @overload def masked_fill_(self, mask: Tensor, value: Number | _complex) -> Tensor: r""" masked_fill_(mask, value) Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is True. The shape of :attr:`mask` must be :ref:`broadcastable ` with the shape of the underlying tensor. Args: mask (BoolTensor): the boolean mask value (float): the value to fill in with """ def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: r""" masked_scatter(mask, tensor) -> Tensor Out-of-place version of :meth:`torch.Tensor.masked_scatter_` .. note:: The inputs :attr:`self` and :attr:`mask` :ref:`broadcast `. Example: >>> self = torch.tensor([0, 0, 0, 0, 0]) >>> mask = torch.tensor( ... [[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]], ... dtype=torch.bool, ... ) >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> self.masked_scatter(mask, source) tensor([[0, 0, 0, 0, 1], [2, 3, 0, 4, 5]]) """ def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: r""" masked_scatter_(mask, source) Copies elements from :attr:`source` into :attr:`self` tensor at positions where the :attr:`mask` is True. Elements from :attr:`source` are copied into :attr:`self` starting at position 0 of :attr:`source` and continuing in order one-by-one for each occurrence of :attr:`mask` being True. The shape of :attr:`mask` must be :ref:`broadcastable ` with the shape of the underlying tensor. The :attr:`source` should have at least as many elements as the number of ones in :attr:`mask`. Args: mask (BoolTensor): the boolean mask source (Tensor): the tensor to copy from .. note:: The :attr:`mask` operates on the :attr:`self` tensor, not on the given :attr:`source` tensor. Example: >>> self = torch.tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) >>> mask = torch.tensor( ... [[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]], ... dtype=torch.bool, ... ) >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> self.masked_scatter_(mask, source) tensor([[0, 0, 0, 0, 1], [2, 3, 0, 4, 5]]) """ def masked_select(self, mask: Tensor) -> Tensor: r""" masked_select(mask) -> Tensor See :func:`torch.masked_select` """ def matmul(self, other: Tensor) -> Tensor: r""" matmul(tensor2) -> Tensor See :func:`torch.matmul` """ def matrix_exp(self) -> Tensor: r""" matrix_exp() -> Tensor See :func:`torch.matrix_exp` """ def matrix_power(self, n: _int) -> Tensor: r""" matrix_power(n) -> Tensor .. note:: :meth:`~Tensor.matrix_power` is deprecated, use :func:`torch.linalg.matrix_power` instead. Alias for :func:`torch.linalg.matrix_power` """ @overload def max(self) -> Tensor: r""" max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.max` """ @overload def max(self, other: Tensor) -> Tensor: r""" max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.max` """ @overload def max(self, dim: _int, keepdim: _bool = False) -> torch.return_types.max: r""" max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.max` """ @overload def max( self, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> torch.return_types.max: r""" max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.max` """ def maximum(self, other: Tensor) -> Tensor: r""" maximum(other) -> Tensor See :func:`torch.maximum` """ @overload def mean(self, *, dtype: _dtype | None = None) -> Tensor: r""" mean(dim=None, keepdim=False, *, dtype=None) -> Tensor See :func:`torch.mean` """ @overload def mean( self, dim: _int | _size | None, keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" mean(dim=None, keepdim=False, *, dtype=None) -> Tensor See :func:`torch.mean` """ @overload def mean( self, dim: Sequence[str | EllipsisType | None], keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" mean(dim=None, keepdim=False, *, dtype=None) -> Tensor See :func:`torch.mean` """ @overload def median(self) -> Tensor: r""" median(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.median` """ @overload def median( self, dim: _int, keepdim: _bool = False, ) -> torch.return_types.median: r""" median(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.median` """ @overload def median( self, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> torch.return_types.median: r""" median(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.median` """ @overload def min(self) -> Tensor: r""" min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.min` """ @overload def min(self, other: Tensor) -> Tensor: r""" min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.min` """ @overload def min(self, dim: _int, keepdim: _bool = False) -> torch.return_types.min: r""" min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.min` """ @overload def min( self, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> torch.return_types.min: r""" min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.min` """ def minimum(self, other: Tensor) -> Tensor: r""" minimum(other) -> Tensor See :func:`torch.minimum` """ def mm(self, mat2: Tensor) -> Tensor: r""" mm(mat2) -> Tensor See :func:`torch.mm` """ @overload def mode( self, dim: _int = -1, keepdim: _bool = False, ) -> torch.return_types.mode: r""" mode(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.mode` """ @overload def mode( self, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> torch.return_types.mode: r""" mode(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.mode` """ @overload def moveaxis(self, source: _int, destination: _int) -> Tensor: r""" moveaxis(source, destination) -> Tensor See :func:`torch.moveaxis` """ @overload def moveaxis(self, source: _size, destination: _size) -> Tensor: r""" moveaxis(source, destination) -> Tensor See :func:`torch.moveaxis` """ @overload def movedim(self, source: _int, destination: _int) -> Tensor: r""" movedim(source, destination) -> Tensor See :func:`torch.movedim` """ @overload def movedim(self, source: _size, destination: _size) -> Tensor: r""" movedim(source, destination) -> Tensor See :func:`torch.movedim` """ def msort(self) -> Tensor: r""" msort() -> Tensor See :func:`torch.msort` """ def mul( self, other: Tensor | Number | _complex | torch.SymInt | torch.SymFloat, *, out: Tensor | None = None, ) -> Tensor: r""" mul(value) -> Tensor See :func:`torch.mul`. """ def mul_( self, other: Tensor | Number | _complex | torch.SymInt | torch.SymFloat, ) -> Tensor: r""" mul_(value) -> Tensor In-place version of :meth:`~Tensor.mul`. """ def multinomial( self, num_samples: _int | SymInt, replacement: _bool = False, *, generator: Generator | None = None, ) -> Tensor: r""" multinomial(num_samples, replacement=False, *, generator=None) -> Tensor See :func:`torch.multinomial` """ @overload def multiply(self, other: Tensor) -> Tensor: r""" multiply(value) -> Tensor See :func:`torch.multiply`. """ @overload def multiply(self, other: Number | _complex) -> Tensor: r""" multiply(value) -> Tensor See :func:`torch.multiply`. """ @overload def multiply_(self, other: Tensor) -> Tensor: r""" multiply_(value) -> Tensor In-place version of :meth:`~Tensor.multiply`. """ @overload def multiply_(self, other: Number | _complex) -> Tensor: r""" multiply_(value) -> Tensor In-place version of :meth:`~Tensor.multiply`. """ def mv(self, vec: Tensor) -> Tensor: r""" mv(vec) -> Tensor See :func:`torch.mv` """ def mvlgamma(self, p: _int) -> Tensor: r""" mvlgamma(p) -> Tensor See :func:`torch.mvlgamma` """ def mvlgamma_(self, p: _int) -> Tensor: r""" mvlgamma_(p) -> Tensor In-place version of :meth:`~Tensor.mvlgamma` """ def nan_to_num( self, nan: _float | None = None, posinf: _float | None = None, neginf: _float | None = None, ) -> Tensor: r""" nan_to_num(nan=0.0, posinf=None, neginf=None) -> Tensor See :func:`torch.nan_to_num`. """ def nan_to_num_( self, nan: _float | None = None, posinf: _float | None = None, neginf: _float | None = None, ) -> Tensor: r""" nan_to_num_(nan=0.0, posinf=None, neginf=None) -> Tensor In-place version of :meth:`~Tensor.nan_to_num`. """ def nanmean( self, dim: _int | _size | None = None, keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" nanmean(dim=None, keepdim=False, *, dtype=None) -> Tensor See :func:`torch.nanmean` """ @overload def nanmedian(self) -> Tensor: r""" nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.nanmedian` """ @overload def nanmedian( self, dim: _int, keepdim: _bool = False, ) -> torch.return_types.nanmedian: r""" nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.nanmedian` """ @overload def nanmedian( self, dim: str | EllipsisType | None, keepdim: _bool = False, ) -> torch.return_types.nanmedian: r""" nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.nanmedian` """ @overload def nanquantile( self, q: Tensor, dim: _int | None = None, keepdim: _bool = False, *, interpolation: str = "linear", ) -> Tensor: r""" nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor See :func:`torch.nanquantile` """ @overload def nanquantile( self, q: _float, dim: _int | None = None, keepdim: _bool = False, *, interpolation: str = "linear", ) -> Tensor: r""" nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor See :func:`torch.nanquantile` """ def nansum( self, dim: _int | _size | None = None, keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" nansum(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.nansum` """ @overload def narrow(self, dim: _int, start: Tensor, length: _int | SymInt) -> Tensor: r""" narrow(dimension, start, length) -> Tensor See :func:`torch.narrow`. """ @overload def narrow( self, dim: _int, start: _int | SymInt, length: _int | SymInt, ) -> Tensor: r""" narrow(dimension, start, length) -> Tensor See :func:`torch.narrow`. """ def narrow_copy( self, dim: _int, start: _int | SymInt, length: _int | SymInt, ) -> Tensor: r""" narrow_copy(dimension, start, length) -> Tensor See :func:`torch.narrow_copy`. """ def ndimension(self) -> _int: r""" ndimension() -> int Alias for :meth:`~Tensor.dim()` """ @overload def ne(self, other: Tensor) -> Tensor: r""" ne(other) -> Tensor See :func:`torch.ne`. """ @overload def ne(self, other: Number | _complex) -> Tensor: r""" ne(other) -> Tensor See :func:`torch.ne`. """ @overload def ne_(self, other: Tensor) -> Tensor: r""" ne_(other) -> Tensor In-place version of :meth:`~Tensor.ne`. """ @overload def ne_(self, other: Number | _complex) -> Tensor: r""" ne_(other) -> Tensor In-place version of :meth:`~Tensor.ne`. """ def neg(self) -> Tensor: r""" neg() -> Tensor See :func:`torch.neg` """ def neg_(self) -> Tensor: r""" neg_() -> Tensor In-place version of :meth:`~Tensor.neg` """ def negative(self) -> Tensor: r""" negative() -> Tensor See :func:`torch.negative` """ def negative_(self) -> Tensor: r""" negative_() -> Tensor In-place version of :meth:`~Tensor.negative` """ def nelement(self) -> _int: r""" nelement() -> int Alias for :meth:`~Tensor.numel` """ @overload def new(cls, *args: Any, device: DeviceLikeType | None = None) -> Self: ... @overload def new(cls, storage: Storage) -> Self: ... @overload def new(cls, other: Tensor) -> Self: ... @overload def new(cls, size: _size, *, device: DeviceLikeType | None = None) -> Self: ... @overload def new_empty( self, size: Sequence[_int | SymInt], *, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with uninitialized data. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.ones(()) >>> tensor.new_empty((2, 3)) tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) """ @overload def new_empty( self, *size: _int | SymInt, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with uninitialized data. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.ones(()) >>> tensor.new_empty((2, 3)) tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) """ def new_empty_strided( self, size: Sequence[_int | SymInt], stride: Sequence[_int | SymInt], *, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_empty_strided(size, stride, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` and strides :attr:`stride` filled with uninitialized data. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.ones(()) >>> tensor.new_empty_strided((2, 3), (3, 1)) tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) """ def new_full( self, size: Sequence[_int | SymInt], fill_value: Number | _complex, *, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_full(size, fill_value, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with :attr:`fill_value`. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: fill_value (scalar): the number to fill the output tensor with. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.ones((2,), dtype=torch.float64) >>> tensor.new_full((3, 4), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416, 3.1416]], dtype=torch.float64) """ @overload def new_ones( self, size: _size, dtype: _dtype | None = None, device: DeviceLikeType | None = None, requires_grad: _bool = False, pin_memory: _bool = False, ) -> Tensor: r""" new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with ``1``. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.tensor((), dtype=torch.int32) >>> tensor.new_ones((2, 3)) tensor([[ 1, 1, 1], [ 1, 1, 1]], dtype=torch.int32) """ @overload def new_ones( self, size: Sequence[_int | SymInt], *, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with ``1``. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.tensor((), dtype=torch.int32) >>> tensor.new_ones((2, 3)) tensor([[ 1, 1, 1], [ 1, 1, 1]], dtype=torch.int32) """ @overload def new_ones( self, *size: _int | SymInt, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with ``1``. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.tensor((), dtype=torch.int32) >>> tensor.new_ones((2, 3)) tensor([[ 1, 1, 1], [ 1, 1, 1]], dtype=torch.int32) """ def new_tensor( self, data: Any, dtype: _dtype | None = None, device: DeviceLikeType | None = None, requires_grad: _bool = False, pin_memory: _bool = False, ) -> Tensor: r""" new_tensor(data, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a new Tensor with :attr:`data` as the tensor data. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. .. warning:: :func:`new_tensor` always copies :attr:`data`. If you have a Tensor ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_` or :func:`torch.Tensor.detach`. If you have a numpy array and want to avoid a copy, use :func:`torch.from_numpy`. .. warning:: When data is a tensor `x`, :func:`new_tensor()` reads out 'the data' from whatever it is passed, and constructs a leaf variable. Therefore ``tensor.new_tensor(x)`` is equivalent to ``x.detach().clone()`` and ``tensor.new_tensor(x, requires_grad=True)`` is equivalent to ``x.detach().clone().requires_grad_(True)``. The equivalents using ``detach()`` and ``clone()`` are recommended. Args: data (array_like): The returned Tensor copies :attr:`data`. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.ones((2,), dtype=torch.int8) >>> data = [[0, 1], [2, 3]] >>> tensor.new_tensor(data) tensor([[ 0, 1], [ 2, 3]], dtype=torch.int8) """ @overload def new_zeros( self, size: Sequence[_int | SymInt], *, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with ``0``. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.tensor((), dtype=torch.float64) >>> tensor.new_zeros((2, 3)) tensor([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=torch.float64) """ @overload def new_zeros( self, *size: _int | SymInt, dtype: _dtype | None = None, layout: _layout | None = None, device: DeviceLikeType | None = None, pin_memory: _bool | None = False, requires_grad: _bool | None = False, ) -> Tensor: r""" new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size :attr:`size` filled with ``0``. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> tensor = torch.tensor((), dtype=torch.float64) >>> tensor.new_zeros((2, 3)) tensor([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=torch.float64) """ def nextafter(self, other: Tensor) -> Tensor: r""" nextafter(other) -> Tensor See :func:`torch.nextafter` """ def nextafter_(self, other: Tensor) -> Tensor: r""" nextafter_(other) -> Tensor In-place version of :meth:`~Tensor.nextafter` """ @overload def nonzero(self, *, as_tuple: Literal[False] = False) -> Tensor: r""" nonzero() -> LongTensor See :func:`torch.nonzero` """ @overload def nonzero(self, *, as_tuple: Literal[True]) -> tuple[Tensor, ...]: r""" nonzero() -> LongTensor See :func:`torch.nonzero` """ def nonzero_static( self, *, size: _int | SymInt, fill_value: _int = -1, ) -> Tensor: r""" nonzero_static(input, *, size, fill_value=-1) -> Tensor Returns a 2-D tensor where each row is the index for a non-zero value. The returned Tensor has the same `torch.dtype` as `torch.nonzero()`. Args: input (Tensor): the input tensor to count non-zero elements. Keyword args: size (int): the size of non-zero elements expected to be included in the out tensor. Pad the out tensor with `fill_value` if the `size` is larger than total number of non-zero elements, truncate out tensor if `size` is smaller. The size must be a non-negative integer. fill_value (int, optional): the value to fill the output tensor with when `size` is larger than the total number of non-zero elements. Default is `-1` to represent invalid index. Example: # Example 1: Padding >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) >>> static_size = 4 >>> t = torch.nonzero_static(input_tensor, size=static_size) tensor([[ 0, 0], [ 1, 0], [ 1, 1], [ -1, -1]], dtype=torch.int64) # Example 2: Truncating >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) >>> static_size = 2 >>> t = torch.nonzero_static(input_tensor, size=static_size) tensor([[ 0, 0], [ 1, 0]], dtype=torch.int64) # Example 3: 0 size >>> input_tensor = torch.tensor([10]) >>> static_size = 0 >>> t = torch.nonzero_static(input_tensor, size=static_size) tensor([], size=(0, 1), dtype=torch.int64) # Example 4: 0 rank input >>> input_tensor = torch.tensor(10) >>> static_size = 2 >>> t = torch.nonzero_static(input_tensor, size=static_size) tensor([], size=(2, 0), dtype=torch.int64) """ def normal_( self, mean: _float = 0, std: _float = 1, *, generator: Generator | None = None, ) -> Tensor: r""" normal_(mean=0, std=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements samples from the normal distribution parameterized by :attr:`mean` and :attr:`std`. """ @overload def not_equal(self, other: Tensor) -> Tensor: r""" not_equal(other) -> Tensor See :func:`torch.not_equal`. """ @overload def not_equal(self, other: Number | _complex) -> Tensor: r""" not_equal(other) -> Tensor See :func:`torch.not_equal`. """ @overload def not_equal_(self, other: Tensor) -> Tensor: r""" not_equal_(other) -> Tensor In-place version of :meth:`~Tensor.not_equal`. """ @overload def not_equal_(self, other: Number | _complex) -> Tensor: r""" not_equal_(other) -> Tensor In-place version of :meth:`~Tensor.not_equal`. """ def numel(self) -> _int: r""" numel() -> int See :func:`torch.numel` """ def numpy(self, *, force: _bool = False) -> numpy.ndarray: r""" numpy(*, force=False) -> numpy.ndarray Returns the tensor as a NumPy :class:`ndarray`. If :attr:`force` is ``False`` (the default), the conversion is performed only if the tensor is on the CPU, does not require grad, does not have its conjugate bit set, and is a dtype and layout that NumPy supports. The returned ndarray and the tensor will share their storage, so changes to the tensor will be reflected in the ndarray and vice versa. If :attr:`force` is ``True`` this is equivalent to calling ``t.detach().cpu().resolve_conj().resolve_neg().numpy()``. If the tensor isn't on the CPU or the conjugate or negative bit is set, the tensor won't share its storage with the returned ndarray. Setting :attr:`force` to ``True`` can be a useful shorthand. Args: force (bool): if ``True``, the ndarray may be a copy of the tensor instead of always sharing memory, defaults to ``False``. """ def orgqr(self, input2: Tensor) -> Tensor: r""" orgqr(input2) -> Tensor See :func:`torch.orgqr` """ def ormqr( self, input2: Tensor, input3: Tensor, left: _bool = True, transpose: _bool = False, ) -> Tensor: r""" ormqr(input2, input3, left=True, transpose=False) -> Tensor See :func:`torch.ormqr` """ def outer(self, vec2: Tensor) -> Tensor: r""" outer(vec2) -> Tensor See :func:`torch.outer`. """ @overload def permute(self, dims: _size) -> Tensor: r""" permute(*dims) -> Tensor See :func:`torch.permute` """ @overload def permute(self, *dims: _int) -> Tensor: r""" permute(*dims) -> Tensor See :func:`torch.permute` """ def pin_memory(self, device: DeviceLikeType | None = None) -> Tensor: r""" pin_memory() -> Tensor Copies the tensor to pinned memory, if it's not already pinned. By default, the device pinned memory on will be the current :ref:`accelerator`. """ def pinverse(self, rcond: _float = 1e-15) -> Tensor: r""" pinverse() -> Tensor See :func:`torch.pinverse` """ def polygamma(self, n: _int) -> Tensor: r""" polygamma(n) -> Tensor See :func:`torch.polygamma` """ def polygamma_(self, n: _int) -> Tensor: r""" polygamma_(n) -> Tensor In-place version of :meth:`~Tensor.polygamma` """ def positive(self) -> Tensor: r""" positive() -> Tensor See :func:`torch.positive` """ @overload def pow(self, exponent: Tensor) -> Tensor: r""" pow(exponent) -> Tensor See :func:`torch.pow` """ @overload def pow(self, exponent: Number | _complex) -> Tensor: r""" pow(exponent) -> Tensor See :func:`torch.pow` """ @overload def pow_(self, exponent: Tensor) -> Tensor: r""" pow_(exponent) -> Tensor In-place version of :meth:`~Tensor.pow` """ @overload def pow_(self, exponent: Number | _complex) -> Tensor: r""" pow_(exponent) -> Tensor In-place version of :meth:`~Tensor.pow` """ def prelu(self, weight: Tensor) -> Tensor: ... @overload def prod(self, *, dtype: _dtype | None = None) -> Tensor: r""" prod(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.prod` """ @overload def prod( self, dim: _int, keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" prod(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.prod` """ @overload def prod( self, dim: str | EllipsisType | None, keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" prod(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.prod` """ def put( self, index: Tensor, source: Tensor, accumulate: _bool = False, ) -> Tensor: r""" put(input, index, source, accumulate=False) -> Tensor Out-of-place version of :meth:`torch.Tensor.put_`. `input` corresponds to `self` in :meth:`torch.Tensor.put_`. """ def put_( self, index: Tensor, source: Tensor, accumulate: _bool = False, ) -> Tensor: r""" put_(index, source, accumulate=False) -> Tensor Copies the elements from :attr:`source` into the positions specified by :attr:`index`. For the purpose of indexing, the :attr:`self` tensor is treated as if it were a 1-D tensor. :attr:`index` and :attr:`source` need to have the same number of elements, but not necessarily the same shape. If :attr:`accumulate` is ``True``, the elements in :attr:`source` are added to :attr:`self`. If accumulate is ``False``, the behavior is undefined if :attr:`index` contain duplicate elements. Args: index (LongTensor): the indices into self source (Tensor): the tensor containing values to copy from accumulate (bool, optional): whether to accumulate into self. Default: ``False`` Example:: >>> src = torch.tensor([[4, 3, 5], ... [6, 7, 8]]) >>> src.put_(torch.tensor([1, 3]), torch.tensor([9, 10])) tensor([[ 4, 9, 5], [ 10, 7, 8]]) """ def q_per_channel_axis(self) -> _int: r""" q_per_channel_axis() -> int Given a Tensor quantized by linear (affine) per-channel quantization, returns the index of dimension on which per-channel quantization is applied. """ def q_per_channel_scales(self) -> Tensor: r""" q_per_channel_scales() -> Tensor Given a Tensor quantized by linear (affine) per-channel quantization, returns a Tensor of scales of the underlying quantizer. It has the number of elements that matches the corresponding dimensions (from q_per_channel_axis) of the tensor. """ def q_per_channel_zero_points(self) -> Tensor: r""" q_per_channel_zero_points() -> Tensor Given a Tensor quantized by linear (affine) per-channel quantization, returns a tensor of zero_points of the underlying quantizer. It has the number of elements that matches the corresponding dimensions (from q_per_channel_axis) of the tensor. """ def q_scale(self) -> _float: r""" q_scale() -> float Given a Tensor quantized by linear(affine) quantization, returns the scale of the underlying quantizer(). """ def q_zero_point(self) -> _int: r""" q_zero_point() -> int Given a Tensor quantized by linear(affine) quantization, returns the zero_point of the underlying quantizer(). """ def qr(self, some: _bool = True) -> torch.return_types.qr: r""" qr(some=True) -> (Tensor, Tensor) See :func:`torch.qr` """ def qscheme(self) -> _qscheme: r""" qscheme() -> torch.qscheme Returns the quantization scheme of a given QTensor. """ @overload def quantile( self, q: Tensor, dim: _int | None = None, keepdim: _bool = False, *, interpolation: str = "linear", ) -> Tensor: r""" quantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor See :func:`torch.quantile` """ @overload def quantile( self, q: _float, dim: _int | None = None, keepdim: _bool = False, *, interpolation: str = "linear", ) -> Tensor: r""" quantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor See :func:`torch.quantile` """ def rad2deg(self) -> Tensor: r""" rad2deg() -> Tensor See :func:`torch.rad2deg` """ def rad2deg_(self) -> Tensor: r""" rad2deg_() -> Tensor In-place version of :meth:`~Tensor.rad2deg` """ @overload def random_(self, *, generator: Generator | None = None) -> Tensor: r""" random_(from=0, to=None, *, generator=None) -> Tensor Fills :attr:`self` tensor with numbers sampled from the discrete uniform distribution over ``[from, to - 1]``. If not specified, the values are usually only bounded by :attr:`self` tensor's data type. However, for floating point types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` will be uniform in ``[0, 2^53]``. """ @overload def random_( self, from_: _int, to: _int | None, *, generator: Generator | None = None, ) -> Tensor: r""" random_(from=0, to=None, *, generator=None) -> Tensor Fills :attr:`self` tensor with numbers sampled from the discrete uniform distribution over ``[from, to - 1]``. If not specified, the values are usually only bounded by :attr:`self` tensor's data type. However, for floating point types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` will be uniform in ``[0, 2^53]``. """ @overload def random_( self, to: _int, *, generator: Generator | None = None, ) -> Tensor: r""" random_(from=0, to=None, *, generator=None) -> Tensor Fills :attr:`self` tensor with numbers sampled from the discrete uniform distribution over ``[from, to - 1]``. If not specified, the values are usually only bounded by :attr:`self` tensor's data type. However, for floating point types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` will be uniform in ``[0, 2^53]``. """ def ravel(self) -> Tensor: r""" ravel() -> Tensor see :func:`torch.ravel` """ def reciprocal(self) -> Tensor: r""" reciprocal() -> Tensor See :func:`torch.reciprocal` """ def reciprocal_(self) -> Tensor: r""" reciprocal_() -> Tensor In-place version of :meth:`~Tensor.reciprocal` """ def record_stream(self, s: Stream) -> None: r""" record_stream(stream) Marks the tensor as having been used by this stream. When the tensor is deallocated, ensure the tensor memory is not reused for another tensor until all work queued on :attr:`stream` at the time of deallocation is complete. .. note:: The caching allocator is aware of only the stream where a tensor was allocated. Due to the awareness, it already correctly manages the life cycle of tensors on only one stream. But if a tensor is used on a stream different from the stream of origin, the allocator might reuse the memory unexpectedly. Calling this method lets the allocator know which streams have used the tensor. .. warning:: This method is most suitable for use cases where you are providing a function that created a tensor on a side stream, and want users to be able to make use of the tensor without having to think carefully about stream safety when making use of them. These safety guarantees come at some performance and predictability cost (analogous to the tradeoff between GC and manual memory management), so if you are in a situation where you manage the full lifetime of your tensors, you may consider instead manually managing CUDA events so that calling this method is not necessary. In particular, when you call this method, on later allocations the allocator will poll the recorded stream to see if all operations have completed yet; you can potentially race with side stream computation and non-deterministically reuse or fail to reuse memory for an allocation. You can safely use tensors allocated on side streams without :meth:`~Tensor.record_stream`; you must manually ensure that any non-creation stream uses of a tensor are synced back to the creation stream before you deallocate the tensor. As the CUDA caching allocator guarantees that the memory will only be reused with the same creation stream, this is sufficient to ensure that writes to future reallocations of the memory will be delayed until non-creation stream uses are done. (Counterintuitively, you may observe that on the CPU side we have already reallocated the tensor, even though CUDA kernels on the old tensor are still in progress. This is fine, because CUDA operations on the new tensor will appropriately wait for the old operations to complete, as they are all on the same stream.) Concretely, this looks like this:: with torch.cuda.stream(s0): x = torch.zeros(N) s1.wait_stream(s0) with torch.cuda.stream(s1): y = some_comm_op(x) ... some compute on s0 ... # synchronize creation stream s0 to side stream s1 # before deallocating x s0.wait_stream(s1) del x Note that some discretion is required when deciding when to perform ``s0.wait_stream(s1)``. In particular, if we were to wait immediately after ``some_comm_op``, there wouldn't be any point in having the side stream; it would be equivalent to have run ``some_comm_op`` on ``s0``. Instead, the synchronization must be placed at some appropriate, later point in time where you expect the side stream ``s1`` to have finished work. This location is typically identified via profiling, e.g., using Chrome traces produced :meth:`torch.autograd.profiler.profile.export_chrome_trace`. If you place the wait too early, work on s0 will block until ``s1`` has finished, preventing further overlapping of communication and computation. If you place the wait too late, you will use more memory than is strictly necessary (as you are keeping ``x`` live for longer.) For a concrete example of how this guidance can be applied in practice, see this post: `FSDP and CUDACachingAllocator `_. """ def refine_names( self, names: Sequence[str | EllipsisType | None], ) -> Tensor: ... def relu(self) -> Tensor: ... def relu_(self) -> Tensor: ... @overload def remainder(self, other: Tensor) -> Tensor: r""" remainder(divisor) -> Tensor See :func:`torch.remainder` """ @overload def remainder(self, other: Number | _complex) -> Tensor: r""" remainder(divisor) -> Tensor See :func:`torch.remainder` """ @overload def remainder_(self, other: Tensor) -> Tensor: r""" remainder_(divisor) -> Tensor In-place version of :meth:`~Tensor.remainder` """ @overload def remainder_(self, other: Number | _complex) -> Tensor: r""" remainder_(divisor) -> Tensor In-place version of :meth:`~Tensor.remainder` """ def rename( self, names: Sequence[str | EllipsisType | None] | None, ) -> Tensor: ... def rename_( self, names: Sequence[str | EllipsisType | None] | None, ) -> Tensor: ... def renorm( self, p: Number | _complex, dim: _int, maxnorm: Number | _complex, ) -> Tensor: r""" renorm(p, dim, maxnorm) -> Tensor See :func:`torch.renorm` """ def renorm_( self, p: Number | _complex, dim: _int, maxnorm: Number | _complex, ) -> Tensor: r""" renorm_(p, dim, maxnorm) -> Tensor In-place version of :meth:`~Tensor.renorm` """ @overload def repeat(self, repeats: Sequence[_int | SymInt]) -> Tensor: r""" repeat(*repeats) -> Tensor Repeats this tensor along the specified dimensions. Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. .. warning:: :meth:`~Tensor.repeat` behaves differently from `numpy.repeat `_, but is more similar to `numpy.tile `_. For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`. Args: repeat (torch.Size, int..., tuple of int or list of int): The number of times to repeat this tensor along each dimension Example:: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat(4, 2) tensor([[ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3]]) >>> x.repeat(4, 2, 1).size() torch.Size([4, 2, 3]) """ @overload def repeat(self, *repeats: _int | SymInt) -> Tensor: r""" repeat(*repeats) -> Tensor Repeats this tensor along the specified dimensions. Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. .. warning:: :meth:`~Tensor.repeat` behaves differently from `numpy.repeat `_, but is more similar to `numpy.tile `_. For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`. Args: repeat (torch.Size, int..., tuple of int or list of int): The number of times to repeat this tensor along each dimension Example:: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat(4, 2) tensor([[ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3]]) >>> x.repeat(4, 2, 1).size() torch.Size([4, 2, 3]) """ @overload def repeat_interleave( self, repeats: Tensor, dim: _int | None = None, *, output_size: _int | SymInt | None = None, ) -> Tensor: r""" repeat_interleave(repeats, dim=None, *, output_size=None) -> Tensor See :func:`torch.repeat_interleave`. """ @overload def repeat_interleave( self, repeats: _int | SymInt, dim: _int | None = None, *, output_size: _int | SymInt | None = None, ) -> Tensor: r""" repeat_interleave(repeats, dim=None, *, output_size=None) -> Tensor See :func:`torch.repeat_interleave`. """ def requires_grad_(self, mode: _bool = True) -> Tensor: r""" requires_grad_(requires_grad=True) -> Tensor Change if autograd should record operations on this tensor: sets this tensor's :attr:`requires_grad` attribute in-place. Returns this tensor. :func:`requires_grad_`'s main use case is to tell autograd to begin recording operations on a Tensor ``tensor``. If ``tensor`` has ``requires_grad=False`` (because it was obtained through a DataLoader, or required preprocessing or initialization), ``tensor.requires_grad_()`` makes it so that autograd will begin to record operations on ``tensor``. Args: requires_grad (bool): If autograd should record operations on this tensor. Default: ``True``. Example:: >>> # Let's say we want to preprocess some saved weights and use >>> # the result as new weights. >>> saved_weights = [0.1, 0.2, 0.3, 0.25] >>> loaded_weights = torch.tensor(saved_weights) >>> weights = preprocess(loaded_weights) # some function >>> weights tensor([-0.5503, 0.4926, -2.1158, -0.8303]) >>> # Now, start to record operations done to weights >>> weights.requires_grad_() >>> out = weights.pow(2).sum() >>> out.backward() >>> weights.grad tensor([-1.1007, 0.9853, -4.2316, -1.6606]) """ @overload def reshape(self, shape: Sequence[_int | SymInt]) -> Tensor: r""" reshape(*shape) -> Tensor Returns a tensor with the same data and number of elements as :attr:`self` but with the specified shape. This method returns a view if :attr:`shape` is compatible with the current shape. See :meth:`torch.Tensor.view` on when it is possible to return a view. See :func:`torch.reshape` Args: shape (tuple of ints or int...): the desired shape """ @overload def reshape(self, *shape: _int | SymInt) -> Tensor: r""" reshape(*shape) -> Tensor Returns a tensor with the same data and number of elements as :attr:`self` but with the specified shape. This method returns a view if :attr:`shape` is compatible with the current shape. See :meth:`torch.Tensor.view` on when it is possible to return a view. See :func:`torch.reshape` Args: shape (tuple of ints or int...): the desired shape """ def reshape_as(self, other: Tensor) -> Tensor: r""" reshape_as(other) -> Tensor Returns this tensor as the same shape as :attr:`other`. ``self.reshape_as(other)`` is equivalent to ``self.reshape(other.sizes())``. This method returns a view if ``other.sizes()`` is compatible with the current shape. See :meth:`torch.Tensor.view` on when it is possible to return a view. Please see :meth:`reshape` for more information about ``reshape``. Args: other (:class:`torch.Tensor`): The result tensor has the same shape as :attr:`other`. """ @overload def resize_( self, size: Sequence[_int | SymInt], *, memory_format: memory_format | None = None, ) -> Tensor: r""" resize_(*sizes, memory_format=torch.contiguous_format) -> Tensor Resizes :attr:`self` tensor to the specified size. If the number of elements is larger than the current storage size, then the underlying storage is resized to fit the new number of elements. If the number of elements is smaller, the underlying storage is not changed. Existing elements are preserved but any new memory is uninitialized. .. warning:: This is a low-level method. The storage is reinterpreted as C-contiguous, ignoring the current strides (unless the target size equals the current size, in which case the tensor is left unchanged). For most purposes, you will instead want to use :meth:`~Tensor.view()`, which checks for contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To change the size in-place with custom strides, see :meth:`~Tensor.set_()`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, new elements are initialized to prevent nondeterministic behavior from using the result as an input to an operation. Floating point and complex values are set to NaN, and integer values are set to the maximum value. Args: sizes (torch.Size or int...): the desired size memory_format (:class:`torch.memory_format`, optional): the desired memory format of Tensor. Default: ``torch.contiguous_format``. Note that memory format of :attr:`self` is going to be unaffected if ``self.size()`` matches ``sizes``. Example:: >>> x = torch.tensor([[1, 2], [3, 4], [5, 6]]) >>> x.resize_(2, 2) tensor([[ 1, 2], [ 3, 4]]) """ @overload def resize_( self, *size: _int | SymInt, memory_format: memory_format | None = None, ) -> Tensor: r""" resize_(*sizes, memory_format=torch.contiguous_format) -> Tensor Resizes :attr:`self` tensor to the specified size. If the number of elements is larger than the current storage size, then the underlying storage is resized to fit the new number of elements. If the number of elements is smaller, the underlying storage is not changed. Existing elements are preserved but any new memory is uninitialized. .. warning:: This is a low-level method. The storage is reinterpreted as C-contiguous, ignoring the current strides (unless the target size equals the current size, in which case the tensor is left unchanged). For most purposes, you will instead want to use :meth:`~Tensor.view()`, which checks for contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To change the size in-place with custom strides, see :meth:`~Tensor.set_()`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, new elements are initialized to prevent nondeterministic behavior from using the result as an input to an operation. Floating point and complex values are set to NaN, and integer values are set to the maximum value. Args: sizes (torch.Size or int...): the desired size memory_format (:class:`torch.memory_format`, optional): the desired memory format of Tensor. Default: ``torch.contiguous_format``. Note that memory format of :attr:`self` is going to be unaffected if ``self.size()`` matches ``sizes``. Example:: >>> x = torch.tensor([[1, 2], [3, 4], [5, 6]]) >>> x.resize_(2, 2) tensor([[ 1, 2], [ 3, 4]]) """ def resize_as_( self, the_template: Tensor, *, memory_format: memory_format | None = None, ) -> Tensor: r""" resize_as_(tensor, memory_format=torch.contiguous_format) -> Tensor Resizes the :attr:`self` tensor to be the same size as the specified :attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of Tensor. Default: ``torch.contiguous_format``. Note that memory format of :attr:`self` is going to be unaffected if ``self.size()`` matches ``tensor.size()``. """ def resize_as_sparse_(self, the_template: Tensor) -> Tensor: ... def resolve_conj(self) -> Tensor: r""" resolve_conj() -> Tensor See :func:`torch.resolve_conj` """ def resolve_neg(self) -> Tensor: r""" resolve_neg() -> Tensor See :func:`torch.resolve_neg` """ def retain_grad(self) -> None: r""" retain_grad() -> None Enables this Tensor to have their :attr:`grad` populated during :func:`backward`. This is a no-op for leaf tensors. """ def roll( self, shifts: _int | SymInt | Sequence[_int | SymInt], dims: _int | _size = (), ) -> Tensor: r""" roll(shifts, dims) -> Tensor See :func:`torch.roll` """ def rot90(self, k: _int = 1, dims: _size = (0, 1)) -> Tensor: r""" rot90(k, dims) -> Tensor See :func:`torch.rot90` """ @overload def round(self) -> Tensor: r""" round(decimals=0) -> Tensor See :func:`torch.round` """ @overload def round(self, *, decimals: _int) -> Tensor: r""" round(decimals=0) -> Tensor See :func:`torch.round` """ @overload def round_(self) -> Tensor: r""" round_(decimals=0) -> Tensor In-place version of :meth:`~Tensor.round` """ @overload def round_(self, *, decimals: _int) -> Tensor: r""" round_(decimals=0) -> Tensor In-place version of :meth:`~Tensor.round` """ def row_indices(self) -> Tensor: ... def rsqrt(self) -> Tensor: r""" rsqrt() -> Tensor See :func:`torch.rsqrt` """ def rsqrt_(self) -> Tensor: r""" rsqrt_() -> Tensor In-place version of :meth:`~Tensor.rsqrt` """ @overload def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: r""" scatter(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ @overload def scatter( self, dim: _int, index: Tensor, src: Tensor, *, reduce: str, ) -> Tensor: r""" scatter(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ @overload def scatter( self, dim: _int, index: Tensor, value: Number | _complex, *, reduce: str, ) -> Tensor: r""" scatter(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ @overload def scatter( self, dim: str | EllipsisType | None, index: Tensor, src: Tensor, ) -> Tensor: r""" scatter(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ @overload def scatter( self, dim: _int, index: Tensor, value: Number | _complex, ) -> Tensor: r""" scatter(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ @overload def scatter( self, dim: str | EllipsisType | None, index: Tensor, value: Number | _complex, ) -> Tensor: r""" scatter(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ @overload def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: r""" scatter_(dim, index, src, *, reduce=None) -> Tensor Writes all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 This is the reverse operation of the manner described in :meth:`~Tensor.gather`. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``input`` and ``index`` do not broadcast against each other for NPUs, so when running on NPUs, :attr:`input` and :attr:`index` must have the same number of dimensions. Standard broadcasting occurs in all other cases. Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be between ``0`` and ``self.size(dim) - 1`` inclusive. .. warning:: When indices are not unique, the behavior is non-deterministic (one of the values from ``src`` will be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)! .. note:: The backward pass is implemented only for ``src.shape == index.shape``. Additionally accepts an optional :attr:`reduce` argument that allows specification of an optional reduction operation, which is applied to all values in the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index`. For each value in :attr:`src`, the reduction operation is applied to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` is updated as:: self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 Reducing with the addition operation is the same as using :meth:`~torch.Tensor.scatter_add_`. .. warning:: The reduce argument with Tensor ``src`` is deprecated and will be removed in a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` instead for more reduction options. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. src (Tensor): the source element(s) to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]]) .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: :noindex: Writes the value from :attr:`value` into :attr:`self` at the indices specified in the :attr:`index` tensor. This operation is equivalent to the previous version, with the :attr:`src` tensor filled entirely with :attr:`value`. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. value (Scalar): the value to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> index = torch.tensor([[0, 1]]) >>> value = 2 >>> torch.zeros(3, 5).scatter_(0, index, value) tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 0., 0., 0.]]) """ @overload def scatter_( self, dim: _int, index: Tensor, src: Tensor, *, reduce: str, ) -> Tensor: r""" scatter_(dim, index, src, *, reduce=None) -> Tensor Writes all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 This is the reverse operation of the manner described in :meth:`~Tensor.gather`. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``input`` and ``index`` do not broadcast against each other for NPUs, so when running on NPUs, :attr:`input` and :attr:`index` must have the same number of dimensions. Standard broadcasting occurs in all other cases. Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be between ``0`` and ``self.size(dim) - 1`` inclusive. .. warning:: When indices are not unique, the behavior is non-deterministic (one of the values from ``src`` will be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)! .. note:: The backward pass is implemented only for ``src.shape == index.shape``. Additionally accepts an optional :attr:`reduce` argument that allows specification of an optional reduction operation, which is applied to all values in the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index`. For each value in :attr:`src`, the reduction operation is applied to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` is updated as:: self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 Reducing with the addition operation is the same as using :meth:`~torch.Tensor.scatter_add_`. .. warning:: The reduce argument with Tensor ``src`` is deprecated and will be removed in a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` instead for more reduction options. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. src (Tensor): the source element(s) to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]]) .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: :noindex: Writes the value from :attr:`value` into :attr:`self` at the indices specified in the :attr:`index` tensor. This operation is equivalent to the previous version, with the :attr:`src` tensor filled entirely with :attr:`value`. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. value (Scalar): the value to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> index = torch.tensor([[0, 1]]) >>> value = 2 >>> torch.zeros(3, 5).scatter_(0, index, value) tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 0., 0., 0.]]) """ @overload def scatter_( self, dim: _int, index: Tensor, value: Number | _complex, *, reduce: str, ) -> Tensor: r""" scatter_(dim, index, src, *, reduce=None) -> Tensor Writes all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 This is the reverse operation of the manner described in :meth:`~Tensor.gather`. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``input`` and ``index`` do not broadcast against each other for NPUs, so when running on NPUs, :attr:`input` and :attr:`index` must have the same number of dimensions. Standard broadcasting occurs in all other cases. Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be between ``0`` and ``self.size(dim) - 1`` inclusive. .. warning:: When indices are not unique, the behavior is non-deterministic (one of the values from ``src`` will be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)! .. note:: The backward pass is implemented only for ``src.shape == index.shape``. Additionally accepts an optional :attr:`reduce` argument that allows specification of an optional reduction operation, which is applied to all values in the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index`. For each value in :attr:`src`, the reduction operation is applied to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` is updated as:: self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 Reducing with the addition operation is the same as using :meth:`~torch.Tensor.scatter_add_`. .. warning:: The reduce argument with Tensor ``src`` is deprecated and will be removed in a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` instead for more reduction options. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. src (Tensor): the source element(s) to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]]) .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: :noindex: Writes the value from :attr:`value` into :attr:`self` at the indices specified in the :attr:`index` tensor. This operation is equivalent to the previous version, with the :attr:`src` tensor filled entirely with :attr:`value`. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. value (Scalar): the value to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> index = torch.tensor([[0, 1]]) >>> value = 2 >>> torch.zeros(3, 5).scatter_(0, index, value) tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 0., 0., 0.]]) """ @overload def scatter_( self, dim: _int, index: Tensor, value: Number | _complex, ) -> Tensor: r""" scatter_(dim, index, src, *, reduce=None) -> Tensor Writes all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 This is the reverse operation of the manner described in :meth:`~Tensor.gather`. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``input`` and ``index`` do not broadcast against each other for NPUs, so when running on NPUs, :attr:`input` and :attr:`index` must have the same number of dimensions. Standard broadcasting occurs in all other cases. Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be between ``0`` and ``self.size(dim) - 1`` inclusive. .. warning:: When indices are not unique, the behavior is non-deterministic (one of the values from ``src`` will be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)! .. note:: The backward pass is implemented only for ``src.shape == index.shape``. Additionally accepts an optional :attr:`reduce` argument that allows specification of an optional reduction operation, which is applied to all values in the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index`. For each value in :attr:`src`, the reduction operation is applied to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` is updated as:: self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 Reducing with the addition operation is the same as using :meth:`~torch.Tensor.scatter_add_`. .. warning:: The reduce argument with Tensor ``src`` is deprecated and will be removed in a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` instead for more reduction options. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. src (Tensor): the source element(s) to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]]) .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: :noindex: Writes the value from :attr:`value` into :attr:`self` at the indices specified in the :attr:`index` tensor. This operation is equivalent to the previous version, with the :attr:`src` tensor filled entirely with :attr:`value`. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. value (Scalar): the value to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> index = torch.tensor([[0, 1]]) >>> value = 2 >>> torch.zeros(3, 5).scatter_(0, index, value) tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 0., 0., 0.]]) """ @overload def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: r""" scatter_add(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_add_` """ @overload def scatter_add( self, dim: str | EllipsisType | None, index: Tensor, src: Tensor, ) -> Tensor: r""" scatter_add(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_add_` """ def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: r""" scatter_add_(dim, index, src) -> Tensor Adds all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor in a similar fashion as :meth:`~torch.Tensor.scatter_`. For each value in :attr:`src`, it is added to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 :attr:`self`, :attr:`index` and :attr:`src` should have same number of dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``index`` and ``src`` do not broadcast. When :attr:`index` is empty, we always return the original tensor without further error checking. Note: This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. .. note:: The backward pass is implemented only for ``src.shape == index.shape``. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter and add, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. src (Tensor): the source elements to scatter and add Example:: >>> src = torch.ones((2, 5)) >>> index = torch.tensor([[0, 1, 2, 0, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) tensor([[1., 0., 0., 1., 1.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.]]) >>> index = torch.tensor([[0, 1, 2, 0, 0], [0, 1, 2, 2, 2]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) tensor([[2., 0., 0., 1., 1.], [0., 2., 0., 0., 0.], [0., 0., 2., 1., 1.]]) """ def scatter_reduce( self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True, ) -> Tensor: r""" scatter_reduce(dim, index, src, reduce, *, include_self=True) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_reduce_` """ def scatter_reduce_( self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True, ) -> Tensor: r""" scatter_reduce_(dim, index, src, reduce, *, include_self=True) -> Tensor Reduces all values from the :attr:`src` tensor to the indices specified in the :attr:`index` tensor in the :attr:`self` tensor using the applied reduction defined via the :attr:`reduce` argument (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`). For each value in :attr:`src`, it is reduced to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. If :obj:`include_self="True"`, the values in the :attr:`self` tensor are included in the reduction. :attr:`self`, :attr:`index` and :attr:`src` should all have the same number of dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``index`` and ``src`` do not broadcast. For a 3-D tensor with :obj:`reduce="sum"` and :obj:`include_self=True` the output is given as:: self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 Note: This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. .. note:: The backward pass is implemented only for ``src.shape == index.shape``. .. warning:: This function is in beta and may change in the near future. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter and reduce. src (Tensor): the source elements to scatter and reduce reduce (str): the reduction operation to apply for non-unique indices (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) include_self (bool): whether elements from the :attr:`self` tensor are included in the reduction Example:: >>> src = torch.tensor([1., 2., 3., 4., 5., 6.]) >>> index = torch.tensor([0, 1, 0, 1, 2, 1]) >>> input = torch.tensor([1., 2., 3., 4.]) >>> input.scatter_reduce(0, index, src, reduce="sum") tensor([5., 14., 8., 4.]) >>> input.scatter_reduce(0, index, src, reduce="sum", include_self=False) tensor([4., 12., 5., 4.]) >>> input2 = torch.tensor([5., 4., 3., 2.]) >>> input2.scatter_reduce(0, index, src, reduce="amax") tensor([5., 6., 5., 2.]) >>> input2.scatter_reduce(0, index, src, reduce="amax", include_self=False) tensor([3., 6., 5., 2.]) """ @overload def select(self, dim: _int, index: _int | SymInt) -> Tensor: r""" select(dim, index) -> Tensor See :func:`torch.select` """ @overload def select(self, dim: str | EllipsisType | None, index: _int) -> Tensor: r""" select(dim, index) -> Tensor See :func:`torch.select` """ def select_scatter( self, src: Tensor, dim: _int, index: _int | SymInt, ) -> Tensor: r""" select_scatter(src, dim, index) -> Tensor See :func:`torch.select_scatter` """ @overload def set_( self, source: Storage | TypedStorage | UntypedStorage, storage_offset: IntLikeType, size: _symsize, stride: _symsize, ) -> Tensor: r""" set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, :attr:`self` tensor will share the same storage and have the same size and strides as :attr:`source`. Changes to elements in one tensor will be reflected in the other. If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying storage, offset, size, and stride. Args: source (Tensor or Storage): the tensor or storage to use storage_offset (int, optional): the offset in the storage size (torch.Size, optional): the desired size. Defaults to the size of the source. stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. """ @overload def set_(self, source: Storage | TypedStorage | UntypedStorage) -> Tensor: r""" set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, :attr:`self` tensor will share the same storage and have the same size and strides as :attr:`source`. Changes to elements in one tensor will be reflected in the other. If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying storage, offset, size, and stride. Args: source (Tensor or Storage): the tensor or storage to use storage_offset (int, optional): the offset in the storage size (torch.Size, optional): the desired size. Defaults to the size of the source. stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. """ def sgn(self) -> Tensor: r""" sgn() -> Tensor See :func:`torch.sgn` """ def sgn_(self) -> Tensor: r""" sgn_() -> Tensor In-place version of :meth:`~Tensor.sgn` """ def short(self) -> Tensor: r""" short(memory_format=torch.preserve_format) -> Tensor ``self.short()`` is equivalent to ``self.to(torch.int16)``. See :func:`to`. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def sigmoid(self) -> Tensor: r""" sigmoid() -> Tensor See :func:`torch.sigmoid` """ def sigmoid_(self) -> Tensor: r""" sigmoid_() -> Tensor In-place version of :meth:`~Tensor.sigmoid` """ def sign(self) -> Tensor: r""" sign() -> Tensor See :func:`torch.sign` """ def sign_(self) -> Tensor: r""" sign_() -> Tensor In-place version of :meth:`~Tensor.sign` """ def signbit(self) -> Tensor: r""" signbit() -> Tensor See :func:`torch.signbit` """ def sin(self) -> Tensor: r""" sin() -> Tensor See :func:`torch.sin` """ def sin_(self) -> Tensor: r""" sin_() -> Tensor In-place version of :meth:`~Tensor.sin` """ def sinc(self) -> Tensor: r""" sinc() -> Tensor See :func:`torch.sinc` """ def sinc_(self) -> Tensor: r""" sinc_() -> Tensor In-place version of :meth:`~Tensor.sinc` """ def sinh(self) -> Tensor: r""" sinh() -> Tensor See :func:`torch.sinh` """ def sinh_(self) -> Tensor: r""" sinh_() -> Tensor In-place version of :meth:`~Tensor.sinh` """ @overload def size(self, dim: None = None) -> Size: r""" size(dim=None) -> torch.Size or int Returns the size of the :attr:`self` tensor. If ``dim`` is not specified, the returned value is a :class:`torch.Size`, a subclass of :class:`tuple`. If ``dim`` is specified, returns an int holding the size of that dimension. Args: dim (int, optional): The dimension for which to retrieve the size. Example:: >>> t = torch.empty(3, 4, 5) >>> t.size() torch.Size([3, 4, 5]) >>> t.size(dim=1) 4 """ @overload def size(self, dim: _int) -> _int: r""" size(dim=None) -> torch.Size or int Returns the size of the :attr:`self` tensor. If ``dim`` is not specified, the returned value is a :class:`torch.Size`, a subclass of :class:`tuple`. If ``dim`` is specified, returns an int holding the size of that dimension. Args: dim (int, optional): The dimension for which to retrieve the size. Example:: >>> t = torch.empty(3, 4, 5) >>> t.size() torch.Size([3, 4, 5]) >>> t.size(dim=1) 4 """ def slice_inverse( self, src: Tensor, dim: _int = 0, start: _int | SymInt | None = None, end: _int | SymInt | None = None, step: _int | SymInt = 1, ) -> Tensor: ... def slice_scatter( self, src: Tensor, dim: _int = 0, start: _int | SymInt | None = None, end: _int | SymInt | None = None, step: _int | SymInt = 1, ) -> Tensor: r""" slice_scatter(src, dim=0, start=None, end=None, step=1) -> Tensor See :func:`torch.slice_scatter` """ def slogdet(self) -> torch.return_types.slogdet: r""" slogdet() -> (Tensor, Tensor) See :func:`torch.slogdet` """ def smm(self, mat2: Tensor) -> Tensor: r""" smm(mat) -> Tensor See :func:`torch.smm` """ @overload def softmax(self, dim: _int, dtype: _dtype | None = None) -> Tensor: r""" softmax(dim) -> Tensor Alias for :func:`torch.nn.functional.softmax`. """ @overload def softmax( self, dim: str | EllipsisType | None, *, dtype: _dtype | None = None, ) -> Tensor: r""" softmax(dim) -> Tensor Alias for :func:`torch.nn.functional.softmax`. """ @overload def sort( self, *, stable: _bool | None, dim: _int = -1, descending: _bool = False, ) -> torch.return_types.sort: r""" sort(dim=-1, descending=False) -> (Tensor, LongTensor) See :func:`torch.sort` """ @overload def sort( self, dim: _int = -1, descending: _bool = False, ) -> torch.return_types.sort: r""" sort(dim=-1, descending=False) -> (Tensor, LongTensor) See :func:`torch.sort` """ @overload def sort( self, *, stable: _bool | None, dim: str | EllipsisType | None, descending: _bool = False, ) -> torch.return_types.sort: r""" sort(dim=-1, descending=False) -> (Tensor, LongTensor) See :func:`torch.sort` """ @overload def sort( self, dim: str | EllipsisType | None, descending: _bool = False, ) -> torch.return_types.sort: r""" sort(dim=-1, descending=False) -> (Tensor, LongTensor) See :func:`torch.sort` """ def sparse_dim(self) -> _int: r""" sparse_dim() -> int Return the number of sparse dimensions in a :ref:`sparse tensor ` :attr:`self`. .. note:: Returns ``0`` if :attr:`self` is not a sparse tensor. See also :meth:`Tensor.dense_dim` and :ref:`hybrid tensors `. """ def sparse_mask(self, mask: Tensor) -> Tensor: r""" sparse_mask(mask) -> Tensor Returns a new :ref:`sparse tensor ` with values from a strided tensor :attr:`self` filtered by the indices of the sparse tensor :attr:`mask`. The values of :attr:`mask` sparse tensor are ignored. :attr:`self` and :attr:`mask` tensors must have the same shape. .. note:: The returned sparse tensor might contain duplicate values if :attr:`mask` is not coalesced. It is therefore advisable to pass ``mask.coalesce()`` if such behavior is not desired. .. note:: The returned sparse tensor has the same indices as the sparse tensor :attr:`mask`, even when the corresponding values in :attr:`self` are zeros. Args: mask (Tensor): a sparse tensor whose indices are used as a filter Example:: >>> nse = 5 >>> dims = (5, 5, 2, 2) >>> I = torch.cat([torch.randint(0, dims[0], size=(nse,)), ... torch.randint(0, dims[1], size=(nse,))], 0).reshape(2, nse) >>> V = torch.randn(nse, dims[2], dims[3]) >>> S = torch.sparse_coo_tensor(I, V, dims).coalesce() >>> D = torch.randn(dims) >>> D.sparse_mask(S) tensor(indices=tensor([[0, 0, 0, 2], [0, 1, 4, 3]]), values=tensor([[[ 1.6550, 0.2397], [-0.1611, -0.0779]], [[ 0.2326, -1.0558], [ 1.4711, 1.9678]], [[-0.5138, -0.0411], [ 1.9417, 0.5158]], [[ 0.0793, 0.0036], [-0.2569, -0.1055]]]), size=(5, 5, 2, 2), nnz=4, layout=torch.sparse_coo) """ def sparse_resize_( self, size: _size, sparse_dim: _int, dense_dim: _int, ) -> Tensor: r""" sparse_resize_(size, sparse_dim, dense_dim) -> Tensor Resizes :attr:`self` :ref:`sparse tensor ` to the desired size and the number of sparse and dense dimensions. .. note:: If the number of specified elements in :attr:`self` is zero, then :attr:`size`, :attr:`sparse_dim`, and :attr:`dense_dim` can be any size and positive integers such that ``len(size) == sparse_dim + dense_dim``. If :attr:`self` specifies one or more elements, however, then each dimension in :attr:`size` must not be smaller than the corresponding dimension of :attr:`self`, :attr:`sparse_dim` must equal the number of sparse dimensions in :attr:`self`, and :attr:`dense_dim` must equal the number of dense dimensions in :attr:`self`. .. warning:: Throws an error if :attr:`self` is not a sparse tensor. Args: size (torch.Size): the desired size. If :attr:`self` is non-empty sparse tensor, the desired size cannot be smaller than the original size. sparse_dim (int): the number of sparse dimensions dense_dim (int): the number of dense dimensions """ def sparse_resize_and_clear_( self, size: _size, sparse_dim: _int, dense_dim: _int, ) -> Tensor: r""" sparse_resize_and_clear_(size, sparse_dim, dense_dim) -> Tensor Removes all specified elements from a :ref:`sparse tensor ` :attr:`self` and resizes :attr:`self` to the desired size and the number of sparse and dense dimensions. .. warning: Throws an error if :attr:`self` is not a sparse tensor. Args: size (torch.Size): the desired size. sparse_dim (int): the number of sparse dimensions dense_dim (int): the number of dense dimensions """ @overload def split(self, split_size: _int, dim: _int = 0) -> Sequence[Tensor]: ... @overload def split( self, split_size: tuple[_int, ...], dim: _int = 0, ) -> Sequence[Tensor]: ... def split_with_sizes( self, split_sizes: Sequence[_int | SymInt], dim: _int = 0, ) -> tuple[Tensor, ...]: ... def sqrt(self) -> Tensor: r""" sqrt() -> Tensor See :func:`torch.sqrt` """ def sqrt_(self) -> Tensor: r""" sqrt_() -> Tensor In-place version of :meth:`~Tensor.sqrt` """ def square(self) -> Tensor: r""" square() -> Tensor See :func:`torch.square` """ def square_(self) -> Tensor: r""" square_() -> Tensor In-place version of :meth:`~Tensor.square` """ @overload def squeeze(self) -> Tensor: r""" squeeze(dim=None) -> Tensor See :func:`torch.squeeze` """ @overload def squeeze(self, dim: _int) -> Tensor: r""" squeeze(dim=None) -> Tensor See :func:`torch.squeeze` """ @overload def squeeze(self, dim: _size) -> Tensor: r""" squeeze(dim=None) -> Tensor See :func:`torch.squeeze` """ @overload def squeeze(self, *dim: _int) -> Tensor: r""" squeeze(dim=None) -> Tensor See :func:`torch.squeeze` """ @overload def squeeze(self, dim: str | EllipsisType | None) -> Tensor: r""" squeeze(dim=None) -> Tensor See :func:`torch.squeeze` """ @overload def squeeze_(self) -> Tensor: r""" squeeze_(dim=None) -> Tensor In-place version of :meth:`~Tensor.squeeze` """ @overload def squeeze_(self, dim: _int) -> Tensor: r""" squeeze_(dim=None) -> Tensor In-place version of :meth:`~Tensor.squeeze` """ @overload def squeeze_(self, dim: _size) -> Tensor: r""" squeeze_(dim=None) -> Tensor In-place version of :meth:`~Tensor.squeeze` """ @overload def squeeze_(self, *dim: _int) -> Tensor: r""" squeeze_(dim=None) -> Tensor In-place version of :meth:`~Tensor.squeeze` """ @overload def squeeze_(self, dim: str | EllipsisType | None) -> Tensor: r""" squeeze_(dim=None) -> Tensor In-place version of :meth:`~Tensor.squeeze` """ def sspaddmm( self, mat1: Tensor, mat2: Tensor, *, beta: Number | _complex = 1, alpha: Number | _complex = 1, ) -> Tensor: r""" sspaddmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor See :func:`torch.sspaddmm` """ @overload def std( self, dim: _int | _size | None, unbiased: _bool = True, keepdim: _bool = False, ) -> Tensor: r""" std(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.std` """ @overload def std( self, dim: _int | _size | None = None, *, correction: Number | _complex | None = None, keepdim: _bool = False, ) -> Tensor: r""" std(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.std` """ @overload def std(self, unbiased: _bool = True) -> Tensor: r""" std(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.std` """ @overload def std( self, dim: Sequence[str | EllipsisType | None], unbiased: _bool = True, keepdim: _bool = False, ) -> Tensor: r""" std(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.std` """ @overload def std( self, dim: Sequence[str | EllipsisType | None], *, correction: Number | _complex | None = None, keepdim: _bool = False, ) -> Tensor: r""" std(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.std` """ def untyped_storage(self) -> UntypedStorage: ... def storage_offset(self) -> _int | SymInt: r""" storage_offset() -> int Returns :attr:`self` tensor's offset in the underlying storage in terms of number of storage elements (not bytes). Example:: >>> x = torch.tensor([1, 2, 3, 4, 5]) >>> x.storage_offset() 0 >>> x[3:].storage_offset() 3 """ def storage_type(self) -> Storage: ... @overload def stride(self, dim: None = None) -> tuple[_int, ...]: r""" stride(dim) -> tuple or int Returns the stride of :attr:`self` tensor. Stride is the jump necessary to go from one element to the next one in the specified dimension :attr:`dim`. A tuple of all strides is returned when no argument is passed in. Otherwise, an integer value is returned as the stride in the particular dimension :attr:`dim`. Args: dim (int, optional): the desired dimension in which stride is required Example:: >>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) >>> x.stride() (5, 1) >>> x.stride(0) 5 >>> x.stride(-1) 1 """ @overload def stride(self, dim: _int) -> _int: r""" stride(dim) -> tuple or int Returns the stride of :attr:`self` tensor. Stride is the jump necessary to go from one element to the next one in the specified dimension :attr:`dim`. A tuple of all strides is returned when no argument is passed in. Otherwise, an integer value is returned as the stride in the particular dimension :attr:`dim`. Args: dim (int, optional): the desired dimension in which stride is required Example:: >>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) >>> x.stride() (5, 1) >>> x.stride(0) 5 >>> x.stride(-1) 1 """ def sub( self, other: Tensor | Number | _complex | torch.SymInt | torch.SymFloat, *, alpha: Number | _complex | None = 1, out: Tensor | None = None, ) -> Tensor: r""" sub(other, *, alpha=1) -> Tensor See :func:`torch.sub`. """ def sub_( self, other: Tensor | Number | _complex | torch.SymInt | torch.SymFloat, *, alpha: Number | _complex | None = 1, ) -> Tensor: r""" sub_(other, *, alpha=1) -> Tensor In-place version of :meth:`~Tensor.sub` """ @overload def subtract( self, other: Tensor, *, alpha: Number | _complex = 1, ) -> Tensor: r""" subtract(other, *, alpha=1) -> Tensor See :func:`torch.subtract`. """ @overload def subtract( self, other: Number | _complex, alpha: Number | _complex = 1, ) -> Tensor: r""" subtract(other, *, alpha=1) -> Tensor