import copy import logging from collections.abc import Sequence from dataclasses import dataclass from typing import Callable, Optional import torch from torch.ao.ns.fx.utils import compute_sqnr from torch.ao.quantization.pt2e.graph_utils import bfs_trace_with_node_process from torch.export import ExportedProgram from torch.fx import GraphModule, Node from torch.nn import functional as F NUMERIC_DEBUG_HANDLE_KEY = "numeric_debug_handle" CUSTOM_KEY = "custom" log = logging.getLogger(__name__) def generate_numeric_debug_handle(ep: ExportedProgram) -> None: """ Attach numeric_debug_handle_id for all nodes in the graph module of the given ExportedProgram, like conv2d, squeeze, conv1d, etc, except for placeholder. Notice that nodes like getattr are out of scope since they are not in the graph. The graph nodes of input exported program are modified inplace. Here's an example of using debug handle quantize flow:: ep = export_for_training(eager_model, example_inputs) generate_numeric_debug_handle(ep) m = ep.module() quantizer = XNNPACKQuantizer() m = prepare_pt2e(m, quantizer) m = convert_pt2e(m) """ # Sanity check the input data type if not isinstance(ep, ExportedProgram): raise ValueError( f"Expected ep to be ExportedProgram, got {type(ExportedProgram)}" ) unique_id = 0 def _find_max_id(node: torch.fx.Node) -> None: nonlocal unique_id unique_id = max( unique_id, node.meta.get(CUSTOM_KEY, {}).get(NUMERIC_DEBUG_HANDLE_KEY, 0) ) def _assign_debug_handle(node: torch.fx.Node) -> None: nonlocal unique_id if CUSTOM_KEY not in node.meta: node.meta[CUSTOM_KEY] = {} if NUMERIC_DEBUG_HANDLE_KEY not in node.meta[CUSTOM_KEY]: node.meta[CUSTOM_KEY][NUMERIC_DEBUG_HANDLE_KEY] = unique_id unique_id += 1 # Find the max ID that exists in the graph first, in case part of the graph # has already been annotated. This way we guarantee there are no duplicate # handle IDs. bfs_trace_with_node_process(ep, _find_max_id) unique_id += 1 # Assign debug handles to all nodes in the graph that don't have one based on the # max ID found in the previous step. bfs_trace_with_node_process(ep, _assign_debug_handle) def _detach(x: object) -> object: detached: object = None if isinstance(x, torch.Tensor): detached = x.detach() elif isinstance(x, (list, tuple)): detached = type(x)([_detach(e) for e in x]) elif isinstance(x, dict): detached = {k: _detach(e) for k, e in x.items()} else: detached = x return detached def _tensor_shape_equals(x: object, y: object) -> bool: if isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor): return x.shape == y.shape elif isinstance(x, (list, tuple)) and isinstance(y, (list, tuple)): return all(_tensor_shape_equals(e1, e2) for e1, e2 in zip(x, y)) elif isinstance(x, dict) and isinstance(y, dict): all_equal = True for k in x: all_equal = all_equal and k in y and (_tensor_shape_equals(x[k], y[k])) return all_equal else: log.debug("Comparing non Tensors: %s and %s, they must be equal", x, y) return type(x) == type(y) and x == y def _loss_fn( loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor], x: object, y: object ) -> object: """The returned loss will have the same structure as `x` and `y`, e.g. if both are Tensor, we'll return a Tensor if both are list, we'll return a list of Tensors if both are dict, we'll return a dict with the same key, and value being the loss between the two Tensors """ if isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor): return loss(x.to(torch.float32), y.to(torch.float32)) elif isinstance(x, (list, tuple)) and isinstance(y, (list, tuple)): return type(x)([_loss_fn(loss, e1, e2) for e1, e2 in zip(x, y)]) elif isinstance(x, dict) and isinstance(y, dict): return {k: _loss_fn(loss, e, y[k]) for k, e in x.items()} else: return None class OutputLogger(torch.nn.Module): """ Base class for capturing output values for nodes in a GraphModule, it only captures Tensor output currently, but we can extend it to work for other types of inputs later if needed """ # Mark as impure so that calls to it will not be removed during DCE. _is_impure = True def __init__( self, debug_handle: int, node_name: Optional[str] = None, nn_module_stack: Optional[object] = None, ) -> None: super().__init__() self.node_name = node_name self.nn_module_stack = nn_module_stack self.debug_handle = debug_handle self.stats: list[object] = [] def forward(self, x: object) -> object: self.stats.append(_detach(x)) return x def __extra_repr__(self) -> str: return ( f"debug_handle={self.debug_handle}, node_name={self.node_name}, " "nn_module_stack={self.nn_module_stack}, num_stats={len(self.stats)})" ) def _insert_logger(model: GraphModule, node: Node, debug_handle: int) -> Node: """For a given node, adds an OutputLogger that observes the output of that node, and all its users use the OutputLogger output instead. The OutputLogger will contain the debug_handle which can be used to compare graphs after transforms""" # to avoid circular dep from torch.ao.quantization.fx.utils import get_new_attr_name_with_prefix # add a logger after the node with model.graph.inserting_after(node): get_new_attr_name = get_new_attr_name_with_prefix(f"{node.name}_logger") logger_name = get_new_attr_name(model) setattr( model, logger_name, OutputLogger(debug_handle, node.name, node.meta.get("nn_module_stack")), ) logger_node = model.graph.call_module(logger_name, (node,), {}) orig_users = list(node.users.keys()) for user_node in orig_users: if user_node is logger_node: continue user_node.replace_input_with(node, logger_node) return logger_node def prepare_for_propagation_comparison(model: GraphModule) -> GraphModule: """Add output loggers to node that has numeric_debug_handle Args: model (GraphModule): original model Returns: a model with output loggers for all nodes that has numeric_debug_handle_id """ # don't change the original model model = copy.deepcopy(model) for n in model.graph.nodes: if ( CUSTOM_KEY not in n.meta or NUMERIC_DEBUG_HANDLE_KEY not in n.meta[CUSTOM_KEY] ): continue numeric_debug_handle = n.meta[CUSTOM_KEY][NUMERIC_DEBUG_HANDLE_KEY] _insert_logger(model, n, numeric_debug_handle) model.recompile() return model @dataclass(frozen=True) class QuantizationComparisonResult: actual: torch.Tensor ref: torch.Tensor @property def mse_loss(self) -> object: return self.loss(F.mse_loss) @property def sqnr(self) -> object: return self.loss(compute_sqnr) def loss( self, loss_function: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] ) -> object: return _loss_fn(loss_function, self.actual, self.ref) def __repr__(self) -> str: # Don't include the tensors themselves as they are quite large to print # out. return ( f"QuantizationComparisonResult(mse_loss={self.mse_loss}, sqnr={self.sqnr})" ) def __post_init__(self) -> None: if not isinstance(self.actual, (torch.Tensor, list, tuple, dict)): raise ValueError( f"`self.actual` value must be a Tensor, list, tuple or dict, got: {self.actual}" ) if not isinstance(self.ref, (torch.Tensor, list, tuple, dict)): raise ValueError( f"`self.ref` value must be a Tensor, list, tuple or dict, got: {self.ref}" ) if not _tensor_shape_equals(self.ref, self.actual): raise ValueError( f"Cannot compare tensors with different shapes: ref={self.ref} vs actual={self.actual}" ) @dataclass(frozen=True) class NodeAccuracySummary: handle: int actual_node_name: str actual_module_stack: str ref_node_name: str ref_module_stack: str results: Sequence[QuantizationComparisonResult] def _module_stack_to_str(module_stack: object) -> str: """Simplifies the stack from ("mod", "mod.foo", "mod.foo.0", "mod.foo.0.linear") to "mod.foo.0.linear" """ if not isinstance(module_stack, dict): return str(module_stack) module_values_list = list(module_stack.values()) if len(module_values_list) > 0: owning_module = module_values_list[-1][0] return str(owning_module) else: return str(module_stack) def extract_results_from_loggers( model: GraphModule, ) -> dict[int, tuple[Optional[str], object, list[object]]]: """For a given model, extract the tensors stats and related information for each debug handle. The reason we have a list of object, instead of Tensor is because the output of node may not be a Tensor, it could be (nested) list, tuple or dict as well. Returns: A dict is keyed by the debug_handle id and the values are a list of object recorded in loggers """ # Results maps debug handle to a tensor list for each model being compared. handles: dict[int, tuple[Optional[str], object, list[object]]] = {} for _name, module in model.named_children(): if isinstance(module, OutputLogger) and len(module.stats) > 0: handles[module.debug_handle] = ( module.node_name, module.nn_module_stack, module.stats, ) return handles def compare_results( ref_results: dict[int, tuple[Optional[str], object, list[torch.Tensor]]], actual_results: dict[int, tuple[Optional[str], object, list[torch.Tensor]]], ) -> dict[int, NodeAccuracySummary]: """Given two dict mapping from `debug_handle_id` (int) to list of tensors return a map from `debug_handle_id` to `NodeAccuracySummary` that contains comparison information like SQNR, MSE etc. Args: ref_results (Dict[int, Tuple[str, object, List[torch.Tensor]]]): reference results for each debug_handle_id actual_results (Dict[int, Tuple[str, object, List[torch.Tensor]]]): actual results for each debug_handle_id Returns: Dict[int, NodeAccuracySummary] """ comparisons = {} for debug_handle, (ref_name, ref_stack, ref_stats) in ref_results.items(): if debug_handle not in actual_results: log.debug( "Cannot compare for handle %s because it wasn't found in the transformed model", debug_handle, ) continue actual_name, actual_stack, actual_stats = actual_results[debug_handle] try: results = [ QuantizationComparisonResult(actual=a, ref=b) for a, b in zip(actual_stats, ref_stats) ] except Exception as e: # Add extra information for an exception from QuantizationComparisonResult # if the shapes didn't match, to include the handle and the node names. raise ValueError( f"For numeric_debug_handle={debug_handle} from ref node {ref_name} and actual node {actual_name}" ) from e comparisons[debug_handle] = NodeAccuracySummary( handle=debug_handle, actual_node_name=actual_name or "", actual_module_stack=_module_stack_to_str(actual_stack), ref_node_name=ref_name or "", ref_module_stack=_module_stack_to_str(ref_stack), results=results, ) return comparisons