# mypy: allow-untyped-defs import logging from typing import TYPE_CHECKING import torch from torch._dynamo.utils import counters from torch._inductor.codegen.rocm.ck_universal_gemm_template import CKGemmTemplate from .. import ir, lowering as L from ..kernel_inputs import MMKernelInputs from ..select_algorithm import ( autotune_select_algorithm, ExternKernelChoice, SymbolicGridFn, TritonTemplate, ) from ..utils import ( _use_cutlass_for_op, use_aten_gemm_kernels, use_ck_gemm_template, use_cpp_bmm_template, use_cutlass_template, use_triton_template, ) from ..virtualized import V from .mm_common import _is_static_problem, is_batch_stride_largest_or_zero, mm_args if TYPE_CHECKING: from ..ir import ChoiceCaller log = logging.getLogger(__name__) aten = torch.ops.aten @SymbolicGridFn def bmm_grid(b, m, n, meta, *, cdiv): return (cdiv(m, meta["BLOCK_M"]) * cdiv(n, meta["BLOCK_N"]), b, 1) bmm_template = TritonTemplate( name="bmm", grid=bmm_grid, source=r""" {{def_kernel("A", "B")}} M = {{size("A", -2)}} N = {{size("B", -1)}} K = {{size("A", -1)}} stride_aq = {{stride("A", 0)}} stride_am = {{stride("A", 1)}} stride_ak = {{stride("A", 2)}} stride_bq = {{stride("B", 0)}} stride_bk = {{stride("B", 1)}} stride_bn = {{stride("B", 2)}} # based on triton.ops.matmul pid = tl.program_id(0) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) tl.assume(pid_m >= 0) tl.assume(pid_n >= 0) rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) if (stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1): ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) else: ram = rm % M if (stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1): rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) else: rbn = rn % N rk = tl.arange(0, BLOCK_K) idx_q = tl.program_id(1) # batch dimension for BMM A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak + idx_q*stride_aq) B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn + idx_q*stride_bq) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) for k in range(K, 0, -BLOCK_K): if EVEN_K: a = tl.load(A) b = tl.load(B) else: a = tl.load(A, mask=rk[None, :] < k, other=0.) b = tl.load(B, mask=rk[:, None] < k, other=0.) acc += tl.dot(a, b, allow_tf32=ALLOW_TF32) A += BLOCK_K * stride_ak B += BLOCK_K * stride_bk # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) idx_q = tl.program_id(1) # batch dimension for BMM idx_m = rm[:, None] idx_n = rn[None, :] mask = (idx_m < M) & (idx_n < N) # inductor generates a suffix {{store_output(("idx_q", "idx_m", "idx_n"), "acc", "mask")}} """, cache_codegen_enabled_for_template=True, ) aten_bmm = ExternKernelChoice(torch.bmm, "at::bmm_out") aten_bmm_dtype = ExternKernelChoice( torch.bmm, "at::_bmm_out_dtype_cuda", name="bmm_dtype", op_overload=aten.bmm.dtype_out, ) aten_baddbmm = ExternKernelChoice( torch.baddbmm, "at::baddbmm_out", op_overload=aten.baddbmm.out ) @L.register_lowering(aten.bmm) def tuned_bmm(mat1, mat2, out_dtype=None, *, layout=None): """ Lowering for autotuning aten.bmm with different backends (Aten, Triton, CUTLASS, etc.) """ if all(x.get_device().type == "cpu" for x in [mat1, mat2]): # decompose to small ops when memory bound if mat1.get_size()[1] == 1 or mat2.get_size()[2] == 1: mat1 = L.unsqueeze(mat1, -1) mat2 = L.unsqueeze(mat2, 1) return L.sum_(L.mul(mat1, mat2), axis=2) def is_valid_to_require_contiguous(t): if not ir.is_storage_and_layout(t): return True _, layout = ir.as_storage_and_layout(t, freeze=False) return isinstance(layout, ir.FlexibleLayout) def is_preferred_layout_as_bmm_input(sizes, strides): # contiguous on one of the last two dims return ( strides[-1] == 1 and (sizes[-2] == 1 or strides[-2] >= sizes[-1]) ) or (strides[-2] == 1 and (sizes[-1] == 1 or strides[-1] >= sizes[-2])) # Make the input of bmm contiguous # if it is not contiguous on either of the last two dims, # because bmm cpu implementation would do contiguous() if not. # This