See :func:`torch.subtract`. """ @overload def subtract_( self, other: Tensor, *, alpha: Number | _complex = 1, ) -> Tensor: r""" subtract_(other, *, alpha=1) -> Tensor In-place version of :meth:`~Tensor.subtract`. """ @overload def subtract_( self, other: Number | _complex, alpha: Number | _complex = 1, ) -> Tensor: r""" subtract_(other, *, alpha=1) -> Tensor In-place version of :meth:`~Tensor.subtract`. """ @overload def sum(self, *, dtype: _dtype | None = None) -> Tensor: r""" sum(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.sum` """ @overload def sum( self, dim: _int | _size | None, keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" sum(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.sum` """ @overload def sum( self, dim: Sequence[str | EllipsisType | None], keepdim: _bool = False, *, dtype: _dtype | None = None, ) -> Tensor: r""" sum(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.sum` """ @overload def sum_to_size(self, size: Sequence[_int | SymInt]) -> Tensor: r""" sum_to_size(*size) -> Tensor Sum ``this`` tensor to :attr:`size`. :attr:`size` must be broadcastable to ``this`` tensor size. Args: size (int...): a sequence of integers defining the shape of the output tensor. """ @overload def sum_to_size(self, *size: _int | SymInt) -> Tensor: r""" sum_to_size(*size) -> Tensor Sum ``this`` tensor to :attr:`size`. :attr:`size` must be broadcastable to ``this`` tensor size. Args: size (int...): a sequence of integers defining the shape of the output tensor. """ def svd( self, some: _bool = True, compute_uv: _bool = True, ) -> torch.return_types.svd: r""" svd(some=True, compute_uv=True) -> (Tensor, Tensor, Tensor) See :func:`torch.svd` """ def swapaxes(self, axis0: _int, axis1: _int) -> Tensor: r""" swapaxes(axis0, axis1) -> Tensor See :func:`torch.swapaxes` """ def swapaxes_(self, axis0: _int, axis1: _int) -> Tensor: r""" swapaxes_(axis0, axis1) -> Tensor In-place version of :meth:`~Tensor.swapaxes` """ def swapdims(self, dim0: _int, dim1: _int) -> Tensor: r""" swapdims(dim0, dim1) -> Tensor See :func:`torch.swapdims` """ def swapdims_(self, dim0: _int, dim1: _int) -> Tensor: r""" swapdims_(dim0, dim1) -> Tensor In-place version of :meth:`~Tensor.swapdims` """ def t(self) -> Tensor: r""" t() -> Tensor See :func:`torch.t` """ def t_(self) -> Tensor: r""" t_() -> Tensor In-place version of :meth:`~Tensor.t` """ def take(self, index: Tensor) -> Tensor: r""" take(indices) -> Tensor See :func:`torch.take` """ def take_along_dim( self, indices: Tensor, dim: _int | None = None, ) -> Tensor: r""" take_along_dim(indices, dim) -> Tensor See :func:`torch.take_along_dim` """ def tan(self) -> Tensor: r""" tan() -> Tensor See :func:`torch.tan` """ def tan_(self) -> Tensor: r""" tan_() -> Tensor In-place version of :meth:`~Tensor.tan` """ def tanh(self) -> Tensor: r""" tanh() -> Tensor See :func:`torch.tanh` """ def tanh_(self) -> Tensor: r""" tanh_() -> Tensor In-place version of :meth:`~Tensor.tanh` """ @overload def tensor_split( self, indices: Sequence[_int | SymInt], dim: _int = 0, ) -> tuple[Tensor, ...]: r""" tensor_split(indices_or_sections, dim=0) -> List of Tensors See :func:`torch.tensor_split` """ @overload def tensor_split( self, tensor_indices_or_sections: Tensor, dim: _int = 0, ) -> tuple[Tensor, ...]: r""" tensor_split(indices_or_sections, dim=0) -> List of Tensors See :func:`torch.tensor_split` """ @overload def tensor_split( self, sections: _int | SymInt, dim: _int = 0, ) -> tuple[Tensor, ...]: r""" tensor_split(indices_or_sections, dim=0) -> List of Tensors See :func:`torch.tensor_split` """ @overload def tile(self, dims: Sequence[_int | SymInt]) -> Tensor: r""" tile(dims) -> Tensor See :func:`torch.tile` """ @overload def tile(self, *dims: _int | SymInt) -> Tensor: r""" tile(dims) -> Tensor See :func:`torch.tile` """ @overload def to( self, dtype: _dtype, non_blocking: _bool = False, copy: _bool = False, *, memory_format: torch.memory_format | None = None, ) -> Tensor: r""" to(*args, **kwargs) -> Tensor Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are inferred from the arguments of ``self.to(*args, **kwargs)``. .. note:: If the ``self`` Tensor already has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. Otherwise, the returned tensor is a copy of ``self`` with the desired :class:`torch.dtype` and :class:`torch.device`. .. note:: If ``self`` requires gradients (``requires_grad=True``) but the target ``dtype`` specified is an integer type, the returned tensor will implicitly set ``requires_grad=False``. This is because only tensors with floating-point or complex dtypes can require gradients. Here are the ways to call ``to``: .. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`dtype` Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. .. note:: According to `C++ type conversion rules `_, converting floating point value to integer type will truncate the fractional part. If the truncated value cannot fit into the target type (e.g., casting ``torch.inf`` to ``torch.long``), the behavior is undefined and the result may vary across platforms. .. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`device` and (optional) :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. When :attr:`non_blocking` is set to ``True``, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the `tutorial on good usage of non_blocking and pin_memory `__. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. .. method:: to(other, non_blocking=False, copy=False) -> Tensor :noindex: Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as the Tensor :attr:`other`. When :attr:`non_blocking` is set to ``True``, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the `tutorial on good usage of non_blocking and pin_memory `__. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Example:: >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu >>> tensor.to(torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64) >>> cuda0 = torch.device('cuda:0') >>> tensor.to(cuda0) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], device='cuda:0') >>> tensor.to(cuda0, dtype=torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') >>> other = torch.randn((), dtype=torch.float64, device=cuda0) >>> tensor.to(other, non_blocking=True) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') """ @overload def to( self, device: DeviceLikeType | None = None, dtype: _dtype | None = None, non_blocking: _bool = False, copy: _bool = False, *, memory_format: torch.memory_format | None = None, ) -> Tensor: r""" to(*args, **kwargs) -> Tensor Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are inferred from the arguments of ``self.to(*args, **kwargs)``. .. note:: If the ``self`` Tensor already has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. Otherwise, the returned tensor is a copy of ``self`` with the desired :class:`torch.dtype` and :class:`torch.device`. .. note:: If ``self`` requires gradients (``requires_grad=True``) but the target ``dtype`` specified is an integer type, the returned tensor will implicitly set ``requires_grad=False``. This is because only tensors with floating-point or complex dtypes can require gradients. Here are the ways to call ``to``: .. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`dtype` Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. .. note:: According to `C++ type conversion rules `_, converting floating point value to integer type will truncate the fractional part. If the truncated value cannot fit into the target type (e.g., casting ``torch.inf`` to ``torch.long``), the behavior is undefined and the result may vary across platforms. .. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`device` and (optional) :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. When :attr:`non_blocking` is set to ``True``, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the `tutorial on good usage of non_blocking and pin_memory `__. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. .. method:: to(other, non_blocking=False, copy=False) -> Tensor :noindex: Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as the Tensor :attr:`other`. When :attr:`non_blocking` is set to ``True``, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the `tutorial on good usage of non_blocking and pin_memory `__. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Example:: >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu >>> tensor.to(torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64) >>> cuda0 = torch.device('cuda:0') >>> tensor.to(cuda0) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], device='cuda:0') >>> tensor.to(cuda0, dtype=torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') >>> other = torch.randn((), dtype=torch.float64, device=cuda0) >>> tensor.to(other, non_blocking=True) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') """ @overload def to( self, other: Tensor, non_blocking: _bool = False, copy: _bool = False, *, memory_format: torch.memory_format | None = None, ) -> Tensor: r""" to(*args, **kwargs) -> Tensor Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are inferred from the arguments of ``self.to(*args, **kwargs)``. .. note:: If the ``self`` Tensor already has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. Otherwise, the returned tensor is a copy of ``self`` with the desired :class:`torch.dtype` and :class:`torch.device`. .. note:: If ``self`` requires gradients (``requires_grad=True``) but the target ``dtype`` specified is an integer type, the returned tensor will implicitly set ``requires_grad=False``. This is because only tensors with floating-point or complex dtypes can require gradients. Here are the ways to call ``to``: .. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`dtype` Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. .. note:: According to `C++ type conversion rules `_, converting floating point value to integer type will truncate the fractional part. If the truncated value cannot fit into the target type (e.g., casting ``torch.inf`` to ``torch.long``), the behavior is undefined and the result may vary across platforms. .. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`device` and (optional) :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. When :attr:`non_blocking` is set to ``True``, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the `tutorial on good usage of non_blocking and pin_memory `__. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. .. method:: to(other, non_blocking=False, copy=False) -> Tensor :noindex: Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as the Tensor :attr:`other`. When :attr:`non_blocking` is set to ``True``, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the `tutorial on good usage of non_blocking and pin_memory `__. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Example:: >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu >>> tensor.to(torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64) >>> cuda0 = torch.device('cuda:0') >>> tensor.to(cuda0) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], device='cuda:0') >>> tensor.to(cuda0, dtype=torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') >>> other = torch.randn((), dtype=torch.float64, device=cuda0) >>> tensor.to(other, non_blocking=True) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') """ def to_dense( self, dtype: _dtype | None = None, *, masked_grad: _bool | None = None, ) -> Tensor: r""" to_dense(dtype=None, *, masked_grad=True) -> Tensor Creates a strided copy of :attr:`self` if :attr:`self` is not a strided tensor, otherwise returns :attr:`self`. Keyword args: {dtype} masked_grad (bool, optional): If set to ``True`` (default) and :attr:`self` has a sparse layout then the backward of :meth:`to_dense` returns ``grad.sparse_mask(self)``. Example:: >>> s = torch.sparse_coo_tensor( ... torch.tensor([[1, 1], ... [0, 2]]), ... torch.tensor([9, 10]), ... size=(3, 3)) >>> s.to_dense() tensor([[ 0, 0, 0], [ 9, 0, 10], [ 0, 0, 0]]) """ def to_mkldnn(self, dtype: _dtype | None = None) -> Tensor: r""" to_mkldnn() -> Tensor Returns a copy of the tensor in ``torch.mkldnn`` layout. """ def to_padded_tensor( self, padding: _float, output_size: Sequence[_int | SymInt] | None = None, ) -> Tensor: r""" to_padded_tensor(padding, output_size=None) -> Tensor See :func:`to_padded_tensor` """ @overload def to_sparse( self, *, layout: _layout | None = None, blocksize: _int | _size | None = None, dense_dim: _int | None = None, ) -> Tensor: r""" to_sparse(sparseDims) -> Tensor Returns a sparse copy of the tensor. PyTorch supports sparse tensors in :ref:`coordinate format `. Args: sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor Example:: >>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]]) >>> d tensor([[ 0, 0, 0], [ 9, 0, 10], [ 0, 0, 0]]) >>> d.to_sparse() tensor(indices=tensor([[1, 1], [0, 2]]), values=tensor([ 9, 10]), size=(3, 3), nnz=2, layout=torch.sparse_coo) >>> d.to_sparse(1) tensor(indices=tensor([[1]]), values=tensor([[ 9, 0, 10]]), size=(3, 3), nnz=1, layout=torch.sparse_coo) .. method:: to_sparse(*, layout=None, blocksize=None, dense_dim=None) -> Tensor :noindex: Returns a sparse tensor with the specified layout and blocksize. If the :attr:`self` is strided, the number of dense dimensions could be specified, and a hybrid sparse tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. .. note:: If the :attr:`self` layout and blocksize parameters match with the specified layout and blocksize, return :attr:`self`. Otherwise, return a sparse tensor copy of :attr:`self`. Args: layout (:class:`torch.layout`, optional): The desired sparse layout. One of ``torch.sparse_coo``, ``torch.sparse_csr``, ``torch.sparse_csc``, ``torch.sparse_bsr``, or ``torch.sparse_bsc``. Default: if ``None``, ``torch.sparse_coo``. blocksize (list, tuple, :class:`torch.Size`, optional): Block size of the resulting BSR or BSC tensor. For other layouts, specifying the block size that is not ``None`` will result in a RuntimeError exception. A block size must be a tuple of length two such that its items evenly divide the two sparse dimensions. dense_dim (int, optional): Number of dense dimensions of the resulting CSR, CSC, BSR or BSC tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> x = torch.tensor([[1, 0], [0, 0], [2, 3]]) >>> x.to_sparse(layout=torch.sparse_coo) tensor(indices=tensor([[0, 2, 2], [0, 0, 1]]), values=tensor([1, 2, 3]), size=(3, 2), nnz=3, layout=torch.sparse_coo) >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(1, 2)) tensor(crow_indices=tensor([0, 1, 1, 2]), col_indices=tensor([0, 0]), values=tensor([[[1, 0]], [[2, 3]]]), size=(3, 2), nnz=2, layout=torch.sparse_bsr) >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(2, 1)) RuntimeError: Tensor size(-2) 3 needs to be divisible by blocksize[0] 2 >>> x.to_sparse(layout=torch.sparse_csr, blocksize=(3, 1)) RuntimeError: to_sparse for Strided to SparseCsr conversion does not use specified blocksize >>> x = torch.tensor([[[1], [0]], [[0], [0]], [[2], [3]]]) >>> x.to_sparse(layout=torch.sparse_csr, dense_dim=1) tensor(crow_indices=tensor([0, 1, 1, 3]), col_indices=tensor([0, 0, 1]), values=tensor([[1], [2], [3]]), size=(3, 2, 1), nnz=3, layout=torch.sparse_csr) """ @overload def to_sparse(self, sparse_dim: _int) -> Tensor: r""" to_sparse(sparseDims) -> Tensor Returns a sparse copy of the tensor. PyTorch supports sparse tensors in :ref:`coordinate format `. Args: sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor Example:: >>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]]) >>> d tensor([[ 0, 0, 0], [ 9, 0, 10], [ 0, 0, 0]]) >>> d.to_sparse() tensor(indices=tensor([[1, 1], [0, 2]]), values=tensor([ 9, 10]), size=(3, 3), nnz=2, layout=torch.sparse_coo) >>> d.to_sparse(1) tensor(indices=tensor([[1]]), values=tensor([[ 9, 0, 10]]), size=(3, 3), nnz=1, layout=torch.sparse_coo) .. method:: to_sparse(*, layout=None, blocksize=None, dense_dim=None) -> Tensor :noindex: Returns a sparse tensor with the specified layout and blocksize. If the :attr:`self` is strided, the number of dense dimensions could be specified, and a hybrid sparse tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. .. note:: If the :attr:`self` layout and blocksize parameters match with the specified layout and blocksize, return :attr:`self`. Otherwise, return a sparse tensor copy of :attr:`self`. Args: layout (:class:`torch.layout`, optional): The desired sparse layout. One of ``torch.sparse_coo``, ``torch.sparse_csr``, ``torch.sparse_csc``, ``torch.sparse_bsr``, or ``torch.sparse_bsc``. Default: if ``None``, ``torch.sparse_coo``. blocksize (list, tuple, :class:`torch.Size`, optional): Block size of the resulting BSR or BSC tensor. For other layouts, specifying the block size that is not ``None`` will result in a RuntimeError exception. A block size must be a tuple of length two such that its items evenly divide the two sparse dimensions. dense_dim (int, optional): Number of dense dimensions of the resulting CSR, CSC, BSR or BSC tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> x = torch.tensor([[1, 0], [0, 0], [2, 3]]) >>> x.to_sparse(layout=torch.sparse_coo) tensor(indices=tensor([[0, 2, 2], [0, 0, 1]]), values=tensor([1, 2, 3]), size=(3, 2), nnz=3, layout=torch.sparse_coo) >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(1, 2)) tensor(crow_indices=tensor([0, 1, 1, 2]), col_indices=tensor([0, 0]), values=tensor([[[1, 0]], [[2, 3]]]), size=(3, 2), nnz=2, layout=torch.sparse_bsr) >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(2, 1)) RuntimeError: Tensor size(-2) 3 needs to be divisible by blocksize[0] 2 >>> x.to_sparse(layout=torch.sparse_csr, blocksize=(3, 1)) RuntimeError: to_sparse for Strided to SparseCsr conversion does not use specified blocksize >>> x = torch.tensor([[[1], [0]], [[0], [0]], [[2], [3]]]) >>> x.to_sparse(layout=torch.sparse_csr, dense_dim=1) tensor(crow_indices=tensor([0, 1, 1, 3]), col_indices=tensor([0, 0, 1]), values=tensor([[1], [2], [3]]), size=(3, 2, 1), nnz=3, layout=torch.sparse_csr) """ def to_sparse_bsc( self, blocksize: _int | _size, dense_dim: _int | None = None, ) -> Tensor: r""" to_sparse_bsc(blocksize, dense_dim) -> Tensor Convert a tensor to a block sparse column (BSC) storage format of given blocksize. