"""Utilities for lowering subgraphs used by higher order operators""" import functools import operator from collections.abc import Generator from contextlib import contextmanager from dataclasses import dataclass from typing import Any, Callable, Optional, TypeVar, Union from typing_extensions import ParamSpec import torch from torch.utils._ordered_set import OrderedSet from . import ir from .exc import SubgraphLoweringException from .graph import GraphLowering from .ops_handler import SimpleCSEHandler from .virtualized import ops, V, WrapperHandler T = TypeVar("T") _P = ParamSpec("_P") OpOverload = torch._ops.OpOverload LoweringDict = dict[Union[OpOverload, str], Callable[..., Any]] TargetType = Union[Callable[..., Any], str] class PointwiseSubgraphLowering(torch.fx.Interpreter): """ Lowers a pointwise subgraph to a single set of buffers with a separate lowering object. Errors if buffers are created unexpectedly """ graph_outputs: Optional[list[ir.IRNode]] root_graph: GraphLowering _current_op: Optional[TargetType] # For backwards of buffer_grads with scatters we allow mutations allowed_mutations: Optional[OrderedSet[OpOverload]] additional_lowerings: Optional[LoweringDict] buffers: list[ir.Buffer] mutated_buffers: OrderedSet[str] def __init__( self, gm: torch.fx.GraphModule, root_graph_lowering: GraphLowering, allowed_mutations: Optional[OrderedSet[OpOverload]] = None, additional_lowerings: Optional[LoweringDict] = None, ) -> None: super().__init__(gm) self.graph_outputs = None self.root_graph = root_graph_lowering self.allowed_mutations = allowed_mutations self.additional_lowerings = additional_lowerings self._current_op = None # Used to track buffers created during lowering self.mutated_buffers = OrderedSet() self.buffers = [] @contextmanager def _op_context(self, op: TargetType) -> Generator[None, None, None]: """Set which op is being processed in call function to know if we can mutate buffers""" previous = self._current_op self._current_op = op try: yield finally: self._current_op = previous def _approved_mutator(self) -> bool: return ( self.allowed_mutations is not None and self._current_op in self.allowed_mutations ) def mark_buffer_mutated(self, name: str) -> None: if self._approved_mutator(): self.mutated_buffers.add(name) else: raise SubgraphLoweringException( f"Buffer mutation detected during lowering of {self._current_op}. " "Buffer mutations are only allowed in approved mutation ops. " "This is an error in the lowering of the subgraph, please file a bug report." ) def register_buffer(self, buffer: ir.Buffer, *, set_name: bool = False) -> str: if self._approved_mutator(): name = self.root_graph.register_buffer(buffer, set_name=set_name) return name else: raise SubgraphLoweringException( "Buffers cannot be created while lowering a pointwise subgraph. " "This could be for a good reason (e.g. you're calling an op we can't codegen as a pointwise op), " "but it could also be a bug. Please file a bug report if you think this should be supportable." ) def __getattr__(self, name: str) -> Any: return getattr(self.root_graph, name) def call_function( self, target: TargetType, args: Any, kwargs: dict[str, Any], ) -> Any: from .lowering import lowerings with self._op_context(target): if target is operator.getitem and isinstance(args[0], (list, tuple, dict)): return super().call_function(target, args, kwargs) # These takes precedence over the main lowerings if self.additional_lowerings is not None: if target in self.additional_lowerings: assert isinstance(target, OpOverload) return self.additional_lowerings[target](*args, **kwargs) if target not in lowerings: raise SubgraphLoweringException( f"{target} not supported in subgraph, (missing lowering)" ) return lowerings[target](*args, **kwargs) def output(self, target: str, args: tuple[Any], kwargs: dict[str, Any]) -> None: # type: ignore[override] assert len(args) == 1 self.graph_outputs = args[0] @dataclass class InputDescriptor: dtype: torch.dtype device: torch.device class TracingOpsHandler(WrapperHandler): def __init__(self, tracer: torch.fx.Tracer, num_inputs: int) -> None: parent = tracer.create_proxy("placeholder", "ops", (), {}) super().__init__(parent) self.tracer = tracer self.placeholders = [ self.tracer.create_proxy("placeholder", f"input{i}", (), {}) for i in range(num_inputs) ] def placeholder(self, idx: int) -> torch.fx.Proxy: return self.placeholders[idx] def output(self, *args: tuple[object]) -> None: self.tracer.create_node( "output", "output", (tuple(self.tracer.create_arg(a) for a in args),), {} ) def lower_pointwise_subgraph( subgraph: ir.Subgraph, inputs: list[InputDescriptor] ) -> Callable[_P, Any]: # Lower subgraph to ir.Pointwise nodes def fake_inner_fn( loop_idx: int, input_idx: int ) -> Union[ir.Expr, ir.TensorBox, None]: return ops.placeholder(input_idx) graph_inputs = [ ir.Pointwise.create( device=desc.device, dtype=desc.dtype, inner_fn=functools.partial(fake_inner_fn, input_idx=i), ranges=[], ) for i, desc in enumerate(inputs) ] gm = subgraph.graph_module pw_subgraph = PointwiseSubgraphLowering(gm, root_graph_lowering=V.graph) with V.set_graph_handler(pw_subgraph): # type: ignore[arg-type] pw_subgraph.run(*graph_inputs) # Combine multiple pointwise computations into a single graph module # Do this by tracing through each individually and doing CSE tracer = torch.fx.Tracer() tracer.graph = torch.fx.Graph(tracer_cls=tracer.__class__) trace_ops = SimpleCSEHandler(TracingOpsHandler(tracer, len(inputs))) assert pw_subgraph.graph_outputs is not None with V.set_ops_handler(trace_ops): output_irs = [] for out_var in pw_subgraph.graph_outputs: assert isinstance(out_var, ir.TensorBox), type(out_var) assert out_var.get_size() == [] assert isinstance(out_var.data, ir.StorageBox) assert isinstance(out_var.data.data, ir.Pointwise) idx = () ir_out = out_var.data.data.inner_fn(idx) output_irs.append(ir_out) ops.output(*output_irs) lowered_gm = torch.fx.GraphModule({}, tracer.graph) def inner_fn(*args: _P.args, **kwargs: _P.kwargs) -> Any: return lowered_gm(V.get_ops_handler(), *args, **kwargs) return inner_fn