is to avoid additional copies in bmm. def may_require_contiguous(t, meta_t): sizes = meta_t.meta["val"].size() strides = meta_t.meta["val"].stride() if not is_preferred_layout_as_bmm_input(sizes, strides): t = ir.ExternKernel.require_contiguous(t) return t if is_valid_to_require_contiguous(mat1): meta_mat1 = V.graph.current_node.args[0] mat1 = may_require_contiguous(mat1, meta_mat1) if is_valid_to_require_contiguous(mat2): meta_mat2 = V.graph.current_node.args[1] mat2 = may_require_contiguous(mat2, meta_mat2) # TODO(coconutruben): integrate into MMKernelInputs when all callsites use that m, n, k, layout, mat1, mat2 = mm_args( mat1, mat2, layout=layout, out_dtype=out_dtype ) name = "bmm" # Create MMKernelInputs for BMM at the top kernel_inputs = MMKernelInputs([mat1, mat2]) # below is for getting an overview logging info of inductor mms batch_size = mat1.get_size()[0] # Extract batch dimension counters["aten_mm_info"][f"aten.bmm_{batch_size}_{m}_{n}_{k}"] += 1 log.info( "Tuned aten.bmm: batch=%s, m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s", batch_size, m, n, k, mat1.get_dtype(), mat2.get_dtype(), layout, ) aten_handler: ExternKernelChoice = aten_bmm aten_extra_kwargs = {} if out_dtype: assert mat1.get_device().type == "cuda", "out_dtype is only supported for CUDA" aten_handler = aten_bmm_dtype aten_extra_kwargs = {"out_dtype": out_dtype} choices: list[ChoiceCaller] = [] if use_aten_gemm_kernels(): choices.extend( V.choices.get_mm_configs( kernel_inputs, layout, [aten_handler], name, {aten_handler.uid: aten_extra_kwargs}, ) ) if use_triton_template(layout, check_max_autotune=False) and ( out_dtype is None or out_dtype == mat1.get_dtype() ): # TODO: add out_dtype support for Triton Template choices.extend( V.choices.get_mm_configs(kernel_inputs, layout, [bmm_template], name) ) _, is_nonzero = _is_static_problem(layout) batch_stride_largest_or_zero = is_batch_stride_largest_or_zero(mat1, mat2, layout) if ( batch_stride_largest_or_zero and is_nonzero and use_cutlass_template(layout, m, n, k) and _use_cutlass_for_op(name) ): from ..codegen.cuda.gemm_template import CUTLASS3xGemmTemplate CUTLASS3xGemmTemplate.add_cutlass_gemm_choices( choices, layout, kernel_inputs.nodes() ) # type: ignore[arg-type] if use_cpp_bmm_template(layout, mat1, mat2): from ..codegen.cpp_bmm_template import CppBmmTemplate CppBmmTemplate.add_choices( choices, layout, kernel_inputs.nodes(), ) if use_ck_gemm_template(layout, m, n, k): CKGemmTemplate.add_ck_gemm_choices(choices, layout, kernel_inputs.nodes()) return autotune_select_algorithm(name, choices, kernel_inputs.nodes(), layout) @L.register_lowering(aten.baddbmm) def tuned_baddbmm(inp, mat1, mat2, *, alpha=1, beta=1, layout=None): """ Lowering for autotuning aten.mm with different backends (Aten, Triton, CUTLASS, etc.) """ # TODO(coconutruben): integrate into MMKernelInputs when all callsites use that m, n, k, layout, mat1, mat2, inp = mm_args(mat1, mat2, inp, layout=layout) # Create MMKernelInputs for BadDBMM at the top kernel_inputs = MMKernelInputs( [inp, mat1, mat2], scalars=dict(alpha=alpha, beta=beta) ) # below is for getting an overview logging info of inductor mms batch_size = mat1.get_size()[0] counters["aten_mm_info"][f"aten.baddbmm_{batch_size}_{m}_{n}_{k}"] += 1 log.info( "Tuned aten.baddbmm: batch_size=%s, m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, inp=%s, output_layout=%s", batch_size, m, n, k, mat1.get_dtype(), mat2.get_dtype(), inp.get_dtype(), layout, ) name = "baddbmm" # options to tune from choices: list[ChoiceCaller] = [] if use_aten_gemm_kernels(): choices.extend( V.choices.get_mm_configs(kernel_inputs, layout, [aten_baddbmm], name) ) if use_triton_template(layout, check_max_autotune=False): choices.extend( V.choices.get_mm_configs( kernel_inputs, layout, [bmm_template], name, ) ) return autotune_select_algorithm(name, choices, kernel_inputs.nodes(), layout)