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid BSC tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: blocksize (list, tuple, :class:`torch.Size`, optional): Block size of the resulting BSC tensor. A block size must be a tuple of length two such that its items evenly divide the two sparse dimensions. dense_dim (int, optional): Number of dense dimensions of the resulting BSC tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(10, 10) >>> sparse = dense.to_sparse_csr() >>> sparse_bsc = sparse.to_sparse_bsc((5, 5)) >>> sparse_bsc.row_indices() tensor([0, 1, 0, 1]) >>> dense = torch.zeros(4, 3, 1) >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 >>> dense.to_sparse_bsc((2, 1), 1) tensor(ccol_indices=tensor([0, 1, 2, 3]), row_indices=tensor([0, 1, 0]), values=tensor([[[[1.]], [[1.]]], [[[1.]], [[1.]]], [[[1.]], [[1.]]]]), size=(4, 3, 1), nnz=3, layout=torch.sparse_bsc) """ def to_sparse_bsr( self, blocksize: _int | _size, dense_dim: _int | None = None, ) -> Tensor: r""" to_sparse_bsr(blocksize, dense_dim) -> Tensor Convert a tensor to a block sparse row (BSR) storage format of given blocksize. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid BSR tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: blocksize (list, tuple, :class:`torch.Size`, optional): Block size of the resulting BSR tensor. A block size must be a tuple of length two such that its items evenly divide the two sparse dimensions. dense_dim (int, optional): Number of dense dimensions of the resulting BSR tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(10, 10) >>> sparse = dense.to_sparse_csr() >>> sparse_bsr = sparse.to_sparse_bsr((5, 5)) >>> sparse_bsr.col_indices() tensor([0, 1, 0, 1]) >>> dense = torch.zeros(4, 3, 1) >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 >>> dense.to_sparse_bsr((2, 1), 1) tensor(crow_indices=tensor([0, 2, 3]), col_indices=tensor([0, 2, 1]), values=tensor([[[[1.]], [[1.]]], [[[1.]], [[1.]]], [[[1.]], [[1.]]]]), size=(4, 3, 1), nnz=3, layout=torch.sparse_bsr) """ def to_sparse_csc(self, dense_dim: _int | None = None) -> Tensor: r""" to_sparse_csc() -> Tensor Convert a tensor to compressed column storage (CSC) format. Except for strided tensors, only works with 2D tensors. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid CSC tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: dense_dim (int, optional): Number of dense dimensions of the resulting CSC tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csc() >>> sparse._nnz() 25 >>> dense = torch.zeros(3, 3, 1, 1) >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 >>> dense.to_sparse_csc(dense_dim=2) tensor(ccol_indices=tensor([0, 1, 2, 3]), row_indices=tensor([0, 2, 1]), values=tensor([[[1.]], [[1.]], [[1.]]]), size=(3, 3, 1, 1), nnz=3, layout=torch.sparse_csc) """ def to_sparse_csr(self, dense_dim: _int | None = None) -> Tensor: r""" to_sparse_csr(dense_dim=None) -> Tensor Convert a tensor to compressed row storage format (CSR). Except for strided tensors, only works with 2D tensors. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid CSR tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: dense_dim (int, optional): Number of dense dimensions of the resulting CSR tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csr() >>> sparse._nnz() 25 >>> dense = torch.zeros(3, 3, 1, 1) >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 >>> dense.to_sparse_csr(dense_dim=2) tensor(crow_indices=tensor([0, 1, 2, 3]), col_indices=tensor([0, 2, 1]), values=tensor([[[1.]], [[1.]], [[1.]]]), size=(3, 3, 1, 1), nnz=3, layout=torch.sparse_csr) """ def tolist(self) -> list: r""" tolist() -> list or number Returns the tensor as a (nested) list. For scalars, a standard Python number is returned, just like with :meth:`~Tensor.item`. Tensors are automatically moved to the CPU first if necessary. This operation is not differentiable. Examples:: >>> a = torch.randn(2, 2) >>> a.tolist() [[0.012766935862600803, 0.5415473580360413], [-0.08909505605697632, 0.7729271650314331]] >>> a[0,0].tolist() 0.012766935862600803 """ def topk( self, k: _int | SymInt, dim: _int = -1, largest: _bool = True, sorted: _bool = True, ) -> torch.return_types.topk: r""" topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor) See :func:`torch.topk` """ def trace(self) -> Tensor: r""" trace() -> Tensor See :func:`torch.trace` """ @overload def transpose(self, dim0: _int, dim1: _int) -> Tensor: r""" transpose(dim0, dim1) -> Tensor See :func:`torch.transpose` """ @overload def transpose( self, dim0: str | EllipsisType | None, dim1: str | EllipsisType | None, ) -> Tensor: r""" transpose(dim0, dim1) -> Tensor See :func:`torch.transpose` """ def transpose_(self, dim0: _int, dim1: _int) -> Tensor: r""" transpose_(dim0, dim1) -> Tensor In-place version of :meth:`~Tensor.transpose` """ def triangular_solve( self, A: Tensor, upper: _bool = True, transpose: _bool = False, unitriangular: _bool = False, ) -> torch.return_types.triangular_solve: r""" triangular_solve(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) See :func:`torch.triangular_solve` """ def tril(self, diagonal: _int = 0) -> Tensor: r""" tril(diagonal=0) -> Tensor See :func:`torch.tril` """ def tril_(self, diagonal: _int = 0) -> Tensor: r""" tril_(diagonal=0) -> Tensor In-place version of :meth:`~Tensor.tril` """ def triu(self, diagonal: _int = 0) -> Tensor: r""" triu(diagonal=0) -> Tensor See :func:`torch.triu` """ def triu_(self, diagonal: _int = 0) -> Tensor: r""" triu_(diagonal=0) -> Tensor In-place version of :meth:`~Tensor.triu` """ def true_divide( self, other: Tensor | Number | torch.SymInt | torch.SymFloat, *, out: Tensor | None = None, ) -> Tensor: r""" true_divide(value) -> Tensor See :func:`torch.true_divide` """ def true_divide_( self, other: Tensor | Number | torch.SymInt | torch.SymFloat, ) -> Tensor: r""" true_divide_(value) -> Tensor In-place version of :meth:`~Tensor.true_divide_` """ def trunc(self) -> Tensor: r""" trunc() -> Tensor See :func:`torch.trunc` """ def trunc_(self) -> Tensor: r""" trunc_() -> Tensor In-place version of :meth:`~Tensor.trunc` """ @overload def type(self, dtype: None = None, non_blocking: _bool = False) -> str: r""" type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor Returns the type if `dtype` is not provided, else casts this object to the specified type. If this is already of the correct type, no copy is performed and the original object is returned. Args: dtype (dtype or string): The desired type non_blocking (bool): If ``True``, and the source is in pinned memory and destination is on the GPU or vice versa, the copy is performed asynchronously with respect to the host. Otherwise, the argument has no effect. **kwargs: For compatibility, may contain the key ``async`` in place of the ``non_blocking`` argument. The ``async`` arg is deprecated. """ @overload def type(self, dtype: str | _dtype, non_blocking: _bool = False) -> Tensor: r""" type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor Returns the type if `dtype` is not provided, else casts this object to the specified type. If this is already of the correct type, no copy is performed and the original object is returned. Args: dtype (dtype or string): The desired type non_blocking (bool): If ``True``, and the source is in pinned memory and destination is on the GPU or vice versa, the copy is performed asynchronously with respect to the host. Otherwise, the argument has no effect. **kwargs: For compatibility, may contain the key ``async`` in place of the ``non_blocking`` argument. The ``async`` arg is deprecated. """ def type_as(self, other: Tensor) -> Tensor: r""" type_as(tensor) -> Tensor Returns this tensor cast to the type of the given tensor. This is a no-op if the tensor is already of the correct type. This is equivalent to ``self.type(tensor.type())`` Args: tensor (Tensor): the tensor which has the desired type """ @overload def unbind(self, dim: _int = 0) -> tuple[Tensor, ...]: r""" unbind(dim=0) -> seq See :func:`torch.unbind` """ @overload def unbind(self, dim: str | EllipsisType | None) -> tuple[Tensor, ...]: r""" unbind(dim=0) -> seq See :func:`torch.unbind` """ @overload def unflatten( self, dim: str | EllipsisType | None, sizes: Sequence[_int | SymInt], names: Sequence[str | EllipsisType | None], ) -> Tensor: ... @overload def unflatten(self, dim: _int, sizes: Sequence[_int | SymInt]) -> Tensor: ... def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: r""" unfold(dimension, size, step) -> Tensor Returns a view of the original tensor which contains all slices of size :attr:`size` from :attr:`self` tensor in the dimension :attr:`dimension`. Step between two slices is given by :attr:`step`. If `sizedim` is the size of dimension :attr:`dimension` for :attr:`self`, the size of dimension :attr:`dimension` in the returned tensor will be `(sizedim - size) / step + 1`. An additional dimension of size :attr:`size` is appended in the returned tensor. Args: dimension (int): dimension in which unfolding happens size (int): the size of each slice that is unfolded step (int): the step between each slice Example:: >>> x = torch.arange(1., 8) >>> x tensor([ 1., 2., 3., 4., 5., 6., 7.]) >>> x.unfold(0, 2, 1) tensor([[ 1., 2.], [ 2., 3.], [ 3., 4.], [ 4., 5.], [ 5., 6.], [ 6., 7.]]) >>> x.unfold(0, 2, 2) tensor([[ 1., 2.], [ 3., 4.], [ 5., 6.]]) """ def uniform_( self, from_: _float = 0, to: _float = 1, *, generator: Generator | None = None, ) -> Tensor: r""" uniform_(from=0, to=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with numbers sampled from the continuous uniform distribution: .. math:: f(x) = \dfrac{1}{\text{to} - \text{from}} """ def unsafe_chunk(self, chunks: _int, dim: _int = 0) -> tuple[Tensor, ...]: r""" unsafe_chunk(chunks, dim=0) -> List of Tensors See :func:`torch.unsafe_chunk` """ def unsafe_split( self, split_size: _int | SymInt, dim: _int = 0, ) -> tuple[Tensor, ...]: r""" unsafe_split(split_size, dim=0) -> List of Tensors See :func:`torch.unsafe_split` """ def unsafe_split_with_sizes( self, split_sizes: Sequence[_int | SymInt], dim: _int = 0, ) -> tuple[Tensor, ...]: ... def unsqueeze(self, dim: _int) -> Tensor: r""" unsqueeze(dim) -> Tensor See :func:`torch.unsqueeze` """ def unsqueeze_(self, dim: _int) -> Tensor: r""" unsqueeze_(dim) -> Tensor In-place version of :meth:`~Tensor.unsqueeze` """ def values(self) -> Tensor: r""" values() -> Tensor Return the values tensor of a :ref:`sparse COO tensor `. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. See also :meth:`Tensor.indices`. .. note:: This method can only be called on a coalesced sparse tensor. See :meth:`Tensor.coalesce` for details. """ @overload def var( self, dim: _int | _size | None, unbiased: _bool = True, keepdim: _bool = False, ) -> Tensor: r""" var(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.var` """ @overload def var( self, dim: _int | _size | None = None, *, correction: Number | _complex | None = None, keepdim: _bool = False, ) -> Tensor: r""" var(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.var` """ @overload def var(self, unbiased: _bool = True) -> Tensor: r""" var(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.var` """ @overload def var( self, dim: Sequence[str | EllipsisType | None], unbiased: _bool = True, keepdim: _bool = False, ) -> Tensor: r""" var(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.var` """ @overload def var( self, dim: Sequence[str | EllipsisType | None], *, correction: Number | _complex | None = None, keepdim: _bool = False, ) -> Tensor: r""" var(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.var` """ def vdot(self, other: Tensor) -> Tensor: r""" vdot(other) -> Tensor See :func:`torch.vdot` """ @overload def view(self, dtype: _dtype) -> Tensor: r""" view(*shape) -> Tensor Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`shape`. The returned tensor shares the same data and must have the same number of elements, but may have a different size. For a tensor to be viewed, the new view size must be compatible with its original size and stride, i.e., each new view dimension must either be a subspace of an original dimension, or only span across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, .. math:: \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a :meth:`view` can be performed, it is advisable to use :meth:`reshape`, which returns a view if the shapes are compatible, and copies (equivalent to calling :meth:`contiguous`) otherwise. Args: shape (torch.Size or int...): the desired size Example:: >>> x = torch.randn(4, 4) >>> x.size() torch.Size([4, 4]) >>> y = x.view(16) >>> y.size() torch.Size([16]) >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions >>> z.size() torch.Size([2, 8]) >>> a = torch.randn(1, 2, 3, 4) >>> a.size() torch.Size([1, 2, 3, 4]) >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension >>> b.size() torch.Size([1, 3, 2, 4]) >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory >>> c.size() torch.Size([1, 3, 2, 4]) >>> torch.equal(b, c) False .. method:: view(dtype) -> Tensor :noindex: Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`dtype`. If the element size of :attr:`dtype` is different than that of ``self.dtype``, then the size of the last dimension of the output will be scaled proportionally. For instance, if :attr:`dtype` element size is twice that of ``self.dtype``, then each pair of elements in the last dimension of :attr:`self` will be combined, and the size of the last dimension of the output will be half that of :attr:`self`. If :attr:`dtype` element size is half that of ``self.dtype``, then each element in the last dimension of :attr:`self` will be split in two, and the size of the last dimension of the output will be double that of :attr:`self`. For this to be possible, the following conditions must be true: * ``self.dim()`` must be greater than 0. * ``self.stride(-1)`` must be 1. Additionally, if the element size of :attr:`dtype` is greater than that of ``self.dtype``, the following conditions must be true as well: * ``self.size(-1)`` must be divisible by the ratio between the element sizes of the dtypes. * ``self.storage_offset()`` must be divisible by the ratio between the element sizes of the dtypes. * The strides of all dimensions, except the last dimension, must be divisible by the ratio between the element sizes of the dtypes. If any of the above conditions are not met, an error is thrown. .. warning:: This overload is not supported by TorchScript, and using it in a Torchscript program will cause undefined behavior. Args: dtype (:class:`torch.dtype`): the desired dtype Example:: >>> x = torch.randn(4, 4) >>> x tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.dtype torch.float32 >>> y = x.view(torch.int32) >>> y tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], [-1105482831, 1061112040, 1057999968, -1084397505], [-1071760287, -1123489973, -1097310419, -1084649136], [-1101533110, 1073668768, -1082790149, -1088634448]], dtype=torch.int32) >>> y[0, 0] = 1000000000 >>> x tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.view(torch.cfloat) tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], [-0.1520+0.7472j, 0.5617-0.8649j], [-2.4724-0.0334j, -0.2976-0.8499j], [-0.2109+1.9913j, -0.9607-0.6123j]]) >>> x.view(torch.cfloat).size() torch.Size([4, 2]) >>> x.view(torch.uint8) tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, 8, 191], [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, 93, 191], [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, 89, 191], [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, 28, 191]], dtype=torch.uint8) >>> x.view(torch.uint8).size() torch.Size([4, 16]) """ @overload def view(self, size: Sequence[_int | SymInt]) -> Tensor: r""" view(*shape) -> Tensor Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`shape`. The returned tensor shares the same data and must have the same number of elements, but may have a different size. For a tensor to be viewed, the new view size must be compatible with its original size and stride, i.e., each new view dimension must either be a subspace of an original dimension, or only span across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, .. math:: \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a :meth:`view` can be performed, it is advisable to use :meth:`reshape`, which returns a view if the shapes are compatible, and copies (equivalent to calling :meth:`contiguous`) otherwise. Args: shape (torch.Size or int...): the desired size Example:: >>> x = torch.randn(4, 4) >>> x.size() torch.Size([4, 4]) >>> y = x.view(16) >>> y.size() torch.Size([16]) >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions >>> z.size() torch.Size([2, 8]) >>> a = torch.randn(1, 2, 3, 4) >>> a.size() torch.Size([1, 2, 3, 4]) >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension >>> b.size() torch.Size([1, 3, 2, 4]) >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory >>> c.size() torch.Size([1, 3, 2, 4]) >>> torch.equal(b, c) False .. method:: view(dtype) -> Tensor :noindex: Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`dtype`. If the element size of :attr:`dtype` is different than that of ``self.dtype``, then the size of the last dimension of the output will be scaled proportionally. For instance, if :attr:`dtype` element size is twice that of ``self.dtype``, then each pair of elements in the last dimension of :attr:`self` will be combined, and the size of the last dimension of the output will be half that of :attr:`self`. If :attr:`dtype` element size is half that of ``self.dtype``, then each element in the last dimension of :attr:`self` will be split in two, and the size of the last dimension of the output will be double that of :attr:`self`. For this to be possible, the following conditions must be true: * ``self.dim()`` must be greater than 0. * ``self.stride(-1)`` must be 1. Additionally, if the element size of :attr:`dtype` is greater than that of ``self.dtype``, the following conditions must be true as well: * ``self.size(-1)`` must be divisible by the ratio between the element sizes of the dtypes. * ``self.storage_offset()`` must be divisible by the ratio between the element sizes of the dtypes. * The strides of all dimensions, except the last dimension, must be divisible by the ratio between the element sizes of the dtypes. If any of the above conditions are not met, an error is thrown. .. warning:: This overload is not supported by TorchScript, and using it in a Torchscript program will cause undefined behavior. Args: dtype (:class:`torch.dtype`): the desired dtype Example:: >>> x = torch.randn(4, 4) >>> x tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.dtype torch.float32 >>> y = x.view(torch.int32) >>> y tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], [-1105482831, 1061112040, 1057999968, -1084397505], [-1071760287, -1123489973, -1097310419, -1084649136], [-1101533110, 1073668768, -1082790149, -1088634448]], dtype=torch.int32) >>> y[0, 0] = 1000000000 >>> x tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.view(torch.cfloat) tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], [-0.1520+0.7472j, 0.5617-0.8649j], [-2.4724-0.0334j, -0.2976-0.8499j], [-0.2109+1.9913j, -0.9607-0.6123j]]) >>> x.view(torch.cfloat).size() torch.Size([4, 2]) >>> x.view(torch.uint8) tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, 8, 191], [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, 93, 191], [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, 89, 191], [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, 28, 191]], dtype=torch.uint8) >>> x.view(torch.uint8).size() torch.Size([4, 16]) """ @overload def view(self, *size: _int | SymInt) -> Tensor: r""" view(*shape) -> Tensor Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`shape`. The returned tensor shares the same data and must have the same number of elements, but may have a different size. For a tensor to be viewed, the new view size must be compatible with its original size and stride, i.e., each new view dimension must either be a subspace of an original dimension, or only span across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, .. math:: \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a :meth:`view` can be performed, it is advisable to use :meth:`reshape`, which returns a view if the shapes are compatible, and copies (equivalent to calling :meth:`contiguous`) otherwise. Args: shape (torch.Size or int...): the desired size Example:: >>> x = torch.randn(4, 4) >>> x.size() torch.Size([4, 4]) >>> y = x.view(16) >>> y.size() torch.Size([16]) >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions >>> z.size() torch.Size([2, 8]) >>> a = torch.randn(1, 2, 3, 4) >>> a.size() torch.Size([1, 2, 3, 4]) >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension >>> b.size() torch.Size([1, 3, 2, 4]) >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory >>> c.size() torch.Size([1, 3, 2, 4]) >>> torch.equal(b, c) False .. method:: view(dtype) -> Tensor :noindex: Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`dtype`. If the element size of :attr:`dtype` is different than that of ``self.dtype``, then the size of the last dimension of the output will be scaled proportionally. For instance, if :attr:`dtype` element size is twice that of ``self.dtype``, then each pair of elements in the last dimension of :attr:`self` will be combined, and the size of the last dimension of the output will be half that of :attr:`self`. If :attr:`dtype` element size is half that of ``self.dtype``, then each element in the last dimension of :attr:`self` will be split in two, and the size of the last dimension of the output will be double that of :attr:`self`. For this to be possible, the following conditions must be true: * ``self.dim()`` must be greater than 0. * ``self.stride(-1)`` must be 1. Additionally, if the element size of :attr:`dtype` is greater than that of ``self.dtype``, the following conditions must be true as well: * ``self.size(-1)`` must be divisible by the ratio between the element sizes of the dtypes. * ``self.storage_offset()`` must be divisible by the ratio between the element sizes of the dtypes. * The strides of all dimensions, except the last dimension, must be divisible by the ratio between the element sizes of the dtypes. If any of the above conditions are not met, an error is thrown. .. warning:: This overload is not supported by TorchScript, and using it in a Torchscript program will cause undefined behavior. Args: dtype (:class:`torch.dtype`): the desired dtype Example:: >>> x = torch.randn(4, 4) >>> x tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.dtype torch.float32 >>> y = x.view(torch.int32) >>> y tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], [-1105482831, 1061112040, 1057999968, -1084397505], [-1071760287, -1123489973, -1097310419, -1084649136], [-1101533110, 1073668768, -1082790149, -1088634448]], dtype=torch.int32) >>> y[0, 0] = 1000000000 >>> x tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.view(torch.cfloat) tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], [-0.1520+0.7472j, 0.5617-0.8649j], [-2.4724-0.0334j, -0.2976-0.8499j], [-0.2109+1.9913j, -0.9607-0.6123j]]) >>> x.view(torch.cfloat).size() torch.Size([4, 2]) >>> x.view(torch.uint8) tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, 8, 191], [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, 93, 191], [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, 89, 191], [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, 28, 191]], dtype=torch.uint8) >>> x.view(torch.uint8).size() torch.Size([4, 16]) """ def view_as(self, other: Tensor) -> Tensor: r""" view_as(other) -> Tensor View this tensor as the same size as :attr:`other`. ``self.view_as(other)`` is equivalent to ``self.view(other.size())``. Please see :meth:`~Tensor.view` for more information about ``view``. Args: other (:class:`torch.Tensor`): The result tensor has the same size as :attr:`other`. """ @overload def vsplit(self, sections: _int) -> tuple[Tensor, ...]: r""" vsplit(split_size_or_sections) -> List of Tensors See :func:`torch.vsplit` """ @overload def vsplit(self, indices: _size) -> tuple[Tensor, ...]: r""" vsplit(split_size_or_sections) -> List of Tensors See :func:`torch.vsplit` """ @overload def vsplit(self, *indices: _int) -> tuple[Tensor, ...]: r""" vsplit(split_size_or_sections) -> List of Tensors See :func:`torch.vsplit` """ @overload def where(self, condition: Tensor, other: Tensor) -> Tensor: r""" where(condition, y) -> Tensor ``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. See :func:`torch.where` """ @overload def where(self, condition: Tensor, other: Number | _complex) -> Tensor: r""" where(condition, y) -> Tensor ``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. See :func:`torch.where` """ @overload def xlogy(self, other: Tensor) -> Tensor: r""" xlogy(other) -> Tensor See :func:`torch.xlogy` """ @overload def xlogy(self, other: Number | _complex) -> Tensor: r""" xlogy(other) -> Tensor See :func:`torch.xlogy` """ @overload def xlogy_(self, other: Tensor) -> Tensor: r""" xlogy_(other) -> Tensor In-place version of :meth:`~Tensor.xlogy` """ @overload def xlogy_(self, other: Number | _complex) -> Tensor: r""" xlogy_(other) -> Tensor In-place version of :meth:`~Tensor.xlogy` """ def xpu( self, device: _device | _int | str | None = None, non_blocking: _bool = False, memory_format: torch.memory_format = torch.preserve_format, ) -> Tensor: r""" xpu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor Returns a copy of this object in XPU memory. If this object is already in XPU memory and on the correct device, then no copy is performed and the original object is returned. Args: device (:class:`torch.device`, optional): The destination XPU device. Defaults to the current XPU device. non_blocking (bool, optional): If ``True`` and the source is in pinned memory, the copy will be asynchronous with respect to the host. Otherwise, the argument has no effect. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ def zero_(self) -> Tensor: r""" zero_() -> Tensor Fills :attr:`self` tensor with zeros. """ _TensorBase = TensorBase # Defined in torch/csrc/multiprocessing/init.cpp def _multiprocessing_init() -> None: ... def _set_thread_name(name: str) -> None: ... def _get_thread_name() -> str: ... # Defined in torch/csrc/Module.cpp def _accelerator_hooks_device_count() -> _int: ... def _accelerator_hooks_set_current_device(device_index: _int) -> None: ... def _accelerator_hooks_get_current_device() -> _int: ... def _accelerator_hooks_exchange_device(device_index: _int) -> _int: ... def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int: ... def _get_accelerator(check: _bool = False) -> _device: ... def _storage_Use_Count(storage_ptr: _int) -> _int: ... # Defined in torch/csrc/mtia/Module.cpp def _mtia_init() -> None: ... def _mtia_isBuilt() -> _bool: ... def _mtia_isInBadFork() -> _bool: ... def _mtia_deviceSynchronize() -> None: ... def _mtia_getCurrentStream(device: _int) -> Stream: ... def _mtia_getCurrentRawStream(device: _int) -> _int: ... def _mtia_setCurrentStream(stream: Stream) -> None: ... def _mtia_getDefaultStream(device: _int) -> Stream: ... def _mtia_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ... def _mtia_memoryStats(device: _int) -> dict[str, Any]: ... def _mtia_getDeviceCapability(device: _int) -> tuple[_int, _int]: ... def _mtia_getDeviceProperties(device: _int) -> dict[str, Any]: ... def _mtia_emptyCache() -> None: ... def _mtia_recordMemoryHistory( enabled: str | None, stacks: str, max_entries, ) -> None: ... def _mtia_memorySnapshot() -> dict[str, Any]: ... def _mtia_attachOutOfMemoryObserver( observer: Callable[[_int, _int, _int, _int], None], ) -> None: ... def _mtia_getDeviceCount() -> _int: ... def _mtia_resetPeakMemoryStats(device: _int) -> None: ... # Defined in torch/csrc/mps/Module.cpp def _mps_deviceSynchronize() -> None: ... def _mps_get_core_count() -> _int: ... def _mps_get_default_generator() -> Generator: ... def _mps_get_name() -> _str: ... def _mps_emptyCache() -> None: ... def _mps_setMemoryFraction(fraction: _float) -> None: ... def _mps_currentAllocatedMemory() -> _int: ... def _mps_driverAllocatedMemory() -> _int: ... def _mps_recommendedMaxMemory() -> _int: ... def _mps_is_available() -> _bool: ... def _mps_is_on_macos_or_newer(major: _int, minor: _int) -> _bool: ... def _mps_profilerStartTrace(mode: str, wait_until_completed: _bool) -> None: ... def _mps_profilerStopTrace() -> None: ... def _mps_acquireEvent(enable_timing: _bool) -> _int: ... def _mps_releaseEvent(event_id: _int) -> None: ... def _mps_recordEvent(event_id: _int) -> None: ... def _mps_waitForEvent(event_id: _int) -> None: ... def _mps_synchronizeEvent(event_id: _int) -> None: ... def _mps_queryEvent(event_id: _int) -> _bool: ... def _mps_elapsedTimeOfEvents(start_event_id: _int, end_event_id: _int) -> _float: ... def _mps_isCaptureEnabled() -> _bool: ... def _mps_isCapturing() -> _bool: ... def _mps_startCapture(name: str) -> None: ... def _mps_stopCapture() -> None: ... # Defined in torch/csrc/cuda/Module.cpp def _cuda_getCurrentStream(device: _int) -> tuple: ... def _cuda_getCurrentRawStream(device: _int) -> _int: ... def _cuda_getDefaultStream(device: _int) -> tuple: ... def _cuda_getStreamFromExternal(data_ptr: _int, device_index: _int) -> tuple: ... def _cuda_getCurrentBlasHandle() -> _int: ... def _cuda_clearCublasWorkspaces() -> None: ... def _cuda_setDevice(device: _int) -> None: ... def _cuda_exchangeDevice(device: _int) -> _int: ... def _cuda_maybeExchangeDevice(device: _int) -> _int: ... def _cuda_getDevice() -> _int: ... def _cuda_getDeviceCount() -> _int: ... def _cuda_set_sync_debug_mode(warn_level: _int | str) -> None: ... def _cuda_get_sync_debug_mode() -> _int: ... def _cuda_sleep(cycles: _int) -> None: ... def _cuda_synchronize() -> None: ... def _cuda_ipc_collect() -> None: ... def _cuda_getArchFlags() -> str | None: ... def _cuda_init() -> None: ... def _cuda_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ... def _cuda_getCompiledVersion() -> _int: ... def _cuda_cudaHostAllocator() -> _int: ... def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ... def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ... def _cuda_cudaCachingAllocator_enable(val: _bool) -> None: ... def _cuda_cudaCachingAllocator_set_allocator_settings(env: str) -> None: ... def _cuda_beginAllocateToPool(device: _int, mempool_id: tuple[_int, _int]) -> None: ... def _cuda_beginAllocateCurrentThreadToPool( device: _int, mempool_id: tuple[_int, _int], ) -> None: ... def _cuda_endAllocateToPool(device: _int, mempool_id: tuple[_int, _int]) -> None: ... def _cuda_beginAllocateCurrentStreamToPool( device: _int, mempool_id: tuple[_int, _int], ) -> None: ... def _cuda_releasePool(device: _int, mempool_id: tuple[_int, _int]) -> None: ... def _cuda_checkPoolLiveAllocations( device: _int, mempool_id: tuple[_int, _int], expected_live_allocations: set, ) -> _bool: ... def _cuda_setCheckpointPoolState( device: _int, state: _cuda_CUDAAllocator_AllocatorState, stale_storages: list[_int], storages_to_add_deleters_to: list[_int], ) -> None: ... def _cuda_getMemoryFraction(device: _int) -> _float: ... def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ... def _cuda_emptyCache() -> None: ... def _cuda_memoryStats(device: _int) -> dict[str, Any]: ... def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ... def _cuda_resetPeakMemoryStats(device: _int) -> None: ... def _cuda_hostMemoryStats() -> dict[str, Any]: ... def _cuda_resetAccumulatedHostMemoryStats() -> None: ... def _cuda_resetPeakHostMemoryStats() -> None: ... def _cuda_memorySnapshot(mempool_id: tuple[_int, _int] | None) -> dict[str, Any]: ... def _cuda_record_memory_history_legacy( enabled: _bool, record_context: _bool, record_context_cpp: _bool, alloc_trace_max_entries: _int, alloc_trace_record_context: _bool, clear_history: _bool, compile_context: _bool, global_record_annotations: _bool, ) -> None: ... def _cuda_record_memory_history( enabled: str | None, context: str | None, stacks: str, max_entries: _int, clear_history: _bool, compile_context: _bool, global_record_annotations: _bool, ) -> None: ... def _cuda_isHistoryEnabled() -> _bool: ... def _cuda_getAllocatorBackend() -> str: ... class _cuda_CUDAAllocator_AllocatorState: ... def _cuda_getCheckpointState( device: _int, mempool: tuple[_int, _int], ) -> _cuda_CUDAAllocator_AllocatorState: ... def _set_cached_tensors_enabled(enabled: _bool) -> None: ... def _add_cached_tensor(t: Tensor) -> None: ... def _remove_cached_tensor(t: Tensor) -> None: ... def _tensors_data_ptrs_at_indices_equal( tensors: list[Tensor | _int], ptrs: list[_int | None], indices: list[_int], ) -> _bool: ... def _construct_CUDA_Tensor_From_Storage_And_Metadata( metadata: dict, storage: Storage, ) -> Tensor: ... def _set_storage_access_error_msg(t: Tensor, s: str) -> None: ... def _set_storage_data_ptr_access_error_msg(storage_ptr: _int, s: str) -> None: ... def _free_And_Remove_DeleterFn(storage_ptr: _int) -> None: ... def _has_Standard_Deleter(storage_ptr: _int) -> _bool: ... class _cuda_CUDAAllocator: ... def _cuda_customAllocator(alloc_fn: _int, free_fn: _int) -> _cuda_CUDAAllocator: ... def _cuda_changeCurrentAllocator(allocator: _cuda_CUDAAllocator) -> None: ... def _cuda_getAllocator() -> _cuda_CUDAAllocator: ... def _cuda_lock_mutex() -> None: ... def _cuda_unlock_mutex() -> None: ... def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ... def _cuda_jiterator_compile_and_launch_kernel( code_string: str, kernel_name: str, return_by_ref: _bool, num_outputs: _int, tensors: tuple, kwargs: dict[str, _int | _float | _bool], ) -> Tensor: ... def _cuda_get_cudnn_benchmark_limit() -> _int: ... def _cuda_set_cudnn_benchmark_limit(arg: _int) -> None: ... def _cuda_get_conv_benchmark_empty_cache() -> _bool: ... def _cudnn_set_conv_benchmark_empty_cache(enable: _bool) -> None: ... def _nccl_version() -> _int: ... def _nccl_version_suffix() -> bytes: ... def _nccl_unique_id() -> bytes: ... def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ... def _nccl_reduce( input: Sequence[Tensor], output: Tensor, root: _int, op: _int, streams: Sequence[_CudaStreamBase] | None, comms: Sequence[object] | None, ) -> None: ... def _nccl_all_reduce( input: Sequence[Tensor], output: Sequence[Tensor], op: _int, streams: Sequence[_CudaStreamBase] | None, comms: Sequence[object] | None, ) -> None: ... def _nccl_broadcast( input: Sequence[Tensor], root: _int, streams: Sequence[_CudaStreamBase] | None, comms: Sequence[object] | None, ) -> None: ... def _nccl_all_gather( input: Sequence[Tensor], output: Sequence[Tensor], streams: Sequence[_CudaStreamBase] | None, comms: Sequence[object] | None, ) -> None: ... def _nccl_reduce_scatter( input: Sequence[Tensor], output: Sequence[Tensor], op: _int, streams: Sequence[_CudaStreamBase] | None, comms: Sequence[object] | None, ) -> None: ... def _rocm_is_backward_pass() -> _bool: ... def _cuda_tunableop_enable(val: _bool) -> None: ... def _cuda_tunableop_is_enabled() -> _bool: ... def _cuda_tunableop_tuning_enable(val: _bool) -> None: ... def _cuda_tunableop_tuning_is_enabled() -> _bool: ... def _cuda_tunableop_set_max_tuning_duration(duration: _int) -> None: ... def _cuda_tunableop_get_max_tuning_duration() -> _int: ... def _cuda_tunableop_set_max_tuning_iterations(iterations: _int) -> None: ... def _cuda_tunableop_get_max_tuning_iterations() -> _int: ... def _cuda_tunableop_set_filename( filename: str, insert_device_ordinal: _bool | None, ) -> None: ... def _cuda_tunableop_get_filename() -> str: ... def _cuda_tunableop_write_file(filename: str | None) -> _bool: ... def _cuda_tunableop_read_file(filename: str | None) -> _bool: ... def _cuda_tunableop_write_file_on_exit(val: _bool) -> None: ... def _cuda_tunableop_get_results() -> tuple[str, str, str, _float]: ... def _cuda_tunableop_get_validators() -> tuple[str, str]: ... def _cuda_tunableop_set_rotating_buffer_size(buffer_size: _int) -> None: ... def _cuda_tunableop_get_rotation_buffer_size() -> _int: ... class _CudaDeviceProperties: name: str major: _int minor: _int multi_processor_count: _int total_memory: _int is_integrated: _int is_multi_gpu_board: _int max_threads_per_multi_processor: _int gcnArchName: str warp_size: _int uuid: str L2_cache_size: _int # Functions related to SDPA class _SDPAParams: query: Tensor key: Tensor value: Tensor attn_mask: Tensor | None dropout: _float is_causal: _bool enable_gqa: _bool def __init__( self, query: Tensor, key: Tensor, value: Tensor, attn_mask: Tensor | None, dropout: _float, is_causal: _bool, enable_gqa: _bool, ) -> None: ... class _SDPBackend(Enum): ERROR = -1 MATH = 0 FLASH_ATTENTION = 1 EFFICIENT_ATTENTION = 2 CUDNN_ATTENTION = 3 OVERRIDEABLE = 4 def _is_flash_attention_available() -> _bool: ... def _can_use_cudnn_attention(params: _SDPAParams, debug: _bool) -> _bool: ... def _can_use_flash_attention(params: _SDPAParams, debug: _bool) -> _bool: ... def _can_use_mem_efficient_attention(params: _SDPAParams, debug: _bool) -> _bool: ... # Defined in torch/csrc/cuda/GdsFile.cpp def _gds_register_buffer(t: Storage) -> None: ... def _gds_deregister_buffer(t: Storage) -> None: ... def _gds_register_handle(fd: _int) -> _int: ... def _gds_deregister_handle(handle: _int) -> None: ... def _gds_load_storage(handle: _int, s: Storage, offset: _int) -> None: ... def _gds_save_storage(handle: _int, s: Storage, offset: _int) -> None: ... # Defined in torch/csrc/cuda/python_comm.cpp def _broadcast(tensor: Tensor, devices: list[_int]) -> list[Tensor]: ... def _broadcast_out(tensor: Tensor, out_tensors: list[Tensor]) -> list[Tensor]: ... def _broadcast_coalesced( tensors: list[Tensor], devices: list[_int], buffer_size: _int, ) -> list[list[Tensor]]: ... def _scatter( tensor: Tensor, devices: list[_int], chunk_sizes: list[_int] | None, dim: _int, streams: list[Stream] | None, ) -> list[Tensor]: ... def _scatter_out( tensor: Tensor, out_tensors: list[Tensor], dim: _int, streams: list[Stream] | None, ) -> list[Tensor]: ... def _gather( tensors: list[Tensor], dim: _int, destination_index: _int | None, ) -> Tensor: ... def _gather_out(tensors: list[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ... # Defined in torch/csrc/cuda/Stream.cpp class _CudaStreamBase(Stream): stream_id: _int device_index: _int device_type: _int device: _device cuda_stream: _int priority: _int def __new__( cls, priority: _int = 0, stream_id: _int = 0, device_index: _int = 0, stream_ptr: _int = 0, ) -> Self: ... def query(self) -> _bool: ... def synchronize(self) -> None: ... def priority_range(self) -> tuple[_int, _int]: ... # Defined in torch/csrc/cuda/Event.cpp class _CudaEventBase: device: _device cuda_event: _int def __new__( cls, enable_timing: _bool = False, blocking: _bool = False, interprocess: _bool = False, external: _bool = False, ) -> Self: ... @classmethod def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ... def record(self, stream: _CudaStreamBase) -> None: ... def wait(self, stream: _CudaStreamBase) -> None: ... def query(self) -> _bool: ... def elapsed_time(self, other: _CudaEventBase) -> _float: ... def synchronize(self) -> None: ... def ipc_handle(self) -> bytes: ... # Defined in torch/csrc/cuda/Graph.cpp class _CUDAGraph: def __new__(cls, keep_graph: _bool = ...) -> Self: ... def capture_begin( self, pool: _POOL_HANDLE | None = ..., capture_error_mode: str = "global", ) -> None: ... def capture_end(self) -> None: ... def instantiate(self) -> None: ... def register_generator_state(self, Generator) -> None: ... def replay(self) -> None: ... def reset(self) -> None: ... def pool(self) -> _POOL_HANDLE: ... def enable_debug_mode(self) -> None: ... def debug_dump(self, debug_path: str) -> None: ... def raw_cuda_graph(self) -> _int: ... def raw_cuda_graph_exec(self) -> _int: ... # Defined in torch/csrc/cuda/MemPool.cpp class _MemPool: def __init__( self, allocator: _cuda_CUDAAllocator | None = None, is_user_created: _bool = True, use_on_oom: _bool = False, ) -> None: ... @property def id(self) -> tuple[_int, _int]: ... @property def allocator(self) -> _cuda_CUDAAllocator | None: ... def use_count(self) -> _int: ... def _cuda_isCurrentStreamCapturing() -> _bool: ... def _graph_pool_handle() -> tuple[_int, _int]: ... # Defined in torch/csrc/xpu/Module.cpp def _xpu_setDevice(device: _int) -> None: ... def _xpu_exchangeDevice(device: _int) -> _int: ... def _xpu_maybeExchangeDevice(device: _int) -> _int: ... def _xpu_getDevice() -> _int: ... def _xpu_getDeviceCount() -> _int: ... def _xpu_getArchFlags() -> str | None: ... def _xpu_init() -> None: ... def _xpu_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ... def _xpu_getCurrentStream(device: _int) -> tuple: ... def _xpu_getCurrentRawStream(device: _int) -> _int: ... def _xpu_getStreamFromExternal(data_ptr: _int, device_index: _int) -> tuple: ... def _xpu_synchronize(device: _int) -> None: ... def _xpu_emptyCache() -> None: ... def _xpu_memoryStats(device: _int) -> dict[str, Any]: ... def _xpu_resetAccumulatedMemoryStats(device: _int) -> None: ... def _xpu_resetPeakMemoryStats(device: _int) -> None: ... def _xpu_getMemoryInfo(device: _int) -> tuple[_int, _int]: ... class _XpuDeviceProperties: name: str platform_name: str vendor: str device_id: _int driver_version: str version: str max_compute_units: _int gpu_eu_count: _int max_work_group_size: _int max_num_sub_groups: _int sub_group_sizes: list[_int] has_fp16: _bool has_fp64: _bool has_atomic64: _bool has_bfloat16_conversions: _bool has_subgroup_matrix_multiply_accumulate: _bool has_subgroup_matrix_multiply_accumulate_tensor_float32: _bool has_subgroup_2d_block_io: _bool total_memory: _int gpu_subslice_count: _int architecture: _int type: str uuid: Any # Defined in torch/csrc/xpu/Stream.cpp class _XpuStreamBase(Stream): stream_id: _int device_index: _int device_type: _int device: _device sycl_queue: _int priority: _int def __new__( cls, priority: _int = 0, stream_id: _int = 0, device_index: _int = 0, device_type: _int = 0, ) -> Self: ... def query(self) -> _bool: ... def synchronize(self) -> None: ... @staticmethod def priority_range() -> tuple: ... # Defined in torch/csrc/xpu/Event.cpp class _XpuEventBase: device: _device sycl_event: _int def __new__(cls, enable_timing: _bool = False) -> Self: ... def record(self, stream: _XpuEventBase) -> None: ... def wait(self, stream: _XpuStreamBase) -> None: ... def query(self) -> _bool: ... def elapsed_time(self, other: _XpuEventBase) -> _float: ... def synchronize(self) -> None: ... # Defined in torch/csrc/DataLoader.cpp def _set_worker_signal_handlers( *arg: Any, ) -> None: ... # THPModule_setWorkerSignalHandlers def _set_worker_pids( key: _int, child_pids: tuple[_int, ...], ) -> None: ... # THPModule_setWorkerPIDs def _remove_worker_pids(loader_id: _int) -> None: ... # THPModule_removeWorkerPIDs def _error_if_any_worker_fails() -> None: ... # THPModule_errorIfAnyWorkerFails # Defined in torch/csrc/DeviceAccelerator.cpp def _accelerator_getAccelerator() -> _device: ... def _accelerator_setDeviceIndex(device_index: _int) -> None: ... def _accelerator_getDeviceIndex() -> _int: ... def _accelerator_setStream(Stream) -> None: ... def _accelerator_getStream(device_index: _int) -> Stream: ... def _accelerator_synchronizeDevice(device_index: _int) -> None: ... def _accelerator_exchangeDevice(device_index: _int) -> _int: ... def _accelerator_maybeExchangeDevice(device_index: _int) -> _int: ... def _accelerator_isAllocatorInitialized() -> _bool: ... def _accelerator_emptyCache() -> None: ... def _accelerator_getDeviceStats(device_index: _int) -> dict[str, Any]: ... def _accelerator_resetAccumulatedStats(device_index: _int) -> None: ... def _accelerator_resetPeakStats(device_index: _int) -> None: ... # Defined in torch/csrc/jit/python/python_tracer.cpp class TracingState: def push_scope(self, scope_name: str) -> None: ... def pop_scope(self) -> None: ... def current_scope(self) -> str: ... def set_graph(self, graph: Graph) -> None: ... def graph(self) -> Graph: ... def _create_graph_by_tracing( func: Callable[..., Any], inputs: Any, var_name_lookup_fn: Callable[[Tensor], str], strict: Any, force_outplace: Any, self: Any = None, argument_names: list[str] = ..., ) -> tuple[Graph, Stack]: ... def _tracer_warn_use_python(): ... def _get_tracing_state() -> TracingState: ... # Defined in torch/csrc/jit/python/python_ir.cpp # Not actually defined in python_ir.cpp, not sure where they are. class IValue: ... Stack: TypeAlias = list[IValue] class JitType: annotation_str: str def isSubtypeOf(self, other: JitType) -> _bool: ... def with_dtype(self, dtype: _dtype) -> JitType: ... def with_sizes(self, sizes: list[_int | None]) -> JitType: ... def kind(self) -> str: ... def scalarType(self) -> str | None: ... def getElementType(self) -> JitType: ... def dtype(self) -> _dtype | None: ... class InferredType: def __init__(self, arg: JitType | str) -> None: ... def type(self) -> JitType: ... def success(self) -> _bool: ... def reason(self) -> str: ... class Type(JitType): def str(self) -> _str: ... def containedTypes(self) -> list[JitType]: ... def dim(self) -> _int | None: ... def undefined(self) -> _bool | None: ... def sizes(self) -> list[_int] | None: ... def symbol_sizes(self) -> list[_int] | None: ... def varyingSizes(self) -> list[_int | None] | None: ... def strides(self) -> list[_int] | None: ... def contiguous(self) -> Self: ... def device(self) -> _device | None: ... def is_interface_type(self) -> _bool: ... def requires_grad(self) -> _bool: ... @property def annotation_string(self) -> _str: ... class AnyType(JitType): @staticmethod def get() -> AnyType: ... class NoneType(JitType): @staticmethod def get() -> NoneType: ... class BoolType(JitType): @staticmethod def get() -> BoolType: ... class FloatType(JitType): @staticmethod def get() -> FloatType: ... class ComplexType(JitType): @staticmethod def get() -> ComplexType: ... class IntType(JitType): @staticmethod def get() -> IntType: ... class SymIntType(JitType): @staticmethod def get() -> SymIntType: ... class SymBoolType(JitType): @staticmethod def get() -> SymBoolType: ... class NumberType(JitType): @staticmethod def get() -> NumberType: ... class StringType(JitType): @staticmethod def get() -> StringType: ... class DeviceObjType(JitType): @staticmethod def get() -> DeviceObjType: ... class _GeneratorType(JitType): @staticmethod def get() -> _GeneratorType: ... class StreamObjType(JitType): @staticmethod def get() -> StreamObjType: ... class ListType(JitType): def __init__(self, a: JitType) -> None: ... def getElementType(self) -> JitType: ... @staticmethod def ofInts() -> ListType: ... @staticmethod def ofTensors() -> ListType: ... @staticmethod def ofFloats() -> ListType: ... @staticmethod def ofComplexDoubles() -> ListType: ... @staticmethod def ofBools() -> ListType: ... @staticmethod def ofStrings() -> ListType: ... class DictType(JitType): def __init__(self, key: JitType, value: JitType) -> None: ... def getKeyType(self) -> JitType: ... def getValueType(self) -> JitType: ... class TupleType(JitType): def __init__(self, a: list[JitType | None]) -> None: ... def elements(self) -> list[JitType]: ... class UnionType(JitType): def __init__(self, a: list[JitType]) -> None: ... class ClassType(JitType): def __init__(self, qualified_name: str) -> None: ... def qualified_name(self) -> str: ... class InterfaceType(JitType): def __init__(self, qualified_name: str) -> None: ... def getMethod(self, name: str) -> FunctionSchema | None: ... def getMethodNames(self) -> list[str]: ... JitTypeT = TypeVar("JitTypeT", bound=JitType) # noqa: PYI001 class OptionalType(JitType, Generic[JitTypeT]): def __init__(self, a: JitTypeT) -> None: ... def getElementType(self) -> JitTypeT: ... @staticmethod def ofTensor() -> OptionalType: ... class FutureType(JitType): def __init__(self, a: JitType) -> None: ... def getElementType(self) -> JitType: ... class AwaitType(JitType): def __init__(self, a: JitType) -> None: ... def getElementType(self) -> JitType: ... class RRefType(JitType): def __init__(self, a: JitType) -> None: ... class EnumType(JitType): def __init__( self, qualified_name: str, value_type: JitType, enum_names_values: list[Any], ) -> None: ... class TensorType(JitType): @classmethod def get(cls) -> TensorType: ... @classmethod def getInferred(cls) -> TensorType: ... def with_sizes(self, other: list[_int | None] | None) -> TensorType: ... def sizes(self) -> list[_int] | None: ... def varyingSizes(self) -> list[_int | None] | None: ... def strides(self) -> list[_int] | None: ... def device(self) -> _device | None: ... def dim(self) -> _int: ... def dtype(self) -> _dtype | None: ... @staticmethod def create_from_tensor(t: Tensor) -> TensorType: ... # Defined in torch/csrc/jit/python/python_tree_views.cpp class SourceRange: ... class TreeView: ... class Ident(TreeView): @property def name(self) -> str: ... class ClassDef(TreeView): ... class Def(TreeView): def name(self) -> Ident: ... class Decl(TreeView): ... # Defined in torch/csrc/distributed/rpc/init.cpp def _rpc_init() -> _bool: ... # Defined in torch/csrc/distributed/autograd/init.cpp def _dist_autograd_init() -> _bool: ... # Defined in torch/csrc/distributed/c10d/init.cpp def _c10d_init() -> _bool: ... # Defined in torch/csrc/distributed/rpc/testing/init.cpp def _faulty_agent_init() -> _bool: ... def _register_py_class_for_device(device: str, cls: Any) -> None: ... # Defined in torch/csrc/Module.cpp def _current_graph_task_id() -> _int: ... def _current_autograd_node() -> _Node: ... def _will_engine_execute_node(node: _Node) -> _bool: ... def _dispatch_key_set(tensor) -> str: ... # Defined in torch/csrc/Exceptions.cpp class AcceleratorError(RuntimeError): ... class OutOfMemoryError(RuntimeError): ... class _DistError(RuntimeError): ... class _DistBackendError(RuntimeError): ... class _DistStoreError(RuntimeError): ... class _DistNetworkError(RuntimeError): ... class _DistQueueEmptyError(_DistStoreError): ... # Defined in torch/csrc/profiler/init.cpp class CapturedTraceback: ... def gather_traceback(python: _bool, script: _bool, cpp: _bool) -> CapturedTraceback: ... def symbolize_tracebacks( tracebacks: list[CapturedTraceback], ) -> list[dict[str, Any]]: ... def _load_mobile_module_from_file(filename: str): ... def _load_mobile_module_from_bytes(bytes_: bytes): ... def _load_jit_module_from_file(filename: str): ... def _load_jit_module_from_bytes(bytes_: bytes): ... def _save_mobile_module(m: LiteScriptModule, filename: str): ... def _save_jit_module(m: ScriptModule, filename: str, extra_files: dict[str, Any]): ... def _save_mobile_module_to_bytes(m: LiteScriptModule) -> bytes: ... def _save_jit_module_to_bytes( m: ScriptModule, extra_files: dict[str, Any], ) -> bytes: ... def _get_module_info_from_flatbuffer(data: bytes): ... def _jit_resolve_packet(op_name: str, *args, **kwargs) -> str: ... def _swap_tensor_impl(t1: Tensor, t2: Tensor): ... def _pickle_save(obj: Any) -> bytes: ... def _pickle_load_obj(bs: bytes) -> Any: ... # Defined in torch/csrc/jit/runtime/static/init.cpp def _jit_to_static_module(graph_or_module: Graph | ScriptModule) -> Any: ... def _fuse_to_static_module( graph_or_module: Graph | ScriptModule, min_size: _int, ) -> Any: ... # Defined in torch/csrc/fx/node.cpp def _fx_map_aggregate(a: Any, fn: Callable[[Any], Any]) -> Any: ... def _fx_map_arg(a: Any, fn: Callable[[Any], Any]) -> Any: ... class _NodeBase: _erased: _bool _prev: FxNode _next: FxNode def __init__( self, graph: Any, name: str, op: str, target: Any, return_type: Any, ) -> None: ... def _update_args_kwargs(self, args: tuple[Any, ...], kwargs: dict[str, Any]): ... class _NodeIter(Iterator[FxNode]): def __init__(self, root: FxNode, reversed: _bool) -> None: ... def __iter__(self) -> Self: ... def __next__(self) -> FxNode: ... # Defined in torch/csrc/inductor/static_cuda_launcher.cpp class _StaticCudaLauncher: @staticmethod def _load_kernel( cubin_file: str, func_name: str, shared_mem_bytes: _int, device: _int, ) -> tuple[_int, _int, _int]: ... @staticmethod def _launch_kernel( func: _int, grid_x: _int, grid_y: _int, grid_z: _int, num_warps: _int, shared_mem_bytes: _int, arg_types: str, args: tuple[Any, ...], stream: _int, ) -> None: ...