/******************************************************************************* * Copyright 2016-2024 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /// @file /// C API #ifndef ONEAPI_DNNL_DNNL_H #define ONEAPI_DNNL_DNNL_H #include "oneapi/dnnl/dnnl_common.h" #include "oneapi/dnnl/dnnl_config.h" #include "oneapi/dnnl/dnnl_types.h" #include "oneapi/dnnl/dnnl_version.h" #ifdef __cplusplus extern "C" { #endif /// @addtogroup dnnl_api /// @{ /// @addtogroup dnnl_api_primitives /// @{ /// @addtogroup dnnl_api_primitives_common /// @{ /// Changes the primitive descriptor to point to the next available /// implementation. /// /// @param primitive_desc A primitive descriptor to change. /// @returns #dnnl_success on success and a status describing the error /// otherwise. /// @returns #dnnl_last_impl_reached if no more implementations available, /// in which case the primitive descriptor itself is kept unchanged. dnnl_status_t DNNL_API dnnl_primitive_desc_next_impl( dnnl_primitive_desc_t primitive_desc); /// Clones a primitive descriptor. The resulting primitive descriptor must be /// destroyed separately. /// /// @param primitive_desc Output primitive descriptor. /// @param existing_primitive_desc Primitive descriptor to clone. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_desc_clone( dnnl_primitive_desc_t *primitive_desc, const_dnnl_primitive_desc_t existing_primitive_desc); /// Returns a constant reference to the attributes of a primitive descriptor. /// /// @warning /// It is an error to destroy the resulting @p attr. /// /// @warning /// The lifetime of an @p attr is the same as that of a @p /// primitive_desc, so it is an error to use the @p attr once the @p /// primitive_desc has been destroyed. /// /// @param primitive_desc Primitive descriptor. /// @param attr Output primitive attributes. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_desc_get_attr( const_dnnl_primitive_desc_t primitive_desc, const_dnnl_primitive_attr_t *attr); /// Destroys a primitive descriptor. /// /// @param primitive_desc Primitive descriptor to destroy. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_desc_destroy( dnnl_primitive_desc_t primitive_desc); /// Queries a primitive descriptor for various pieces of information. /// /// The most common use case is to query a primitive descriptor, created with /// source, weights, and destination memory descriptors with format tags set /// to #dnnl_format_tag_any, for the corresponding memory descriptors (in this /// case the @p what is set to #dnnl_query_src_md, #dnnl_query_weights_md, and /// #dnnl_query_dst_md respectively) so that it is possible to create memory /// objects and reorder primitives if necessary. /// /// Another typical use case is to query a primitive descriptor for workspace /// memory descriptor (with @p what set to #dnnl_query_workspace_md). If this /// query returns #dnnl_not_required status, then workspace memory is not /// required. /// /// @note /// When querying for a memory descriptor for a scratchpad, a workspace, /// or an optional parameter, the query will return a pointer to a zero /// memory descriptor if the parameter is not needed. /// /// A few other use cases: /// - query a primitive descriptor for the implementation information string /// (#dnnl_query_impl_info_str) /// - query a primitive descriptor for the number of inputs and outputs /// (#dnnl_query_num_of_inputs_s32 and #dnnl_query_num_of_outputs_s32 /// respectively) /// /// @sa dnnl_query_t for more options /// /// @param primitive_desc Primitive descriptor. /// @param what Parameter to query. /// @param index Index of the parameter to query for. /// @param result Output result. The type depends on the query. For example, /// it must be a @c dnnl_memory_desc_t* if querying for a memory /// descriptor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_desc_query( const_dnnl_primitive_desc_t primitive_desc, dnnl_query_t what, int index, void *result); /// Queries primitive descriptor for a memory descriptor. /// /// @note /// This function is a convenience version of /// #dnnl_primitive_desc_query(). /// /// @param primitive_desc Primitive descriptor. /// @param what Kind of memory descriptor parameter to query for. /// @param index Index of the parameter to query. /// @returns A pointer to the requested memory descriptor. /// @returns A pointer to a zero memory descriptor if the parameter is not /// needed. /// @returns NULL in case of any error. /// const_dnnl_memory_desc_t DNNL_API dnnl_primitive_desc_query_md( const_dnnl_primitive_desc_t primitive_desc, dnnl_query_t what, int index); /// Queries primitive descriptor for a signed 32bit int. /// /// @note /// This function is a convenience version of /// #dnnl_primitive_desc_query(). /// /// @param primitive_desc Primitive descriptor. /// @param what Kind of the value to query for. /// @param index Index of the parameter to query. /// @returns The requested value. /// @returns 0 in case of any error (in particular if the queried entity is /// not of type int32_t). Note that 0 may also be the actual returned /// value. int DNNL_API dnnl_primitive_desc_query_s32( const_dnnl_primitive_desc_t primitive_desc, dnnl_query_t what, int index); /// Creates a primitive. /// /// @param primitive Output primitive. /// @param primitive_desc Primitive descriptor used to create the primitive. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_create(dnnl_primitive_t *primitive, const_dnnl_primitive_desc_t primitive_desc); /// Creates a primitive from a cache blob. /// /// @param primitive Output primitive. /// @param primitive_desc Primitive descriptor used to create the primitive. /// @param size Size of the cache blob in bytes. /// @param cache_blob Cache blob of size @p size. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_create_from_cache_blob( dnnl_primitive_t *primitive, const_dnnl_primitive_desc_t primitive_desc, size_t size, const uint8_t *cache_blob); /// Executes a primitive. /// /// @param primitive Primitive to execute. /// @param stream Stream to use. /// @param nargs Number of arguments. /// @param args Array of arguments. Each argument is an /// pair. The index is one of the `DNNL_ARG_*` /// values such as `DNNL_ARG_SRC`. Unless runtime shapes are used (see /// #DNNL_RUNTIME_DIM_VAL), the memory object must have the same memory /// descriptor as that returned by /// #dnnl_primitive_desc_query_md(#dnnl_query_exec_arg_md, index). /// @returns #dnnl_success on success and a status describing the error /// otherwise. /// @note If any argument in @p args is padded (padded_dims > /// dims), the primitive execution will assume properly zero-padded /// input arguments, and produce zero-padded output arguments. dnnl_status_t DNNL_API dnnl_primitive_execute(const_dnnl_primitive_t primitive, dnnl_stream_t stream, int nargs, const dnnl_exec_arg_t *args); /// Retrieves a constant reference to the primitive descriptor of a given /// primitive. /// /// @warning /// It is an error to destroy the returned object. It is owned by the /// primitive. The @c const qualifier of the returned object prevents /// such attempts. /// /// @param primitive Primitive to query for the primitive descriptor. /// @param primitive_desc Output primitive descriptor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_get_primitive_desc( const_dnnl_primitive_t primitive, const_dnnl_primitive_desc_t *primitive_desc); /// Retrieves a cache blob associated with the given primitive. /// /// @param primitive Primitive to query for the cache blob. /// @param size Size of the cache blob in bytes. /// @param cache_blob Cache blob of size @p size. If the @p cache_blob is /// nullptr then the size of the cache blob is returned in @p size. /// @returns #dnnl_success on success and a status describing the error /// otherwise. /// /// @note The cache blob can be empty. It's the user's responsibility to check /// whether it's empty prior to passing it to /// #dnnl_primitive_create_from_cache_blob(). dnnl_status_t DNNL_API dnnl_primitive_get_cache_blob( const_dnnl_primitive_t primitive, size_t *size, uint8_t *cache_blob); /// Destroys a primitive. /// /// @param primitive The primitive to destroy. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_destroy(dnnl_primitive_t primitive); /// @} dnnl_api_primitives_common /// @addtogroup dnnl_api_attributes /// @{ /// Creates an empty (default) primitive attributes with all the parameters /// set to their default values. /// /// Empty attributes are implied whenever the respective argument is NULL. /// /// @param attr Output primitive attributes. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_create(dnnl_primitive_attr_t *attr); /// Clones primitive attributes. /// /// @param attr Output primitive attributes. /// @param existing_attr Primitive attributes to clone. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_clone( dnnl_primitive_attr_t *attr, const_dnnl_primitive_attr_t existing_attr); /// Destroys primitive attributes. /// /// @param attr Primitive attributes to destroy. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_destroy(dnnl_primitive_attr_t attr); /// Returns probability for output dropout primitive attribute. /// /// @param attr Primitive attributes. /// @param dropout_desc Output dropout memory descriptor /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_dropout( const_dnnl_primitive_attr_t attr, const_dnnl_memory_desc_t *dropout_desc); /// Sets probability for output dropout primitive attribute. /// /// @param attr Primitive attributes. /// @param dropout_desc Output dropout memory descriptor /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_dropout( dnnl_primitive_attr_t attr, const_dnnl_memory_desc_t dropout_desc); /// Returns the floating-point math mode primitive attribute. /// /// @param attr Primitive attributes. /// @param mode Output FP math mode. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_fpmath_mode( const_dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t *mode); /// Sets the floating-point math mode primitive attributes. /// /// @param attr Primitive attributes. /// @param mode FP math mode. The possible values are: /// #dnnl_fpmath_mode_strict (default), /// #dnnl_fpmath_mode_bf16, /// #dnnl_fpmath_mode_f16, /// #dnnl_fpmath_mode_tf32, /// #dnnl_fpmath_mode_any. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_fpmath_mode( dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t mode); /// Returns the floating-point math mode primitive attribute. /// /// @param attr Primitive attributes. /// @param mode Output FP math mode. /// @param apply_to_int Output use floating-point arithmetic for integer primitives. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_fpmath_mode_v2( const_dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t *mode, int *apply_to_int); /// Sets the floating-point math mode primitive attributes. /// /// @param attr Primitive attributes. /// @param mode FP math mode. The possible values are: /// #dnnl_fpmath_mode_strict (default), /// #dnnl_fpmath_mode_bf16, /// #dnnl_fpmath_mode_f16, /// #dnnl_fpmath_mode_tf32, /// #dnnl_fpmath_mode_any. /// @param apply_to_int Boolean. Use of floating-point arithmetic for integer primitives. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_fpmath_mode_v2( dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t mode, int apply_to_int); /// Returns the deterministic primitive attribute value. /// /// @param attr Primitive attributes. /// @param value Output deterministic attribute value /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_deterministic( const_dnnl_primitive_attr_t attr, int *value); /// Sets the deterministic primitive attribute value. /// /// @param attr Primitive attributes. /// @param value Boolean value to set deterministic attribute. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_deterministic( dnnl_primitive_attr_t attr, int value); /// Returns the accumulation mode primitive attribute. /// /// @param attr Primitive attributes. /// @param mode Output accumulation mode. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_accumulation_mode( const_dnnl_primitive_attr_t attr, dnnl_accumulation_mode_t *mode); /// Sets the accumulation mode primitive attribute. /// /// @param attr Primitive attributes. /// @param mode Accumulation mode. The possible values are: /// #dnnl_accumulation_mode_strict (default), which is s32 for quantized primitives, f32/f64 otherwise /// #dnnl_accumulation_mode_relaxed, which is same as strict but allows intermediate accumulators to be in src/dst datatype /// #dnnl_accumulation_mode_any, which allows accumulators to be src/dst datatype or any wider type. /// #dnnl_accumulation_mode_f32, /// #dnnl_accumulation_mode_s32, /// #dnnl_accumulation_mode_f16. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_accumulation_mode( dnnl_primitive_attr_t attr, dnnl_accumulation_mode_t mode); /// Returns the primitive attributes scratchpad mode. /// /// @param attr Primitive attributes. /// @param mode Output scratchpad mode. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_scratchpad_mode( const_dnnl_primitive_attr_t attr, dnnl_scratchpad_mode_t *mode); /// Sets primitive attributes scratchpad mode. /// /// @param attr Primitive attributes. /// @param mode Scratchpad mode. The possible values are: /// #dnnl_scratchpad_mode_library (default) and /// #dnnl_scratchpad_mode_user. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_scratchpad_mode( dnnl_primitive_attr_t attr, dnnl_scratchpad_mode_t mode); /// Sets primitive attributes scaling factors for primitive operations for a /// given memory argument. The scaling factors must be passed at execution time /// as an argument with index #DNNL_ARG_ATTR_SCALES | arg. /// /// @sa dnnl_primitive_attr_set_scales_mask /// /// /// @param attr Primitive attributes. /// @param arg Parameter argument index as passed to the /// dnnl_primitive_execute() call. /// @param mask Scaling factors correspondence mask that defines the /// correspondence between the tensor dimensions and the @p scales array. /// The set i-th bit indicates that a dedicated scaling factor is used for /// each index along that dimension. Set the mask to 0 to use a common /// scaling factor for the whole output tensor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_scales_mask( dnnl_primitive_attr_t attr, int arg, int mask); /// Sets primitive attributes scaling factors for primitive operations for a /// given memory argument. The scaling factors must be passed at execution time /// as an argument with index #DNNL_ARG_ATTR_SCALES | arg. /// /// @sa dnnl_primitive_attr_set_scales /// /// /// @param attr Primitive attributes. /// @param arg Parameter argument index as passed to the /// dnnl_primitive_execute() call. /// @param mask Scaling factors correspondence mask that defines the /// correspondence between the tensor dimensions and the @p scales array. /// The set i-th bit indicates that a dedicated scaling factor is used for /// each index along that dimension. Set the mask to 0 to use a common /// scaling factor for the whole output tensor. /// @param ndims Number of group dimensions. /// @param group_dims Scaling factors correspondence groups that define the /// correspondence between the tensor dimensions and the scales array. /// The group dimensions should only be provided for each logical dimension /// that has correspondence mask @p mask set. /// @param data_type Scaling factors data_type. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_scales( dnnl_primitive_attr_t attr, int arg, int mask, int ndims, const dnnl_dims_t group_dims, dnnl_data_type_t data_type); /// Sets primitive attributes zero points for primitive operations for a given /// memory argument. The zero points must be passed at execution time /// as an argument with index #DNNL_ARG_ATTR_ZERO_POINTS | arg. /// /// @sa dnnl_primitive_attr_set_zero_points_mask /// /// /// @param attr Primitive attributes. /// @param arg Parameter argument index as passed to the /// dnnl_primitive_execute() call. /// @param mask Zero point correspondence mask that defines the /// correspondence between the tensor dimensions and the @p /// zero_points array. The set i-th bit indicates that a dedicated /// zero point is used for each index along that dimension. Set the /// mask to 0 to use a common zero point for the whole output tensor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_zero_points_mask( dnnl_primitive_attr_t attr, int arg, int mask); /// Sets primitive attributes zero points for primitive operations for a given /// memory argument. The zero points must be passed at execution time /// as an argument with index #DNNL_ARG_ATTR_ZERO_POINTS | arg. /// /// @sa dnnl_primitive_attr_set_zero_points /// /// /// @param attr Primitive attributes. /// @param arg Parameter argument index as passed to the /// dnnl_primitive_execute() call. /// @param mask Zero point correspondence mask that defines the /// correspondence between the tensor dimensions and the @p /// zero_points array. The set i-th bit indicates that a dedicated /// zero point is used for each index along that dimension. Set the /// mask to 0 to use a common zero point for the whole output tensor. /// @param ndims Number of group dimensions. /// @param group_dims Zero point factors correspondence groups that define the /// correspondence between the tensor dimensions and the zero_points array. /// The group dimensions should be only provided for each logical dimension /// that has the bit set correspondence mask @p mask set. /// @param data_type Zero points factors data_type. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_zero_points( dnnl_primitive_attr_t attr, int arg, int mask, int ndims, const dnnl_dims_t group_dims, dnnl_data_type_t data_type); /// Sets the rounding mode attribute value for a given argument /// /// @param attr Primitive attributes. /// @param arg Argument for which rounding mode should be set. /// @param mode Rounding mode to apply to the argument. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_rounding( dnnl_primitive_attr_t attr, int arg, dnnl_rounding_mode_t mode); /// Returns the rounding mode attribute value for a given argument /// /// @param attr Primitive attributes. /// @param arg Argument for which rounding mode query applies. /// @param mode Output rounding mode. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_rounding( dnnl_primitive_attr_t attr, int arg, dnnl_rounding_mode_t *mode); /// Returns primitive attributes post-ops. /// /// @warning /// The output @p post_ops points to the internal @p attr field, so it is /// an error to modify or destroy them. The lifetime of @p post_ops is /// the same as that of the @p attr it belongs to, so it is an error to /// use @p post_ops after @p attr has been destroyed. /// /// @param attr Primitive attributes. /// @param post_ops Output post-ops. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_post_ops( const_dnnl_primitive_attr_t attr, const_dnnl_post_ops_t *post_ops); /// Sets primitive attributes post-ops. /// /// @note /// There is no way to check whether the post-ops would be supported by /// the target primitive. Any error will be reported by the /// dnnl__[propagation kind]_primitive_desc_create() function call. /// /// @param attr Primitive attributes. /// @param post_ops Post-ops to set. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_post_ops( dnnl_primitive_attr_t attr, const_dnnl_post_ops_t post_ops); /// Creates empty post-ops sequence. /// /// @param post_ops Output post-ops. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_create(dnnl_post_ops_t *post_ops); /// Clones post-ops primitive attribute. /// /// @param post_ops Output post-ops primitive attribute. /// @param existing_post_ops Post-ops primitive attribute to clone. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_clone( dnnl_post_ops_t *post_ops, const_dnnl_post_ops_t existing_post_ops); /// Destroys post-ops. /// /// @param post_ops Post-ops to destroy. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_destroy(dnnl_post_ops_t post_ops); /// Returns the length of post-ops. /// /// @param post_ops Post-ops. /// @returns The number of post-ops entries. int DNNL_API dnnl_post_ops_len(const_dnnl_post_ops_t post_ops); /// Returns the kind of a post-op entry. /// /// @param post_ops Post-ops. /// @param index Post-op entry index. /// @returns The kind of the post-op with the specified index. /// @returns #dnnl_undefined_primitive if there is no post-op at the specified /// index. dnnl_primitive_kind_t DNNL_API dnnl_post_ops_get_kind( const_dnnl_post_ops_t post_ops, int index); /// Appends an accumulation v3 (sum) to post-ops. Prior to accumulating the /// result, a zero point is subtracted from the previous value and is /// multiplied by the scale. /// /// The kind of this post-op is #dnnl_sum. /// /// This feature may improve performance for cases like dequantize the /// asymmetrically quantized sum's src1 tensor to f32 domain before performing /// the sum operation by subtracting the @p zero_point before the scaling. /// /// In the simplest case where accumulation is the only post-op, the /// computations will be: /// /// dst[:] <- scale * (dst[:] - zero_point) + op(...) /// // instead of dst[:] <- op(...) /// /// If @p data_type is specified, original dst tensor will be reinterpreted /// as a tensor with provided data type. Since it is reinterpretation, /// data_type and dst data type should have the same size. /// As a result, computations will be: /// /// dst[:] <- scale * (as_data_type(dst[:]) - zero_point) + op(...) /// // instead of dst[:] <- op(...) /// @note /// This post-op executes in-place and does not change the /// destination layout. /// /// @param post_ops Post-ops. /// @param scale Accumulation scaling factor. /// @param zero_point Single scalar int32_t value of zero point. /// @param data_type Accumulation data_type. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_append_sum(dnnl_post_ops_t post_ops, float scale, int32_t zero_point, dnnl_data_type_t data_type); /// Returns the parameters of an accumulation (sum) post-op with /// zero point and data type parameter. /// /// @param post_ops Post-ops. /// @param index Index of the sum post-op. /// @param scale Output accumulation scaling factor. /// @param zero_point Zero point. /// @param data_type Data type for accumulation. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_get_params_sum( const_dnnl_post_ops_t post_ops, int index, float *scale, int32_t *zero_point, dnnl_data_type_t *data_type); /// Appends an elementwise post-op. /// /// The kind of this post operation is #dnnl_eltwise. /// /// In the simplest case when the elementwise is the only post operation, the /// computations would be: /// /// dst[:] <- eltwise_op (op(...)) // instead of dst[:] <- op(...) /// /// where eltwise_op is configured with the given parameters. /// /// @param post_ops Post-ops. /// @param alg_kind Elementwise algorithm for the post-op. /// @param alpha Alpha parameter for the elementwise algorithm. /// @param beta Beta parameter for the elementwise algorithm. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_append_eltwise(dnnl_post_ops_t post_ops, dnnl_alg_kind_t alg_kind, float alpha, float beta); /// Returns the parameters of an elementwise post-op. /// /// @param post_ops Post-ops. /// @param index Index of the elementwise post-op. /// @param alg_kind Output elementwise algorithm kind. /// @param alpha Output alpha parameter for the elementwise algorithm. /// @param beta Output beta parameter for the elementwise algorithm. /// @returns #dnnl_success on success and a status describing the error /// otherwise. /// @returns #dnnl_invalid_arguments if @p index does not refer to an /// elementwise post-op. dnnl_status_t DNNL_API dnnl_post_ops_get_params_eltwise( const_dnnl_post_ops_t post_ops, int index, dnnl_alg_kind_t *alg_kind, float *alpha, float *beta); /// Appends a depthwise post-op convolution. /// /// This post-op can only be fused with a 2D 1x1 convolution (convolution with /// weights spatial dimensions equal to 1 i.e., kh=kw=1). /// /// The kind of this post-op is #dnnl_convolution. /// /// The number of outputs for primitive with fusion is one. The output spatial /// size can be derived as below: /// /// output_height = ceil(output_height_1x1_convolution, stride) /// output_width = ceil(output_width_1x1_convolution, stride) /// /// See @ref dev_guide_attributes_post_ops_depthwise and /// @ref dev_guide_attributes_post_ops_depthwise_fusion for more info. /// /// @param post_ops Post-ops. /// @param weights_data_type Weights data type of depthwise post-op /// @param bias_data_type Bias data type of depthwise post-op /// @param dst_data_type Output data type of depthwise post-op /// @param kernel_size Size of kernel of depthwise post-op /// @param stride_size Size of stride of depthwise post-op /// @param padding_l_size Size of left and top paddings of depthwise post-op /// @returns #dnnl_success on success and a status describing the error /// otherwise dnnl_status_t DNNL_API dnnl_post_ops_append_dw(dnnl_post_ops_t post_ops, dnnl_data_type_t weights_data_type, dnnl_data_type_t bias_data_type, dnnl_data_type_t dst_data_type, dnnl_dim_t kernel_size, dnnl_dim_t stride_size, dnnl_dim_t padding_l_size); /// Returns the parameters of an depthwise post-op. /// /// @param post_ops Post-ops. /// @param index Index of the elementwise post-op. /// @param weights_data_type Weights data type of depthwise post-op /// @param bias_data_type Bias data type of depthwise post-op /// @param dst_data_type Output data type of depthwise post-op /// @param kernel_size Size of kernel of depthwise post-op /// @param stride_size Size of stride of depthwise post-op /// @param padding_l_size Size of left and top paddings of depthwise post-op /// @returns #dnnl_success on success and a status describing the error /// otherwise dnnl_status_t DNNL_API dnnl_post_ops_get_params_dw( const_dnnl_post_ops_t post_ops, int index, dnnl_data_type_t *weights_data_type, dnnl_data_type_t *bias_data_type, dnnl_data_type_t *dst_data_type, dnnl_dim_t *kernel_size, dnnl_dim_t *stride_size, dnnl_dim_t *padding_l_size); /// Appends a binary post-op. /// /// The kind of this post operation is #dnnl_binary. /// /// In the simplest case when the binary is the only post operation, the /// computations would be: /// /// dst[:] <- binary_op (dst[:], another_input[:]) /// /// where binary_op is configured with the given parameters. binary_op supports /// broadcast semantics for a second operand. /// /// @param post_ops Post-ops. /// @param alg_kind Binary algorithm for the post-op. /// @param src1_desc Memory descriptor of a second operand. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_append_binary(dnnl_post_ops_t post_ops, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src1_desc); /// Returns the parameters of a binary post-op. /// /// @param post_ops Post-ops. /// @param index Index of the binary post-op. /// @param alg_kind Output binary algorithm kind. /// @param src1_desc Output memory descriptor of a second operand. /// @returns #dnnl_success on success and a status describing the error /// otherwise. /// @returns #dnnl_invalid_arguments if @p index does not refer to a binary /// post-op. dnnl_status_t DNNL_API dnnl_post_ops_get_params_binary( const_dnnl_post_ops_t post_ops, int index, dnnl_alg_kind_t *alg_kind, const_dnnl_memory_desc_t *src1_desc); /// Appends a prelu forward post-op. /// /// The kind of this post-op is #dnnl::primitive::kind::prelu. /// /// The post-op can be defined as: /// /// dst[:] <- prelu(dst[:], weights[:]) /// prelu: /// dst[:] <- dst[:] if dst[:] > 0 /// dst[:] <- dst[:] * weights[:] if dst[:] <= 0 /// /// /// @note /// The order of dimensions does not depend on how elements are laid /// out in memory. For example: /// - for a 2D CNN activations tensor the order is always (n, c) /// - for a 4D CNN activations tensor the order is always (n, c, h, w) /// - for a 5D CNN weights tensor the order is always /// (g, oc, ic, kh, kw) /// /// Prelu weights tensor is passed in runtime execution phase. Prelu /// weights tensor data type is implicitly assumed as f32 using plain /// layout (a, ab, acb, acdb, acdeb) /// /// @param post_ops Post-ops. /// @param mask Defines the correspondence between the output tensor /// dimensions and the prelu weights tensor. The set i-th bit indicates /// that a dedicated weights value is used for each index along that /// dimension. Set the mask to 0 to use a common weights value /// for the whole output tensor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_append_prelu( dnnl_post_ops_t post_ops, int mask); /// Returns the parameters of a prelu post-op. /// /// @param post_ops Post-ops. /// @param index Index of the prelu post-op. /// @param mask Mask of the prelu post-op. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_post_ops_get_params_prelu( const_dnnl_post_ops_t post_ops, int index, int *mask); /// @} dnnl_api_attributes /// @} dnnl_api_primitives /// @addtogroup dnnl_api_memory /// @{ /// Destroys a memory descriptor. /// /// @param memory_desc Memory descriptor to destroy. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_destroy(dnnl_memory_desc_t memory_desc); /// Clones a memory descriptor. The resulting memory descriptor must be /// destroyed separately. /// /// @param memory_desc Output memory descriptor. /// @param existing_memory_desc Memory descriptor to clone. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_clone(dnnl_memory_desc_t *memory_desc, const_dnnl_memory_desc_t existing_memory_desc); /// Retrieves a binary blob associated with the given memory descriptor /// /// @param blob Output pointer to binary blob. /// If not nullptr, size bytes of the memory descriptor blob are written. /// @param size Output pointer to the size of the binary blob in bytes. /// Size is written if blob is nullptr. /// @param memory_desc input memory descriptor to serialize /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_get_blob( uint8_t *blob, size_t *size, const_dnnl_memory_desc_t memory_desc); /// Creates a memory descriptor from a memory descriptor binary blob. /// /// @param memory_desc Output pointer to a newly allocated memory descriptor. /// @param blob Pointer to a memory descriptor binary blob. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_create_with_blob( dnnl_memory_desc_t *memory_desc, const uint8_t *blob); /// Creates a memory descriptor using dimensions and strides. /// /// @note /// As always, the logical order of dimensions corresponds to the `abc...` /// format tag, and the physical meaning of the dimensions depends on both /// the primitive that consumes the memory and the context of that /// consumption. /// /// @param memory_desc Output memory descriptor. /// @param ndims Number of dimensions /// @param dims Array of dimensions. /// @param data_type Elements data type. /// @param strides Strides in each dimension. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_create_with_strides( dnnl_memory_desc_t *memory_desc, int ndims, const dnnl_dims_t dims, dnnl_data_type_t data_type, const dnnl_dims_t strides); /// Creates a memory descriptor using dimensions and memory format tag. /// /// @note /// As always, the logical order of dimensions corresponds to the `abc...` /// format tag, and the physical meaning of the dimensions depends on both /// the primitive that consumes the memory and the context of that /// consumption. /// /// @param memory_desc Output memory descriptor. /// @param ndims Number of dimensions /// @param dims Array of dimensions. /// @param data_type Elements data type. /// @param tag Memory format tag. Can be #dnnl_format_tag_any which would /// allow a primitive to chose the final memory format. In this case the /// format_kind field of the memory descriptor would be set to /// #dnnl_format_kind_any. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_create_with_tag( dnnl_memory_desc_t *memory_desc, int ndims, const dnnl_dims_t dims, dnnl_data_type_t data_type, dnnl_format_tag_t tag); #ifdef DNNL_EXPERIMENTAL_SPARSE /// Creates a memory descriptor for CSR encoding. /// /// @param memory_desc Output memory descriptor. /// @param ndims Number of dimensions /// @param dims Array of dimensions. /// @param data_type Elements data type. /// @param nnz Number of non-zero entries. /// @param indices_dt Data type of indices. /// @param pointers_dt Data type of pointers. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_create_with_csr_encoding( dnnl_memory_desc_t *memory_desc, int ndims, const dnnl_dims_t dims, dnnl_data_type_t data_type, dnnl_dim_t nnz, dnnl_data_type_t indices_dt, dnnl_data_type_t pointers_dt); /// Creates a memory descriptor for COO encoding. /// /// The created memory descriptor will describe a memory object that /// contains n+1 buffers for an n-dimensional tensor. /// The buffers have the following meaning and assigned numbers (index): /// - 0: values /// - 1: indices for dimension 0 /// - 2: indices for dimension 1 ... /// - n: indices for dimension n-1 /// /// @param memory_desc Output memory descriptor. /// @param ndims Number of dimensions. /// @param dims Array of dimensions. /// @param data_type Elements data type. /// @param nnz Number of non-zero entries. /// @param indices_dt Data type of indices. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_create_with_coo_encoding( dnnl_memory_desc_t *memory_desc, int ndims, const dnnl_dims_t dims, dnnl_data_type_t data_type, dnnl_dim_t nnz, dnnl_data_type_t indices_dt); /// Creates a memory descriptor for packed sparse encoding. /// /// The created memory descriptor cannot be used to create a memory /// object. It can only be used to create a primitive descriptor to /// query the actual memory descriptor (similar to the format tag /// `any`). /// /// @warning /// The meaning and content of the handles of the memory object that /// is created using the queried memory descriptor are unspecified /// therefore using the content is an undefined behavior. /// /// @param memory_desc Output memory descriptor. /// @param ndims Number of dimensions /// @param dims Array of dimensions. /// @param data_type Elements data type. /// @param nnz Number of non-zero entries. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_create_with_packed_encoding( dnnl_memory_desc_t *memory_desc, int ndims, const dnnl_dims_t dims, dnnl_data_type_t data_type, dnnl_dim_t nnz); #endif /// Creates a memory descriptor for a region inside an area /// described by an existing memory descriptor. /// /// @warning /// Some combinations of physical memory layout and/or offsets or dims may /// result in a failure to create a submemory. // /// @param memory_desc Output memory descriptor. /// @param parent_memory_desc An existing memory descriptor. /// @param dims Sizes of the region. /// @param offsets Offsets to the region from the encompassing /// memory object in each dimension /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_create_submemory( dnnl_memory_desc_t *memory_desc, const_dnnl_memory_desc_t parent_memory_desc, const dnnl_dims_t dims, const dnnl_dims_t offsets); /// Creates a memory descriptor by reshaping an existing one. The new /// memory descriptor inherits the data type. This operation is valid only for /// memory descriptors that have format_kind #dnnl_blocked or /// #dnnl_format_kind_any. /// /// The resulting memory descriptor must be destroyed separately. /// /// The operation ensures the transformation of the physical memory format /// corresponds to the transformation of the logical dimensions. If such /// transformation is impossible, the function returns #dnnl_invalid_arguments. /// /// The reshape operation can be described as a combination of the following /// basic operations: /// 1. Add a dimension of size `1`. This is always possible. /// 2. Remove a dimension of size `1`. This is possible only if the dimension /// has no padding (i.e. `padded_dims[dim] == dims[dim] && dims[dim] == 1`). /// 3. Split a dimension into multiple ones. This is possible only if the size /// of the dimension is exactly equal to the product of the split ones and /// the dimension does not have padding (i.e. /// `padded_dims[dim] = dims[dim]`). /// 4. Joining multiple consecutive dimensions into a single one. As in the /// cases above, this requires that the dimensions do not have padding and /// that the memory format is such that in physical memory these dimensions /// are dense and have the same order as their logical counterparts. This /// also assumes that these dimensions are not blocked. /// - Here, dense means: /// `stride for dim[i] == (stride for dim[i + 1]) * dim[i + 1]`; /// - And same order means: /// `i < j` if and only if `stride for dim[j] <= stride for dim[i]`. /// /// @warning /// Some combinations of physical memory layout and/or offsets or /// dimensions may result in a failure to make a reshape. /// /// @param out_memory_desc Output memory descriptor. /// @param in_memory_desc An existing memory descriptor. Must have format_kind /// set to #dnnl_blocked or #dnnl_format_kind_any. /// @param ndims Number of dimensions for the output memory descriptor. /// @param dims Dimensions for the output memory descriptor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_reshape( dnnl_memory_desc_t *out_memory_desc, const_dnnl_memory_desc_t in_memory_desc, int ndims, const dnnl_dims_t dims); /// Creates a memory descriptor by permuting axes in an existing one. /// /// The physical memory layout representation is adjusted accordingly to /// maintain the consistency between the logical and physical parts of the /// memory descriptor. /// /// The resulting memory descriptor must be destroyed separately. /// /// The new memory descriptor inherits the data type. This operation is valid /// only for memory descriptors that have format_kind set to #dnnl_blocked or /// #dnnl_format_kind_any. /// /// The logical axes will be permuted in the following manner: /// ``` /// for (i: 0 .. in_memory_desc->ndims) /// out_memory_desc->dims[permutation[i]] = in_memory_desc->dims[i]; /// ``` /// /// Example: /// @code /// dnnl_memory_desc_t in_md, out_md, expect_out_md; /// /// const int permutation[] = {1, 0}; // swap the first and the second axes /// /// dnnl_dims_t in_dims = {2, 3}, out_dims = {3, 2}; /// dnnl_format_tag_t in_tag = dnnl_ab, out_tag = dnnl_ba; /// /// dnnl_memory_desc_create_with_tag( /// &in_md, 2, in_dims, data_type, in_tag); /// dnnl_memory_desc_create_with_tag( /// &expect_out_md, 2, out_dims, data_type, out_tag); /// /// dnnl_memory_desc_permute_axes(&out_md, in_md, permutation); /// assert(dnnl_memory_desc_equal(out_md, expect_out_md)); /// /// dnnl_memory_desc_destroy(in_md); /// dnnl_memory_desc_destroy(out_md); /// dnnl_memory_desc_destroy(expect_out_md); /// @endcode /// /// @param out_memory_desc Output memory descriptor. /// @param in_memory_desc An existing memory descriptor. Must have format_kind /// set to #dnnl_blocked or #dnnl_format_kind_any. /// @param permutation Axes permutation (of size `in_memory_desc->ndims`). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_permute_axes( dnnl_memory_desc_t *out_memory_desc, const_dnnl_memory_desc_t in_memory_desc, const int *permutation); /// Queries a memory descriptor for various pieces of information. /// /// The following information can be queried: /// - Number of dimensions (#dnnl_query_ndims_s32) /// - Dimensions (#dnnl_query_dims) in the following order: /// - CNN data tensors: mini-batch, channel, spatial /// ({N, C, [[D,] H,] W}) /// - CNN weight tensors: group (optional), output channel, input channel, /// spatial ({[G,] O, I, [[D,] H,] W}) /// - RNN data tensors: time, mini-batch, channels ({T, N, C}) /// or layers, directions, states, mini-batch, channels /// ({L, D, S, N, C}) /// - RNN weight tensor: layers, directions, input channel, gates, output /// channels ({L, D, I, G, O}) /// - Data type of the tensor elements (#dnnl_query_data_type) /// - Padded dimensions (#dnnl_query_padded_dims) - size of the data including /// padding in each dimension /// - Padded offsets (#dnnl_query_padded_offsets) - per-dimension offset from /// the padding to actual data, the top-level tensor with offsets applied /// must lie within the padding area. /// - Submemory offset (#dnnl_query_submemory_offset_s64) - offset from memory /// origin to the current block, non-zero only in a description of a memory /// sub-block. /// - Format kind (#dnnl_query_format_kind) - memory format kind /// /// @note /// The order of dimensions does not depend on the memory format, so /// whether the data is laid out in #dnnl_nchw or #dnnl_nhwc /// the dims for 4D CN data tensor would be {N, C, H, W}. /// /// The following queries are applicable only to format kind #dnnl_blocked. /// - Strides (#dnnl_query_strides) between the outermost blocks or in case /// of plain (non-blocked) formats the strides between dimensions /// - Number of innermost blocks (#dnnl_query_inner_nblks_s32), e.g. /// `{4, 16, 4}` in case of `OIhw_4i16o4i` /// - Size of the innermost blocks (#dnnl_query_inner_blks), e.g. 3 in case /// of `OIhw_4i16o4i_` /// - Logical indices of the blocks (#dnnl_query_inner_idxs), e.g. `{1, 0, 1}` /// in case of `4i16o4i`, because `i` is the 1st dim and `o` is the 0st dim /// /// @param memory_desc Memory descriptor. /// @param what Parameter to query. /// @param result Output result. The type depends on the query. For example, /// it must be a @c dnnl_dims_t** if querying for a strides. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_query( const_dnnl_memory_desc_t memory_desc, dnnl_query_t what, void *result); #ifdef DNNL_EXPERIMENTAL_SPARSE /// Queries a memory descriptor for various pieces of information. This version /// support additional queries #dnnl_query_sparse_encoding, #dnnl_query_nnz_s64 /// #dnnl_query_num_handles_s32 and #dnnl_query_data_type for a particular /// buffer. /// /// The following information can be queried: /// - Number of dimensions (#dnnl_query_ndims_s32) /// - Dimensions (#dnnl_query_dims) in the following order: /// - CNN data tensors: mini-batch, channel, spatial /// ({N, C, [[D,] H,] W}) /// - CNN weight tensors: group (optional), output channel, input channel, /// spatial ({[G,] O, I, [[D,] H,] W}) /// - RNN data tensors: time, mini-batch, channels ({T, N, C}) /// or layers, directions, states, mini-batch, channels /// ({L, D, S, N, C}) /// - RNN weight tensor: layers, directions, input channel, gates, output /// channels ({L, D, I, G, O}) /// - Data type of the tensor elements (#dnnl_query_data_type) /// - Padded dimensions (#dnnl_query_padded_dims) - size of the data including /// padding in each dimension /// - Padded offsets (#dnnl_query_padded_offsets) - per-dimension offset from /// the padding to actual data, the top-level tensor with offsets applied /// must lie within the padding area. /// - Submemory offset (#dnnl_query_submemory_offset_s64) - offset from memory /// origin to the current block, non-zero only in a description of a memory /// sub-block. /// - Format kind (#dnnl_query_format_kind) - memory format kind /// /// @note /// The order of dimensions does not depend on the memory format, so /// whether the data is laid out in #dnnl_nchw or #dnnl_nhwc /// the dims for 4D CN data tensor would be {N, C, H, W}. /// /// The following queries are applicable only to format kind #dnnl_blocked. /// - Strides (#dnnl_query_strides) between the outermost blocks or in case /// of plain (non-blocked) formats the strides between dimensions /// - Number of innermost blocks (#dnnl_query_inner_nblks_s32), e.g. /// `{4, 16, 4}` in case of `OIhw_4i16o4i` /// - Size of the innermost blocks (#dnnl_query_inner_blks), e.g. 3 in case /// of `OIhw_4i16o4i_` /// - Logical indices of the blocks (#dnnl_query_inner_idxs), e.g. `{1, 0, 1}` /// in case of `4i16o4i`, because `i` is the 1st dim and `o` is the 0st dim /// /// @param memory_desc Memory descriptor. /// @param what Parameter to query. /// @param index Index of the parameter to query for. It is mostly used with /// #dnnl_query_data_type to specify which data type is being queried. /// The main data type (data type of values) has always index 0. For other /// indices please refer to the API for creating a memory descriptor for /// sparse encoding. /// @param result Output result. The type depends on the query. For example, /// it must be a @c dnnl_dims_t** if querying for a strides. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_desc_query_v2( const_dnnl_memory_desc_t memory_desc, dnnl_query_t what, int index, void *result); #endif /// Compares two memory descriptors. /// /// Use this function to identify whether a reorder is required between the /// two memories /// /// @param lhs Left-hand side of the comparison. /// @param rhs Right-hand side of the comparison. /// @returns 1 if the descriptors are the same. /// @returns 0 if the descriptors are different. int DNNL_API dnnl_memory_desc_equal( const_dnnl_memory_desc_t lhs, const_dnnl_memory_desc_t rhs); /// Returns the size of a memory descriptor. /// /// @param memory_desc Memory descriptor. /// @returns The number of bytes required for memory described by a memory /// descriptor. size_t DNNL_API dnnl_memory_desc_get_size(const_dnnl_memory_desc_t memory_desc); #ifdef DNNL_EXPERIMENTAL_SPARSE /// Returns the size of the data that corresponds to the given index. /// /// @param memory_desc Memory descriptor. /// @param index Index of the buffer. /// /// @returns The number of bytes required for the requested data. size_t DNNL_API dnnl_memory_desc_get_size_v2( const_dnnl_memory_desc_t memory_desc, int index); #endif /// Returns the size of data type. /// /// @param data_type Data type. /// @returns The number of bytes occupied by data type. size_t DNNL_API dnnl_data_type_size(dnnl_data_type_t data_type); /// Creates a memory object. /// /// Unless @p handle is equal to DNNL_MEMORY_NONE, the constructed memory /// object will have the underlying buffer set. In this case, the buffer will /// be initialized as if dnnl_memory_set_data_handle() had been called. /// /// @sa dnnl_memory_set_data_handle() /// /// @param memory Output memory object. /// @param memory_desc Memory descriptor. /// @param engine Engine to use. /// @param handle Handle of the memory buffer to use as an underlying storage. /// - A pointer to the user-allocated buffer. In this case the library /// doesn't own the buffer. /// - The DNNL_MEMORY_ALLOCATE special value. Instructs the library to /// allocate the buffer for the memory object. In this case the library /// owns the buffer. /// - DNNL_MEMORY_NONE to create dnnl_memory without an underlying buffer. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_create(dnnl_memory_t *memory, const_dnnl_memory_desc_t memory_desc, dnnl_engine_t engine, void *handle); #ifdef DNNL_EXPERIMENTAL_SPARSE /// Creates a memory object with multiple handles. /// /// @param memory Output memory object. /// @param memory_desc Memory descriptor. /// @param engine Engine to use. /// @param nhandles Number of handles. /// @param handles Handles of the memory buffers to use as underlying storages. /// For each element of the @p handles array the following applies: /// - A pointer to the user-allocated buffer. In this case the library /// doesn't own the buffer. /// - The DNNL_MEMORY_ALLOCATE special value. Instructs the library to /// allocate the buffer for the memory object. In this case the library /// owns the buffer. /// - DNNL_MEMORY_NONE Instructs the library to skip allocation of the /// memory buffer. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_create_v2(dnnl_memory_t *memory, const_dnnl_memory_desc_t memory_desc, dnnl_engine_t engine, int nhandles, void **handles); #endif /// Returns the memory descriptor for a memory object. /// /// @param memory Memory object. /// @param memory_desc Output memory descriptor (a copy). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_get_memory_desc( const_dnnl_memory_t memory, const_dnnl_memory_desc_t *memory_desc); /// Returns the engine of a memory object. /// /// @param memory Memory object. /// @param engine Output engine on which the memory is located. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_get_engine( const_dnnl_memory_t memory, dnnl_engine_t *engine); /// Maps a memory object and returns a host-side pointer to a memory buffer /// with a copy of its contents. /// /// Mapping enables explicit direct access to memory contents for the engines /// that do not support it implicitly. /// /// Mapping is an exclusive operation - a memory object cannot be used in /// other operations until this memory object is unmapped. /// /// @note /// Any primitives working with @p memory should be completed before /// the memory is mapped. Use dnnl_stream_wait to synchronize the /// corresponding execution stream. /// /// @note /// The dnnl_memory_map_data() and dnnl_memory_unmap_data() functions are /// mainly provided for debug and testing purposes, and their performance /// may be suboptimal. /// /// @param memory Memory object. /// @param mapped_ptr Output pointer to the mapped buffer. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_map_data( const_dnnl_memory_t memory, void **mapped_ptr); #ifdef DNNL_EXPERIMENTAL_SPARSE /// Maps a memory object and returns a host-side pointer to a memory buffer /// with a copy of its contents. The memory buffer corresponds to the given /// index. /// /// Mapping enables explicit direct access to memory contents for the engines /// that do not support it implicitly. /// /// Mapping is an exclusive operation - a memory object cannot be used in /// other operations until this memory object is unmapped. /// /// @note /// Any primitives working with @p memory should be completed before /// the memory is mapped. Use dnnl_stream_wait to synchronize the /// corresponding execution stream. /// /// @note /// The dnnl_memory_map_data() and dnnl_memory_unmap_data() functions are /// mainly provided for debug and testing purposes, and their performance /// may be suboptimal. /// /// @param memory Memory object. /// @param mapped_ptr Output pointer to the mapped buffer. /// @param index Index of the buffer. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_map_data_v2( const_dnnl_memory_t memory, void **mapped_ptr, int index); #endif /// Unmaps a memory object and writes back any changes made to the previously /// mapped memory buffer. The pointer to the mapped buffer must be obtained /// via the dnnl_memory_map_data() call. /// /// @note /// The dnnl_memory_map_data() and dnnl_memory_unmap_data() functions are /// mainly provided for debug and testing purposes, and their performance /// may be suboptimal. /// /// @param memory Memory object. /// @param mapped_ptr Pointer to the mapped buffer that must have been /// obtained using the dnnl_memory_map_data() function. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_unmap_data( const_dnnl_memory_t memory, void *mapped_ptr); #ifdef DNNL_EXPERIMENTAL_SPARSE /// Unmaps a memory object and writes back any changes made to the previously /// mapped memory buffer. The pointer to the mapped buffer must be obtained /// via the dnnl_memory_map_data() call. The buffer corresponds to the given /// index. /// /// @note /// The dnnl_memory_map_data() and dnnl_memory_unmap_data() functions are /// mainly provided for debug and testing purposes, and their performance /// may be suboptimal. /// /// @param memory Memory object. /// @param mapped_ptr Pointer to the mapped buffer that must have been /// obtained using the dnnl_memory_map_data() function. /// @param index Index of the buffer. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_unmap_data_v2( const_dnnl_memory_t memory, void *mapped_ptr, int index); #endif /// Returns memory object's data handle. /// /// @param memory Memory object. /// @param handle Output data handle. For the CPU engine, the data handle is a /// pointer to the actual data. For OpenCL it is a cl_mem. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_get_data_handle( const_dnnl_memory_t memory, void **handle); /// Sets the underlying memory buffer. /// /// @param memory Memory object. /// @param handle Data handle. For the CPU engine or when USM is used, the /// memory buffer is a pointer to the actual data. For OpenCL it is a /// `cl_mem`. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_set_data_handle( dnnl_memory_t memory, void *handle); #ifdef DNNL_EXPERIMENTAL_SPARSE /// Returns an underlying memory buffer that corresponds to the given index. /// /// @param memory Memory object. /// @param handle Data handle. For the CPU engine or when USM is used, the /// memory buffer is a pointer to the actual data. For OpenCL it is a /// `cl_mem`. /// @param index Index of the buffer. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_get_data_handle_v2( const_dnnl_memory_t memory, void **handle, int index); /// Sets an underlying memory buffer that corresponds to the given index. /// /// @param memory Memory object. /// @param handle Data handle. For the CPU engine or when USM is used, the /// memory buffer is a pointer to the actual data. For OpenCL it is a /// `cl_mem`. /// @param index Index of the buffer. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_set_data_handle_v2( dnnl_memory_t memory, void *handle, int index); #endif /// Destroys a memory object. /// /// @param memory Memory object to destroy. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_memory_destroy(dnnl_memory_t memory); /// @} dnnl_api_memory /// @addtogroup dnnl_api_primitives /// @{ /// @addtogroup dnnl_api_reorder /// @{ /// Creates a primitive descriptor for a reorder primitive. /// /// @param reorder_primitive_desc Output primitive descriptor. /// @param src_desc Source memory descriptor. /// @param src_engine Engine on which the source memory object will be /// located. /// @param dst_desc Destination memory descriptor. /// @param dst_engine Engine on which the destination memory object /// will be located. /// @param attr Primitive attributes to use (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_reorder_primitive_desc_create( dnnl_primitive_desc_t *reorder_primitive_desc, const_dnnl_memory_desc_t src_desc, dnnl_engine_t src_engine, const_dnnl_memory_desc_t dst_desc, dnnl_engine_t dst_engine, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_reorder /// @addtogroup dnnl_api_concat /// @{ /// Creates a primitive descriptor for an out-of-place concatenation /// primitive. /// /// @param concat_primitive_desc Output primitive descriptor. /// @param dst_desc Destination memory descriptor. /// @param n Number of source parameters. /// @param concat_dimension Source tensors will be concatenated over /// dimension with this index. Note that order of dimensions does /// not depend on memory format. /// @param src_descs Array of source memory descriptors with @p n elements. /// @param attr Primitive attributes to use (can be NULL). /// @param engine Engine to use. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_concat_primitive_desc_create( dnnl_primitive_desc_t *concat_primitive_desc, dnnl_engine_t engine, const_dnnl_memory_desc_t dst_desc, int n, int concat_dimension, const_dnnl_memory_desc_t const *src_descs, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_concat /// @addtogroup dnnl_api_sum /// @{ /// Creates a primitive descriptor for an (out-of-place) sum primitive. /// /// @param sum_primitive_desc Output primitive descriptor. /// @param dst_desc Destination memory descriptor. /// @param n Number of source parameters. /// @param scales Vector of scales to multiply data in each source /// memory by. /// @param src_descs Array of source memory descriptors having @p n elements. /// @param attr Primitive attributes to use (can be NULL). /// @param engine Engine to use. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_sum_primitive_desc_create( dnnl_primitive_desc_t *sum_primitive_desc, dnnl_engine_t engine, const_dnnl_memory_desc_t dst_desc, int n, const float *scales, const_dnnl_memory_desc_t const *src_descs, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_sum /// @addtogroup dnnl_api_binary /// @{ /// Creates a primitive descriptor for a binary primitive. /// /// @note /// Memory descriptors @p src1_desc and @p dst_desc are allowed to be /// initialized with #dnnl_format_tag_any or with format_kind set to /// #dnnl_format_kind_any. /// /// @note /// Both memory descriptors must have the same number of dimensions. /// Element broadcasting is supported for memory descriptor @p src1_desc /// and are applied to @p src1_desc dimensions that have size equal to 1. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Algorithm kind. Valid values are #dnnl_binary_add, /// #dnnl_binary_mul, #dnnl_binary_max, #dnnl_binary_min, #dnnl_binary_div, /// #dnnl_binary_sub, #dnnl_binary_ge, #dnnl_binary_gt, #dnnl_binary_le, /// #dnnl_binary_lt, #dnnl_binary_eq and #dnnl_binary_ne. /// @param src0_desc Source 0 memory descriptor. /// @param src1_desc Source 1 memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_binary_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src0_desc, const_dnnl_memory_desc_t src1_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a binary primitive with support of /// ternary operators. /// /// @note /// Memory descriptors @p src1_desc, @p src2_desc and @p dst_desc are /// allowed to be initialized with #dnnl_format_tag_any or with format_kind /// set to #dnnl_format_kind_any. /// /// @note /// All memory descriptors must have the same number of dimensions. /// Element broadcasting is supported for memory descriptor @p src1_desc /// and is applied to @p src1_desc dimensions that have a size equal to 1. /// There is no broadcasting support for @p src2_desc. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Algorithm kind. /// @param src0_desc Source 0 memory descriptor. /// @param src1_desc Source 1 memory descriptor. /// @param src2_desc Source memory descriptor for ternary operations. Might /// be empty. /// @param dst_desc Destination memory descriptor. /// @param attr Primitive attributes. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_binary_primitive_desc_create_v2( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src0_desc, const_dnnl_memory_desc_t src1_desc, const_dnnl_memory_desc_t src2_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_binary /// @addtogroup dnnl_api_convolution /// @{ /// Creates a primitive descriptor for a convolution forward propagation /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// Arrays @p strides, @p dilates, @p padding_l, and @p padding_r contain /// values for spatial dimensions only and hence must have the same number of /// elements as there are spatial dimensions. The order of values is the same /// as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), /// and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param alg_kind Convolution algorithm. Possible values are /// #dnnl_convolution_direct, #dnnl_convolution_winograd, /// #dnnl_convolution_auto. /// @param src_desc Source memory descriptor. /// @param weights_desc Weights memory descriptor. /// @param bias_desc Bias memory descriptor. Passing NULL, a zero memory /// descriptor, or a memory descriptor with format_kind set to /// #dnnl_format_kind_undef disables the bias term. /// @param dst_desc Destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param dilates Array of dilations for spatial dimension. A zero value /// means no dilation in the corresponding dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_convolution_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_desc, const dnnl_dims_t strides, const dnnl_dims_t dilates, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a convolution backward propagation /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// Arrays @p strides, @p dilates, @p padding_l, and @p padding_r contain /// values for spatial dimensions only and hence must have the same number of /// elements as there are spatial dimensions. The order of values is the same /// as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), /// and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Convolution algorithm. Possible values are /// #dnnl_convolution_direct, #dnnl_convolution_winograd, /// #dnnl_convolution_auto. /// @param diff_src_desc Diff source memory descriptor. /// @param weights_desc Weights memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param dilates Array of dilations for spatial dimension. A zero value /// means no dilation in the corresponding dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_convolution_backward_data_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t diff_dst_desc, const dnnl_dims_t strides, const dnnl_dims_t dilates, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a convolution weights gradient primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// Arrays @p strides, @p dilates, @p padding_l, and @p padding_r contain /// values for spatial dimensions only and hence must have the same number of /// elements as there are spatial dimensions. The order of values is the same /// as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), /// and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Convolution algorithm. Possible values are /// #dnnl_convolution_direct, #dnnl_convolution_winograd, /// #dnnl_convolution_auto. /// @param src_desc Source memory descriptor. /// @param diff_weights_desc Diff weights memory descriptor. /// @param diff_bias_desc Diff bias memory descriptor. Passing NULL, a zero /// memory descriptor, or a memory descriptor with format_kind set to /// #dnnl_format_kind_undef disables the bias term. /// @param diff_dst_desc Diff destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param dilates Array of dilations for spatial dimension. A zero value /// means no dilation in the corresponding dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_convolution_backward_weights_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t diff_weights_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_desc, const dnnl_dims_t strides, const dnnl_dims_t dilates, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_convolution /// @addtogroup dnnl_api_deconvolution /// @{ /// Creates a primitive descriptor for a deconvolution forward propagation /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// Arrays @p strides, @p dilates, @p padding_l, and @p padding_r contain /// values for spatial dimensions only and hence must have the same number of /// elements as there are spatial dimensions. The order of values is the same /// as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), /// and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param alg_kind Deconvolution algorithm. Possible values are /// #dnnl_deconvolution_direct, #dnnl_deconvolution_winograd. /// @param src_desc Source memory descriptor. /// @param weights_desc Weights memory descriptor. /// @param bias_desc Bias memory descriptor. Passing NULL, a zero memory /// descriptor, or a memory descriptor with format_kind set to /// #dnnl_format_kind_undef disables the bias term. /// @param dst_desc Destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param dilates Array of dilations for spatial dimension. A zero value /// means no dilation in the corresponding dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_deconvolution_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_desc, const dnnl_dims_t strides, const dnnl_dims_t dilates, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a deconvolution backward propagation /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// Arrays @p strides, @p dilates, @p padding_l, and @p padding_r contain /// values for spatial dimensions only and hence must have the same number of /// elements as there are spatial dimensions. The order of values is the same /// as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), /// and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Deconvolution algorithm. Possible values are /// #dnnl_deconvolution_direct, #dnnl_deconvolution_winograd. /// @param diff_src_desc Diff source memory descriptor. /// @param weights_desc Weights memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param dilates Array of dilations for spatial dimension. A zero value /// means no dilation in the corresponding dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_deconvolution_backward_data_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t diff_dst_desc, const dnnl_dims_t strides, const dnnl_dims_t dilates, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a deconvolution weights gradient /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// Arrays @p strides, @p dilates, @p padding_l, and @p padding_r contain /// values for spatial dimensions only and hence must have the same number of /// elements as there are spatial dimensions. The order of values is the same /// as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), /// and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Deconvolution algorithm. Possible values are /// #dnnl_deconvolution_direct, #dnnl_deconvolution_winograd. /// @param src_desc Source memory descriptor. /// @param diff_weights_desc Diff weights memory descriptor. /// @param diff_bias_desc Diff bias memory descriptor. Passing NULL, a zero /// memory descriptor, or a memory descriptor with format_kind set to /// #dnnl_format_kind_undef disables the bias term. /// @param diff_dst_desc Diff destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param dilates Array of dilations for spatial dimension. A zero value /// means no dilation in the corresponding dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_deconvolution_backward_weights_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t diff_weights_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_desc, const dnnl_dims_t strides, const dnnl_dims_t dilates, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_deconvolution /// @addtogroup dnnl_api_shuffle /// @{ /// Creates a primitive descriptor for a shuffle forward propagation primitive /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param axis The axis along which the data is shuffled. /// @param group_size Shuffle group size. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_shuffle_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, int axis, dnnl_dim_t group_size, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a shuffle backward propagation primitive /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param axis The axis along which the data is shuffled. /// @param group_size Shuffle group size. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_shuffle_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, int axis, dnnl_dim_t group_size, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_shuffle /// @addtogroup dnnl_api_eltwise /// @{ /// Creates a primitive descriptor for an eltwise forward propagation primitive. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param alg_kind Elementwise algorithm kind. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param alpha The alpha parameter for the elementwise operation. Specific /// meaning depends on the algorithm. /// @param beta The beta parameter for the elementwise operation. Specific /// meaning depends on the algorithm. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_eltwise_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, float alpha, float beta, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for an eltwise backward propagation /// primitive. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Elementwise algorithm kind. /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param data_desc Destination memory descriptor if one of the /// "use_dst_for_bwd" algorithms are used (such as /// #dnnl_eltwise_relu_use_dst_for_bwd), source memory descriptor otherwise. /// @param alpha The alpha parameter for the elementwise operation. Specific /// meaning depends on the algorithm. /// @param beta The beta parameter for the elementwise operation. Specific /// meaning depends on the algorithm. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_eltwise_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_memory_desc_t data_desc, float alpha, float beta, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_eltwise /// @addtogroup dnnl_api_softmax /// @{ /// Creates a primitive descriptor for a softmax forward propagation primitive. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param alg_kind Softmax algorithm kind: either #dnnl_softmax_accurate, or /// #dnnl_softmax_log. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param softmax_axis Axis over which softmax is computed. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_softmax_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, int softmax_axis, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a softmax backward propagation primitive. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Softmax algorithm kind: either #dnnl_softmax_accurate, or /// #dnnl_softmax_log. /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param softmax_axis Axis over which softmax is computed. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_softmax_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_memory_desc_t dst_desc, int softmax_axis, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_softmax /// @addtogroup dnnl_api_pooling /// @{ /// Creates a primitive descriptor for a pooling forward propagation /// primitive. /// /// Arrays @p strides, @p kernel, @p dilation, @p padding_l and @p padding_r /// contain values for spatial dimensions only and hence must have the same /// number of elements as there are spatial dimensions. The order of values /// is the same as in the tensor: depth (for 3D tensors), /// height (for 3D and 2D tensors), and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param alg_kind Pooling algorithm kind: either #dnnl_pooling_max, /// #dnnl_pooling_avg_include_padding, or #dnnl_pooling_avg_exclude_padding. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param kernel Array of kernel spatial dimensions. /// @param dilation Array of dilations for spatial dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_pooling_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, const dnnl_dims_t strides, const dnnl_dims_t kernel, const dnnl_dims_t dilation, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a pooling backward propagation /// primitive. /// /// Arrays @p strides, @p kernel, @p dilation, @p padding_l and @p padding_r /// contain values for spatial dimensions only and hence must have the same /// number of elements as there are spatial dimensions. The order of values /// is the same as in the tensor: depth (for 3D tensors), /// height (for 3D and 2D tensors), and width. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind Pooling algorithm kind: either #dnnl_pooling_max, /// #dnnl_pooling_avg_include_padding, or #dnnl_pooling_avg_exclude_padding. /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param strides Array of strides for spatial dimension. /// @param kernel Array of kernel spatial dimensions. /// @param dilation Array of dilations for spatial dimension. /// @param padding_l Array of padding values for low indices for each spatial /// dimension `([[front,] top,] left)`. /// @param padding_r Array of padding values for high indices for each spatial /// dimension `([[back,] bottom,] right)`. Can be NULL in which case /// padding is considered to be symmetrical. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_pooling_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const dnnl_dims_t strides, const dnnl_dims_t kernel, const dnnl_dims_t dilation, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_pooling /// @addtogroup dnnl_api_prelu /// @{ /// Creates a primitive descriptor for a PReLU (leaky ReLU with trainable /// alpha parameter) forward propagation primitive. /// /// @note /// weights descriptor is allowed to be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param src_desc Source memory descriptor. /// @param weights_desc Alpha parameters memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_prelu_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a PReLU (leaky ReLU with trainable /// alpha parameter) backward propagation primitive. /// /// @note /// weights descriptor and diff_weights descriptor are allowed /// to be initialized with #dnnl_format_tag_any or with format_kind /// set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param src_desc Source memory descriptor. /// @param weights_desc Alpha parameters memory descriptor. /// @param diff_src_desc Diff source memory descriptor. /// @param diff_weights_desc Diff alpha parameters memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_prelu_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_weights_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_prelu /// @addtogroup dnnl_api_lrn /// @{ /// Creates a primitive descriptor for an LRN forward propagation primitive. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param alg_kind LRN algorithm kind: either #dnnl_lrn_across_channels or /// #dnnl_lrn_within_channel. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param local_size Regularization local size. /// @param alpha The alpha regularization parameter. /// @param beta The beta regularization parameter. /// @param k The k regularization parameter. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lrn_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, dnnl_dim_t local_size, float alpha, float beta, float k, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for an LRN backward propagation primitive. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param alg_kind LRN algorithm kind: either #dnnl_lrn_across_channels or /// #dnnl_lrn_within_channel. /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param src_desc Source memory descriptor. /// @param local_size Regularization local size. /// @param alpha The alpha regularization parameter. /// @param beta The beta regularization parameter. /// @param k The k regularization parameter. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lrn_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_memory_desc_t src_desc, dnnl_dim_t local_size, float alpha, float beta, float k, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_lrn /// @addtogroup dnnl_api_batch_normalization /// @{ /// Creates a primitive descriptor for a batch normalization forward propagation /// primitive. /// /// @note /// In-place operation is supported: the dst can refer to the same memory /// as the src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param epsilon Batch normalization epsilon parameter. /// @param flags Batch normalization flags (@ref dnnl_normalization_flags_t). /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_batch_normalization_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, float epsilon, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a batch normalization backward /// propagation primitive. /// /// @note /// In-place operation is supported: the diff_dst can refer to the same /// memory as the diff_src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_backward_data and #dnnl_backward (diffs for all parameters are /// computed in this case). /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param src_desc Source memory descriptor. /// @param epsilon Batch normalization epsilon parameter. /// @param flags Batch normalization flags (@ref dnnl_normalization_flags_t). /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_batch_normalization_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_memory_desc_t src_desc, float epsilon, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_batch_normalization /// @addtogroup dnnl_api_group_normalization /// @{ /// Creates a primitive descriptor for a group normalization forward propagation /// primitive. /// /// @note /// In-place operation is supported: the dst can refer to the same memory /// as the src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param groups Group normalization groups parameter. /// @param epsilon Group normalization epsilon parameter. /// @param flags Group normalization flags (@ref dnnl_normalization_flags_t). /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_group_normalization_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, dnnl_dim_t groups, float epsilon, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a group normalization backward /// propagation primitive. /// /// @note /// In-place operation is supported: the diff_dst can refer to the same /// memory as the diff_src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_backward_data and #dnnl_backward (diffs for all parameters are /// computed in this case). /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param src_desc Source memory descriptor. /// @param groups Group normalization groups parameter. /// @param epsilon Group normalization epsilon parameter. /// @param flags Group normalization flags (@ref dnnl_normalization_flags_t). /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_group_normalization_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_memory_desc_t src_desc, dnnl_dim_t groups, float epsilon, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_group_normalization /// @addtogroup dnnl_api_layer_normalization /// @{ /// Creates a primitive descriptor for a layer normalization forward propagation /// primitive. /// /// @note /// In-place operation is supported: the dst can refer to the same memory /// as the src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param stat_desc Memory descriptor for mean and variance. If this /// parameter is NULL, a zero memory descriptor, or a memory descriptor /// with format_kind set to #dnnl_format_kind_undef, then the memory /// descriptor for stats is derived from @p src_desc by removing the last /// dimension. /// @param epsilon Layer normalization epsilon parameter. /// @param flags Layer normalization flags (@ref dnnl_normalization_flags_t). /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_layer_normalization_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_memory_desc_t stat_desc, float epsilon, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a layer normalization backward /// propagation primitive. /// /// @note /// In-place operation is supported: the diff_dst can refer to the same /// memory as the diff_src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_backward_data and #dnnl_backward (diffs for all parameters are /// computed in this case). /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param src_desc Source memory descriptor. /// @param stat_desc Memory descriptor for mean and variance. If this /// parameter is NULL, a zero memory descriptor, or a memory descriptor /// with format_kind set to #dnnl_format_kind_undef, then the memory /// descriptor for stats is derived from @p src_desc by removing the last /// dimension. /// @param epsilon Layer normalization epsilon parameter. /// @param flags Layer normalization flags (@ref dnnl_normalization_flags_t). /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_layer_normalization_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t stat_desc, float epsilon, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a layer normalization forward propagation /// primitive with a user-provided data type for the scale and shift /// memory objects. /// /// @note /// In-place operation is supported: the dst can refer to the same memory /// as the src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param stat_desc Memory descriptor for mean and variance. If this /// parameter is NULL, a zero memory descriptor, or a memory descriptor /// with format_kind set to #dnnl_format_kind_undef, then the memory /// descriptor for stats is derived from @p src_desc by removing the last /// dimension. /// @param scale_shift_data_type Data type of scale and shift memory. If neither scale /// nor shift flag are specified the parameter is ignored. /// @param epsilon Layer normalization epsilon parameter. /// @param flags Layer normalization flags (@ref dnnl_normalization_flags_t). /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_layer_normalization_forward_primitive_desc_create_v2( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_memory_desc_t stat_desc, dnnl_data_type_t scale_shift_data_type, float epsilon, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a layer normalization backward /// propagation primitive with a user-provided data type for the /// scale and shift memory objects. /// /// @note /// In-place operation is supported: the diff_dst can refer to the same /// memory as the diff_src. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_backward_data and #dnnl_backward (diffs for all parameters are /// computed in this case). /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param src_desc Source memory descriptor. /// @param stat_desc Memory descriptor for mean and variance. If this /// parameter is NULL, a zero memory descriptor, or a memory descriptor /// with format_kind set to #dnnl_format_kind_undef, then the memory /// descriptor for stats is derived from @p src_desc by removing the last /// dimension. /// @param diff_scale_shift_data_type Data type of diff scale and shift memory. If neither scale /// nor shift flag are specified the parameter is ignored. /// @param scale_shift_data_type Data type of scale and shift memory. If neither scale /// nor shift flag are specified the parameter is ignored. /// @param epsilon Layer normalization epsilon parameter. /// @param flags Layer normalization flags (@ref dnnl_normalization_flags_t). /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_layer_normalization_backward_primitive_desc_create_v2( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t stat_desc, dnnl_data_type_t diff_scale_shift_data_type, dnnl_data_type_t scale_shift_data_type, float epsilon, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_layer_normalization /// @addtogroup dnnl_api_inner_product /// @{ /// Creates a primitive descriptor for an inner product forward propagation /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param src_desc Source memory descriptor. /// @param weights_desc Weights memory descriptor. /// @param bias_desc Bias memory descriptor. Passing NULL, a zero memory /// descriptor, or a memory descriptor with format_kind set to /// #dnnl_format_kind_undef disables the bias term. /// @param dst_desc Destination memory descriptor. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_inner_product_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for an inner product backward propagation /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param diff_src_desc Diff source memory descriptor. /// @param weights_desc Weights memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_inner_product_backward_data_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for an inner product weights gradient /// primitive. /// /// @note /// Memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive_descriptor. /// @param engine Engine to use. /// @param src_desc Source memory descriptor. /// @param diff_weights_desc Diff weights memory descriptor. /// @param diff_bias_desc Diff bias memory descriptor. Passing NULL, a zero /// memory descriptor, or a memory descriptor with format_kind set to /// #dnnl_format_kind_undef disables the bias term. /// @param diff_dst_desc Diff destination memory descriptor. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_inner_product_backward_weights_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t diff_weights_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_inner_product /// @addtogroup dnnl_api_attributes /// @{ /// Set quantization scale and shift parameters for RNN data tensors. /// /// For performance reasons, the low-precision configuration of the RNN /// primitives expects input activations to have the unsigned 8-bit integer /// data type. The scale and shift parameters are used to quantize /// floating-point data to unsigned integer and must be passed to the RNN /// primitive using attributes. /// /// The quantization formula is `scale * data + shift`. /// /// @note /// Quantization scale and shift are common for src_layer, src_iter, /// dst_iter, and dst_layer. /// /// Example usage: /// @code /// // RNN parameters /// int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32; /// // Activations quantization parameters /// float scale = 63.f, shift = 64.f; /// /// dnnl_primitive_attr_t rnn_attr; /// // Create default attributes /// dnnl_primitive_attr_create(&rnn_attr); /// /// // Set scale and shift for int8 quantization of activation /// dnnl_primitive_attr_set_rnn_data_qparams(rnn_attr, scale, shift); /// /// // Create an RNN primitive descriptor. /// dnnl_primitive_desc_t rnn_pd; /// dnnl_vanilla_rnn_forward_primitive_desc_create(&rnn_pd, /// engine, /* arguments */, attr); /// @endcode /// /// @param attr Primitive attributes. /// @param scale The value to scale the data by. /// @param shift The value to shift the data by. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_data_qparams( dnnl_primitive_attr_t attr, const float scale, const float shift); /// Returns the quantization scale and shift parameters for RNN data tensors. /// /// @note /// Quantization scale and shift are common for src_layer, src_iter, /// dst_iter, and dst_layer. /// /// @param attr Primitive attributes. /// @param scale The value to scale the data by. /// @param shift The value to shift the data by. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_data_qparams( const_dnnl_primitive_attr_t attr, float *scale, float *shift); /// Sets quantization scaling factors for RNN weights tensors. The /// low-precision configuration of the RNN primitives expects input weights to /// use the signed 8-bit integer data type. The scaling factors are used to /// quantize floating-point data to signed integer and must be passed to RNN /// primitives using attributes. /// /// @note /// The dimension order is always native and does not depend on the actual /// layout used. For example, five-dimensional weights always have (l, d, /// i, g, o) logical dimension ordering. /// /// @note /// Quantization scales are common for weights_layer and weights_iteration /// /// @param attr Primitive attributes. /// @param count Number of elements in the @p scales array. /// @param mask Scaling factors correspondence mask that defines the /// correspondence between the output tensor dimensions and the @p /// scales vector. The set i-th bit indicates that a dedicated scaling /// factor should be used for each index along that dimension. Set the /// mask to 0 to use a common scaling factor for the whole output /// tensor. /// @param scales Array of output scaling factors that must contain @p count /// values and the following equality must hold: /// \f[count = \prod\limits_{d \in mask} weights.dims[d].\f] /// Violations can only be detected when the attributes are used to create /// a primitive descriptor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_weights_qparams( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float *scales); /// Returns the quantization scaling factors for RNN weights tensors. /// /// @param attr Primitive attributes. /// @param count Number of elements in the @p scales array. /// @param mask Scaling factors correspondence mask that defines the /// correspondence between the output tensor dimensions and the @p /// scales vector. The set i-th bit indicates that a dedicated scaling /// factor should be used for each index along that dimension. Set the /// mask to 0 to use a common scaling factor for the whole output /// tensor. /// @param scales Array of output scaling factors that contain @p count /// values and the following equality must hold: /// \f[count = \prod\limits_{d \in mask} weights.dims[d].\f] /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_weights_qparams( const_dnnl_primitive_attr_t attr, dnnl_dim_t *count, int *mask, const float **scales); /// Sets quantization scaling factors for RNN projection weights tensors. The /// low-precision configuration of the RNN primitives expects input weights to /// use the signed 8-bit integer data type. The scaling factors are used to /// quantize floating-point data to signed integer and must be passed to RNN /// primitives using attributes. /// /// @note /// The dimension order is always native and does not depend on the actual /// layout used. For example, five-dimensional weights always have (l, d, /// i, g, o) logical dimension ordering. /// /// @param attr Primitive attributes. /// @param count Number of elements in the @p scales array. /// @param mask Scaling factors correspondence mask that defines the /// correspondence between the output tensor dimensions and the @p /// scales vector. The set i-th bit indicates that a dedicated scaling /// factor should be used for each index along that dimension. Set the /// mask to 0 to use a common scaling factor for the whole output /// tensor. /// @param scales Array of output scaling factors that must contain @p count /// values and the following equality must hold: /// \f[count = \prod\limits_{d \in mask} weights.dims[d].\f] /// Violations can only be detected when the attributes are used to create /// a primitive descriptor. /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_weights_projection_qparams( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float *scales); /// Returns the quantization scaling factors for RNN projection weights tensors. /// /// @param attr Primitive attributes. /// @param count Number of elements in the @p scales array. /// @param mask Scaling factors correspondence mask that defines the /// correspondence between the output tensor dimensions and the @p /// scales vector. The set i-th bit indicates that a dedicated scaling /// factor should be used for each index along that dimension. Set the /// mask to 0 to use a common scaling factor for the whole output /// tensor. /// @param scales Array of output scaling factors that contain @p count /// values and the following equality must hold: /// \f[count = \prod\limits_{d \in mask} weights.dims[d].\f] /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_weights_projection_qparams( const_dnnl_primitive_attr_t attr, dnnl_dim_t *count, int *mask, const float **scales); /// @} dnnl_api_attributes /// @addtogroup dnnl_api_rnn /// @{ /// Creates a primitive descriptor for vanilla RNN forward propagation /// primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc, /// - @p bias_desc, /// - @p dst_iter_desc. /// /// This would then indicate that the RNN forward propagation primitive should /// not use them and should default to zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param activation Activation kind. Possible values are #dnnl_eltwise_relu, /// #dnnl_eltwise_tanh or #dnnl_eltwise_logistic. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param flags Unused. /// @param alpha Negative slope if activation is #dnnl_eltwise_relu. /// @param beta Unused. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_vanilla_rnn_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const dnnl_alg_kind_t activation, const dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, unsigned flags, float alpha, float beta, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for vanilla RNN backward propagation /// primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc together with @p diff_src_iter_desc, /// - @p bias_desc together with @p diff_bias_desc, /// - @p dst_iter_desc together with @p diff_dst_iter_desc. /// /// This would then indicate that the RNN backward propagation primitive should /// not use the respective data and should use zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Must be #dnnl_backward. /// @param activation Activation kind. Possible values are #dnnl_eltwise_relu, /// #dnnl_eltwise_tanh or #dnnl_eltwise_logistic. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param diff_src_layer_desc Memory descriptor for the diff of input vector. /// @param diff_src_iter_desc Memory descriptor for the diff of input recurrent /// hidden state vector. /// @param diff_weights_layer_desc Memory descriptor for the diff of weights /// applied to the layer input. /// @param diff_weights_iter_desc Memory descriptor for the diff of weights /// applied to the recurrent input. /// @param diff_bias_desc Diff bias memory descriptor. /// @param diff_dst_layer_desc Memory descriptor for the diff of output /// vector. /// @param diff_dst_iter_desc Memory descriptor for the diff of output /// recurrent hidden state vector. /// @param flags Unused. /// @param alpha Negative slope if activation is #dnnl_eltwise_relu. /// @param beta Unused. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_vanilla_rnn_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, const dnnl_alg_kind_t activation, const dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, const_dnnl_memory_desc_t diff_src_layer_desc, const_dnnl_memory_desc_t diff_src_iter_desc, const_dnnl_memory_desc_t diff_weights_layer_desc, const_dnnl_memory_desc_t diff_weights_iter_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_layer_desc, const_dnnl_memory_desc_t diff_dst_iter_desc, unsigned flags, float alpha, float beta, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for an LSTM forward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc together with @p src_iter_c_desc, /// - @p weights_peephole_desc, /// - @p bias_desc, /// - @p dst_iter_desc together with @p dst_iter_c_desc. /// /// This would then indicate that the LSTM forward propagation primitive should /// not use them and should default to zero values instead. /// /// The @p weights_projection_desc could either be @c NULL or point to a zero /// memory descriptor. This would then indicate that the LSTM doesn't have /// recurrent projection layer. /// /// @note /// All memory descriptors can be initialized with #dnnl_format_tag_any or /// with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param src_iter_c_desc Memory descriptor for the input recurrent cell /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param weights_peephole_desc Memory descriptor for the weights applied to /// the cell states (according to the Peephole LSTM formula). /// @param weights_projection_desc Memory descriptor for the weights applied to /// the hidden states to get the recurrent projection (according to the /// Projection LSTM formula). /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param dst_iter_c_desc Memory descriptor for the output recurrent cell /// state vector. /// @param flags Unused. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lstm_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t src_iter_c_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t weights_peephole_desc, const_dnnl_memory_desc_t weights_projection_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, const_dnnl_memory_desc_t dst_iter_c_desc, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for an LSTM backward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc together with @p src_iter_c_desc, @p diff_src_iter_desc, /// and @p diff_src_iter_c_desc, /// - @p weights_peephole_desc together with @p diff_weights_peephole_desc, /// - @p bias_desc together with @p diff_bias_desc, /// - @p dst_iter_desc together with @p dst_iter_c_desc, @p diff_dst_iter_desc, /// and @p diff_dst_iter_c_desc. /// /// This would then indicate that the LSTM backward propagation primitive /// should not use them and should default to zero values instead. /// /// The @p weights_projection_desc together with @p /// diff_weights_projection_desc could either be @c NULL or point to a zero /// memory descriptor. This would then indicate that the LSTM doesn't have /// recurrent projection layer. /// /// @note /// All memory descriptors can be initialized with #dnnl_format_tag_any or /// with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Must be #dnnl_backward. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param src_iter_c_desc Memory descriptor for the input recurrent cell /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param weights_peephole_desc Memory descriptor for the weights applied to /// the cell states (according to the Peephole LSTM formula). /// @param weights_projection_desc Memory descriptor for the weights applied to /// the hidden states to get the recurrent projection (according to the /// Projection LSTM formula). /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param dst_iter_c_desc Memory descriptor for the output recurrent cell /// state vector. /// @param diff_src_layer_desc Memory descriptor for the diff of input vector. /// @param diff_src_iter_desc Memory descriptor for the diff of input recurrent /// hidden state vector. /// @param diff_src_iter_c_desc Memory descriptor for the diff of input /// recurrent cell state vector. /// @param diff_weights_layer_desc Memory descriptor for the diff of weights /// applied to the layer input. /// @param diff_weights_iter_desc Memory descriptor for the diff of weights /// applied to the recurrent input. /// @param diff_weights_peephole_desc Memory descriptor for the diff of weights /// applied to the cell states (according to the Peephole LSTM formula). /// @param diff_weights_projection_desc Memory descriptor for the diff of /// weights applied to the hidden states to get the recurrent projection /// (according to the Projection LSTM formula). /// @param diff_bias_desc Diff bias memory descriptor. /// @param diff_dst_layer_desc Memory descriptor for the diff of output /// vector. /// @param diff_dst_iter_desc Memory descriptor for the diff of output /// recurrent hidden state vector. /// @param diff_dst_iter_c_desc Memory descriptor for the diff of output /// recurrent cell state vector. /// @param flags Unused. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lstm_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t src_iter_c_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t weights_peephole_desc, const_dnnl_memory_desc_t weights_projection_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, const_dnnl_memory_desc_t dst_iter_c_desc, const_dnnl_memory_desc_t diff_src_layer_desc, const_dnnl_memory_desc_t diff_src_iter_desc, const_dnnl_memory_desc_t diff_src_iter_c_desc, const_dnnl_memory_desc_t diff_weights_layer_desc, const_dnnl_memory_desc_t diff_weights_iter_desc, const_dnnl_memory_desc_t diff_weights_peephole_desc, const_dnnl_memory_desc_t diff_weights_projection_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_layer_desc, const_dnnl_memory_desc_t diff_dst_iter_desc, const_dnnl_memory_desc_t diff_dst_iter_c_desc, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for GRU forward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc, /// - @p bias_desc, /// - @p dst_iter_desc. /// /// This would then indicate that the GRU forward propagation primitive should /// not use them and should default to zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param flags Unused. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_gru_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for GRU backward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc together with @p diff_src_iter_desc, /// - @p bias_desc together with @p diff_bias_desc, /// - @p dst_iter_desc together with @p diff_dst_iter_desc. /// /// This would then indicate that the GRU backward propagation primitive /// should not use them and should default to zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Must be #dnnl_backward. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param diff_src_layer_desc Memory descriptor for the diff of input vector. /// @param diff_src_iter_desc Memory descriptor for the diff of input recurrent /// hidden state vector. /// @param diff_weights_layer_desc Memory descriptor for the diff of weights /// applied to the layer input. /// @param diff_weights_iter_desc Memory descriptor for the diff of weights /// applied to the recurrent input. /// @param diff_bias_desc Diff bias memory descriptor. /// @param diff_dst_layer_desc Memory descriptor for the diff of output /// vector. /// @param diff_dst_iter_desc Memory descriptor for the diff of output /// recurrent hidden state vector. /// @param flags Unused. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_gru_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, const_dnnl_memory_desc_t diff_src_layer_desc, const_dnnl_memory_desc_t diff_src_iter_desc, const_dnnl_memory_desc_t diff_weights_layer_desc, const_dnnl_memory_desc_t diff_weights_iter_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_layer_desc, const_dnnl_memory_desc_t diff_dst_iter_desc, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a descriptor for LBR GRU forward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc, /// - @p bias_desc, /// - @p dst_iter_desc. /// /// This would then indicate that the LBR GRU forward propagation primitive /// should not use them and should default to zero values instead. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param flags Unused. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lbr_gru_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for LBR GRU backward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc together with @p diff_src_iter_desc, /// - @p bias_desc together with @p diff_bias_desc, /// - @p dst_iter_desc together with @p diff_dst_iter_desc. /// /// This would then indicate that the LBR GRU backward propagation primitive /// should not use them and should default to zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Must be #dnnl_backward. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param diff_src_layer_desc Memory descriptor for the diff of input vector. /// @param diff_src_iter_desc Memory descriptor for the diff of input recurrent /// hidden state vector. /// @param diff_weights_layer_desc Memory descriptor for the diff of weights /// applied to the layer input. /// @param diff_weights_iter_desc Memory descriptor for the diff of weights /// applied to the recurrent input. /// @param diff_bias_desc Diff bias memory descriptor. /// @param diff_dst_layer_desc Memory descriptor for the diff of output /// vector. /// @param diff_dst_iter_desc Memory descriptor for the diff of output /// recurrent hidden state vector. /// @param flags Unused. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lbr_gru_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, const_dnnl_memory_desc_t diff_src_layer_desc, const_dnnl_memory_desc_t diff_src_iter_desc, const_dnnl_memory_desc_t diff_weights_layer_desc, const_dnnl_memory_desc_t diff_weights_iter_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_layer_desc, const_dnnl_memory_desc_t diff_dst_iter_desc, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for AUGRU forward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc, /// - @p bias_desc, /// - @p dst_iter_desc. /// /// This would then indicate that the AUGRU forward propagation primitive should /// not use them and should default to zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param attention_desc Memory descriptor for the attention vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param flags Unused. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_augru_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t attention_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for AUGRU backward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc together with @p diff_src_iter_desc, /// - @p bias_desc together with @p diff_bias_desc, /// - @p dst_iter_desc together with @p diff_dst_iter_desc. /// /// This would then indicate that the AUGRU backward propagation primitive /// should not use them and should default to zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Must be #dnnl_backward. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param attention_desc Memory descriptor for the attention vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param diff_src_layer_desc Memory descriptor for the diff of input vector. /// @param diff_src_iter_desc Memory descriptor for the diff of input recurrent /// hidden state vector. /// @param diff_attention_desc Memory descriptor for the diff of attention vector. /// @param diff_weights_layer_desc Memory descriptor for the diff of weights /// applied to the layer input. /// @param diff_weights_iter_desc Memory descriptor for the diff of weights /// applied to the recurrent input. /// @param diff_bias_desc Diff bias memory descriptor. /// @param diff_dst_layer_desc Memory descriptor for the diff of output /// vector. /// @param diff_dst_iter_desc Memory descriptor for the diff of output /// recurrent hidden state vector. /// @param flags Unused. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_augru_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t attention_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, const_dnnl_memory_desc_t diff_src_layer_desc, const_dnnl_memory_desc_t diff_src_iter_desc, const_dnnl_memory_desc_t diff_attention_desc, const_dnnl_memory_desc_t diff_weights_layer_desc, const_dnnl_memory_desc_t diff_weights_iter_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_layer_desc, const_dnnl_memory_desc_t diff_dst_iter_desc, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for LBR AUGRU forward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc, /// - @p bias_desc, /// - @p dst_iter_desc. /// /// This would then indicate that the LBR AUGRU forward propagation primitive /// should not use them and should default to zero values instead. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param attention_desc Memory descriptor for the attention vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param flags Unused. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lbr_augru_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t attention_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, unsigned flags, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for LBR AUGRU backward propagation primitive. /// /// The following arguments may either be @c NULL or point to a zero memory /// descriptor: /// - @p src_iter_desc together with @p diff_src_iter_desc, /// - @p bias_desc together with @p diff_bias_desc, /// - @p dst_iter_desc together with @p diff_dst_iter_desc. /// /// This would then indicate that the LBR AUGRU backward propagation primitive /// should not use them and should default to zero values instead. /// /// @note /// All memory descriptors can be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Must be #dnnl_backward. /// @param direction RNN direction. See @ref dnnl_rnn_direction_t for more /// info. /// @param src_layer_desc Memory descriptor for the input vector. /// @param src_iter_desc Memory descriptor for the input recurrent hidden /// state vector. /// @param attention_desc Memory descriptor for the attention vector. /// @param weights_layer_desc Memory descriptor for the weights applied to the /// layer input. /// @param weights_iter_desc Memory descriptor for the weights applied to the /// recurrent input. /// @param bias_desc Bias memory descriptor. /// @param dst_layer_desc Memory descriptor for the output vector. /// @param dst_iter_desc Memory descriptor for the output recurrent hidden /// state vector. /// @param diff_src_layer_desc Memory descriptor for the diff of input vector. /// @param diff_src_iter_desc Memory descriptor for the diff of input recurrent /// hidden state vector. /// @param diff_attention_desc Memory descriptor for the diff of attention vector. /// @param diff_weights_layer_desc Memory descriptor for the diff of weights /// applied to the layer input. /// @param diff_weights_iter_desc Memory descriptor for the diff of weights /// applied to the recurrent input. /// @param diff_bias_desc Diff bias memory descriptor. /// @param diff_dst_layer_desc Memory descriptor for the diff of output /// vector. /// @param diff_dst_iter_desc Memory descriptor for the diff of output /// recurrent hidden state vector. /// @param flags Unused. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_lbr_augru_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_rnn_direction_t direction, const_dnnl_memory_desc_t src_layer_desc, const_dnnl_memory_desc_t src_iter_desc, const_dnnl_memory_desc_t attention_desc, const_dnnl_memory_desc_t weights_layer_desc, const_dnnl_memory_desc_t weights_iter_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_layer_desc, const_dnnl_memory_desc_t dst_iter_desc, const_dnnl_memory_desc_t diff_src_layer_desc, const_dnnl_memory_desc_t diff_src_iter_desc, const_dnnl_memory_desc_t diff_attention_desc, const_dnnl_memory_desc_t diff_weights_layer_desc, const_dnnl_memory_desc_t diff_weights_iter_desc, const_dnnl_memory_desc_t diff_bias_desc, const_dnnl_memory_desc_t diff_dst_layer_desc, const_dnnl_memory_desc_t diff_dst_iter_desc, unsigned flags, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_rnn /// @addtogroup dnnl_api_matmul /// @{ /// Creates a primitive descriptor for a matrix multiplication primitive. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param src_desc Source memory descriptor (matrix A) /// @param weights_desc Weights memory descriptor (matrix B) /// @param bias_desc Bias memory descriptor. Passing NULL, a zero memory /// descriptor, or a memory descriptor with format_kind set to /// #dnnl_format_kind_undef disables the bias term. /// @param dst_desc Destination memory descriptor (matrix C). /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_matmul_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t weights_desc, const_dnnl_memory_desc_t bias_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_matmul /// @addtogroup dnnl_api_resampling Resampling /// @{ /// Creates a primitive descriptor for a resampling forward propagation /// primitive. /// /// @note /// Destination memory descriptor is allowed to be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param prop_kind Propagation kind. Possible values are /// #dnnl_forward_training and #dnnl_forward_inference. /// @param alg_kind resampling algorithm kind: either #dnnl_resampling_nearest, /// or #dnnl_resampling_linear. /// @param factors Array of scaling factors for spatial dimension. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_resampling_forward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const float *factors, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, const_dnnl_primitive_attr_t attr); /// Creates a primitive descriptor for a resampling backward propagation /// primitive. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind resamplinging algorithm kind: either /// #dnnl_resampling_nearest, or #dnnl_resampling_linear. /// @param diff_src_desc Diff source memory descriptor. /// @param diff_dst_desc Diff destination memory descriptor. /// @param factors Array of scaling factors for spatial dimension. /// @param hint_fwd_pd Primitive descriptor for a respective forward propagation /// primitive. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. /// dnnl_status_t DNNL_API dnnl_resampling_backward_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const float *factors, const_dnnl_memory_desc_t diff_src_desc, const_dnnl_memory_desc_t diff_dst_desc, const_dnnl_primitive_desc_t hint_fwd_pd, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_resampling /// @addtogroup dnnl_api_reduction Reduction /// @{ /// Creates a primitive descriptor for a reduction primitive. /// /// @note /// Destination memory descriptor is allowed to be initialized with /// #dnnl_format_tag_any or with format_kind set to #dnnl_format_kind_any. /// /// @param primitive_desc Output primitive descriptor. /// @param engine Engine to use. /// @param alg_kind reduction algorithm kind. Possible values: /// #dnnl_reduction_max, #dnnl_reduction_min, #dnnl_reduction_sum, /// #dnnl_reduction_mul, #dnnl_reduction_mean, #dnnl_reduction_norm_lp_max, /// #dnnl_reduction_norm_lp_sum, #dnnl_reduction_norm_lp_power_p_max, /// #dnnl_reduction_norm_lp_power_p_sum. /// @param p Algorithm specific parameter. /// @param eps Algorithm specific parameter. /// @param src_desc Source memory descriptor. /// @param dst_desc Destination memory descriptor. /// @param attr Primitive attributes (can be NULL). /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_reduction_primitive_desc_create( dnnl_primitive_desc_t *primitive_desc, dnnl_engine_t engine, dnnl_alg_kind_t alg_kind, const_dnnl_memory_desc_t src_desc, const_dnnl_memory_desc_t dst_desc, float p, float eps, const_dnnl_primitive_attr_t attr); /// @} dnnl_api_reduction /// @} dnnl_api_primitives /// @addtogroup dnnl_api_primitive_cache /// @{ /// Returns the number of primitives that can be held in the primitive cache /// at the same time. /// /// @param capacity Primitive cache capacity to query. Concurrently /// accessing @p capacity is safe. /// @returns #dnnl_invalid_arguments/#dnnl::status::invalid_arguments if the /// @p capacity value is invalid, and #dnnl_success/#dnnl::status::success on /// success. dnnl_status_t DNNL_API dnnl_get_primitive_cache_capacity(int *capacity); /// Sets a number of primitives that can be held in the primitive cache /// at a time. /// /// @param capacity Primitive cache capacity to set. If a new @p capacity is /// less than a number of primitives that the primitive cache already has /// then the excess entries will be evicted. Setting the @p capacity to 0 /// clears the primitive cache and disables it. Concurrently modifying /// @p capacity is safe. /// @returns #dnnl_invalid_arguments/#dnnl::status::invalid_arguments if the /// @p capacity value is invalid, and #dnnl_success/#dnnl::status::success on /// success. dnnl_status_t DNNL_API dnnl_set_primitive_cache_capacity(int capacity); /// @} dnnl_api_primitive_cache /// @addtogroup dnnl_api_service /// @{ /// Configures dumping of JIT-generated code. /// /// @note /// This setting overrides the DNNL_JIT_DUMP environment variable. /// /// @param enable Flag value. Set to 0 to disable and set to 1 to enable. /// @returns #dnnl_invalid_arguments/#dnnl::status::invalid_arguments if the /// @p flag value is invalid, and #dnnl_success/#dnnl::status::success on /// success. dnnl_status_t DNNL_API dnnl_set_jit_dump(int enable); /// Sets library profiling flags. The flags define which profilers are /// supported. /// /// @note /// This setting overrides DNNL_JIT_PROFILE environment variable. /// /// @sa @ref dev_guide_profilers /// /// @param flags Profiling flags that can contain the following bits: /// - @ref DNNL_JIT_PROFILE_VTUNE -- integration with VTune Profiler /// (on by default) /// - @ref DNNL_JIT_PROFILE_LINUX_JITDUMP -- produce Linux-specific /// jit-pid.dump output (off by default). The location of the output /// is controlled via JITDUMPDIR environment variable or via /// dnnl_set_jit_profiling_jitdumpdir() function. /// - @ref DNNL_JIT_PROFILE_LINUX_PERFMAP -- produce Linux-specific /// perf-pid.map output (off by default). The output is always placed /// into /tmp. /// /// Passing @ref DNNL_JIT_PROFILE_NONE disables profiling completely. /// /// @returns #dnnl_invalid_arguments/#dnnl::status::invalid_arguments if the /// @p flags value is invalid, and #dnnl_success/#dnnl::status::success on /// success. dnnl_status_t DNNL_API dnnl_set_jit_profiling_flags(unsigned flags); /// Sets JIT dump output path. Only applicable to Linux and is only /// used when profiling flags have DNNL_JIT_PROFILE_LINUX_PERF bit set. /// /// After the first JIT kernel is generated, the jitdump output will be placed /// into temporary directory created using the mkdtemp template /// 'dir/.debug/jit/dnnl.XXXXXX'. /// /// @sa @ref dev_guide_profilers /// /// @note /// This setting overrides JITDUMPDIR environment variable. If /// JITDUMPDIR is not set, and this function is never called, the path /// defaults to HOME. Passing NULL reverts the value to default. /// /// @note /// The directory is accessed only when the first JIT kernel is being /// created. JIT profiling will be disabled in case of any errors /// accessing or creating this directory. /// /// @param dir JIT dump output path. /// @returns #dnnl_success/#dnnl::status::success if the /// output directory was set correctly and an error status otherwise. /// @returns #dnnl_unimplemented/#dnnl::status::unimplemented on Windows. dnnl_status_t DNNL_API dnnl_set_jit_profiling_jitdumpdir(const char *dir); /// Sets the maximal ISA the library can dispatch to on the CPU. See /// #dnnl_cpu_isa_t and #dnnl::cpu_isa for the list of the values accepted by /// the C and C++ API functions respectively. /// /// This function has effect only once, and returns an error on subsequent /// calls. It should also be invoked before any other oneDNN API call, otherwise /// it may return an error. /// /// This function overrides the DNNL_MAX_CPU_ISA environment variable. The /// environment variable can be set to the desired maximal ISA name in upper /// case and with dnnl_cpu_isa prefix removed. For example: /// `DNNL_MAX_CPU_ISA=AVX2`. /// /// @note /// The ISAs are only partially ordered: /// - SSE41 < AVX < AVX2 < AVX2_VNNI < AVX2_VNNI_2, /// - AVX2 < AVX512_CORE < AVX512_CORE_VNNI < AVX512_CORE_BF16 /// < AVX10_1_512 < AVX10_1_512_AMX < AVX10_1_512_AMX_FP16, /// - AVX2_VNNI < AVX10_1_512. /// Aliases: /// - AVX512_CORE_FP16 = AVX10_1_512 /// - AVX512_CORE_AMX = AVX10_1_512_AMX /// - AVX512_CORE_AMX_FP16 = AVX10_1_512_AMX_FP16 /// /// @sa @ref dev_guide_cpu_dispatcher_control for more details /// /// @param isa Maximal ISA the library should dispatch to. Pass /// #dnnl_cpu_isa_default/#dnnl::cpu_isa::isa_default to remove ISA restrictions /// (except for ISAs with initial support in the library). /// @returns #dnnl_success/#dnnl::status::success on success and a /// #dnnl_invalid_arguments/#dnnl::status::invalid_arguments if the @p isa /// parameter is invalid or the ISA cannot be changed at this time. /// @returns #dnnl_unimplemented/#dnnl::status::unimplemented if the feature /// was disabled at build time (see @ref dev_guide_build_options for more /// details). dnnl_status_t DNNL_API dnnl_set_max_cpu_isa(dnnl_cpu_isa_t isa); /// Gets the maximal ISA the library can dispatch to on the CPU. See /// #dnnl_cpu_isa_t and #dnnl::cpu_isa for the list of the values returned by /// the C and C++ API functions respectively. /// /// @sa @ref dev_guide_cpu_dispatcher_control for more details /// /// @returns #dnnl_cpu_isa_t value reflecting the maximal ISA the library may /// dispatch to. dnnl_cpu_isa_t DNNL_API dnnl_get_effective_cpu_isa(void); /// Sets the hints flag for the CPU ISA. See #dnnl_cpu_isa_hints_t and /// #dnnl::cpu_isa_hints for the list of the values accepted by the C and C++ /// API functions respectively. /// /// This function has effect only once, and returns an error on subsequent /// calls. It should also be invoked before any other oneDNN API call, otherwise /// it may return an error. /// /// This function overrides the DNNL_CPU_ISA_HINTS environment variable. /// @sa @ref dev_guide_cpu_isa_hints for more details /// /// @param isa_hints CPU ISA hints to be passed over to the implementation. /// Pass #dnnl_cpu_isa_no_hints/#dnnl::cpu_isa_hints::no_hints to use /// default features i.e. no hints. /// @returns #dnnl_success/#dnnl::status::success on success and a /// #dnnl_runtime_error/#dnnl::status::runtime_error if the ISA hints cannot /// be specified at the current time. /// @returns #dnnl_unimplemented/#dnnl::status::unimplemented if the feature /// was disabled at build time (see @ref dev_guide_build_options for more /// details). dnnl_status_t DNNL_API dnnl_set_cpu_isa_hints(dnnl_cpu_isa_hints_t isa_hints); /// Gets the ISA specific hints that library can follow. See /// #dnnl_cpu_isa_hints_t and #dnnl::cpu_isa_hints for the list of the values /// returned by the C and C++ API functions respectively. /// /// @sa @ref dev_guide_cpu_isa_hints for more details /// /// @returns #dnnl_cpu_isa_hints_t value reflecting the ISA specific hints the /// library can follow. dnnl_cpu_isa_hints_t DNNL_API dnnl_get_cpu_isa_hints(void); /// @} dnnl_api_service #ifdef DNNL_EXPERIMENTAL_PROFILING /// @addtogroup dnnl_api_profiling Profiling /// @{ /// Resets a profiler's state. /// /// @param stream Stream associated with the profiler. /// /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_reset_profiling(dnnl_stream_t stream); /// Queries profiling data. The profiling data accumulates for each primitive /// execution. The @p num_entries will be equal to the number of executions /// since the last `dnnl_reset_profiling` call. In order to query the /// @p num_entries the @p data parameter should be NULL. When @p data is NULL /// then the @p data_kind parameter is ignored. /// /// The profiling data can be reset by calling #dnnl_reset_profiling. /// /// @note /// It is required to wait for all submitted primitives to complete /// using #dnnl_stream_wait prior to querying profiling data. /// /// @param stream Stream that was used for executing a primitive that /// is being profiled. /// @param data_kind Profiling data kind to query. /// @param num_entries Number of profiling data entries. /// @param data Profiling data. /// /// @returns #dnnl_success on success and a status describing the error /// otherwise. dnnl_status_t DNNL_API dnnl_query_profiling_data(dnnl_stream_t stream, dnnl_profiling_data_kind_t data_kind, int *num_entries, uint64_t *data); /// @} dnnl_api_profiling #endif /// @addtogroup dnnl_api_blas /// @{ /// Performs single-precision matrix-matrix multiply. /// /// The operation is defined as: /// /// `C := alpha * op( A ) * op( B ) + beta * C` /// /// where /// - `op( X ) = X` or `op( X ) = X**T`, /// - `alpha` and `beta` are scalars, and /// - `A`, `B`, and `C` are matrices: /// - `op( A )` is an `MxK` matrix, /// - `op( B )` is an `KxN` matrix, /// - `C` is an `MxN` matrix. /// /// The matrices are assumed to be stored in row-major order (the elements in /// each of the matrix rows are contiguous in memory). /// /// @note /// This API does not support XERBLA. Instead, unlike the standard BLAS /// functions, this one returns a dnnl_status_t value to allow error /// handling. /// /// @param transa Transposition flag for matrix A: 'N' or 'n' means A is not /// transposed, and 'T' or 't' means that A is transposed. /// @param transb Transposition flag for matrix B: 'N' or 'n' means B is not /// transposed, and 'T' or 't' means that B is transposed. /// @param M The M dimension. /// @param N The N dimension. /// @param K The K dimension. /// @param alpha The alpha parameter that is used to scale the product of /// matrices A and B. /// @param A A pointer to the A matrix data. /// @param lda The leading dimension for the matrix A. /// @param B A pointer to the B matrix data. /// @param ldb The leading dimension for the matrix B. /// @param beta The beta parameter that is used to scale the matrix C. /// @param C A pointer to the C matrix data. /// @param ldc The leading dimension for the matrix C. /// @returns #dnnl_success/#dnnl::status::success on success and a status /// describing the error otherwise. dnnl_status_t DNNL_API dnnl_sgemm(char transa, char transb, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const float *A, dnnl_dim_t lda, const float *B, dnnl_dim_t ldb, float beta, float *C, dnnl_dim_t ldc); /// Performs integer matrix-matrix multiply on 8-bit unsigned matrix A, 8-bit /// signed matrix B, and 32-bit signed resulting matrix C. /// /// The operation is defined as: /// /// `C := alpha * (op(A) - A_offset) * (op(B) - B_offset) + beta * C + C_offset` /// /// where /// - `op( X ) = X` or `op( X ) = X**T`, /// - `alpha` and `beta` are scalars, and /// - `A`, `B`, and `C` are matrices: /// - `op( A )` is an `MxK` matrix, /// - `op( B )` is an `KxN` matrix, /// - `C` is an `MxN` matrix. /// - `A_offset` is an `MxK` matrix with every element equal the `ao` value, /// - `B_offset` is an `KxN` matrix with every element equal the `bo` value, /// - `C_offset` is an `MxN` matrix which is defined by the `co` array of size `len`: /// - if `offsetc = F`: the `len` must be at least `1`, /// - if `offsetc = C`: the `len` must be at least `max(1, m)`, /// - if `offsetc = R`: the `len` must be at least `max(1, n)`, /// /// The matrices are assumed to be stored in row-major order (the elements in /// each of the matrix rows are contiguous in memory). /// /// @note /// This API does not support XERBLA. Instead, unlike the standard BLAS /// functions, this one returns a dnnl_status_t value to allow error /// handling. /// /// @warning /// On some architectures saturation may happen during intermediate /// computations, which would lead to unexpected results. For more /// details, refer to @ref dev_guide_int8_computations. /// /// @param transa Transposition flag for matrix A: 'N' or 'n' means A is not /// transposed, and 'T' or 't' means that A is transposed. /// @param transb Transposition flag for matrix B: 'N' or 'n' means B is not /// transposed, and 'T' or 't' means that B is transposed. /// @param offsetc Flag specifying how offsets should be applied to matrix C: /// - 'F' means that the same offset will be applied to each element of /// the matrix C, /// - 'C' means that individual offset will be applied to each element /// within each column, /// - 'R' means that individual offset will be applied to each element /// within each row. /// @param M The M dimension. /// @param N The N dimension. /// @param K The K dimension. /// @param alpha The alpha parameter that is used to scale the product of /// matrices A and B. /// @param A A pointer to the A matrix data. /// @param lda The leading dimension for the matrix A. /// @param ao The offset value for the matrix A. /// @param B A pointer to the B matrix data. /// @param ldb The leading dimension for the matrix B. /// @param bo The offset value for the matrix B. /// @param beta The beta parameter that is used to scale the matrix C. /// @param C A pointer to the C matrix data. /// @param ldc The leading dimension for the matrix C. /// @param co An array of offset values for the matrix C. The number of /// elements in the array depends on the value of @p offsetc. /// @returns #dnnl_success/#dnnl::status::success on success and a status /// describing the error otherwise. dnnl_status_t DNNL_API dnnl_gemm_u8s8s32(char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const uint8_t *A, dnnl_dim_t lda, uint8_t ao, const int8_t *B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t *C, dnnl_dim_t ldc, const int32_t *co); /// Performs integer matrix-matrix multiply on 8-bit signed matrix A, 8-bit /// signed matrix B, and 32-bit signed resulting matrix C. /// /// The operation is defined as: /// /// `C := alpha * (op(A) - A_offset) * (op(B) - B_offset) + beta * C + C_offset` /// /// where /// - `op( X ) = X` or `op( X ) = X**T`, /// - `alpha` and `beta` are scalars, and /// - `A`, `B`, and `C` are matrices: /// - `op( A )` is an `MxK` matrix, /// - `op( B )` is an `KxN` matrix, /// - `C` is an `MxN` matrix. /// - `A_offset` is an `MxK` matrix with every element equal the `ao` value, /// - `B_offset` is an `KxN` matrix with every element equal the `bo` value, /// - `C_offset` is an `MxN` matrix which is defined by the `co` array of size `len`: /// - if `offsetc = F`: the `len` must be at least `1`, /// - if `offsetc = C`: the `len` must be at least `max(1, m)`, /// - if `offsetc = R`: the `len` must be at least `max(1, n)`, /// /// The matrices are assumed to be stored in row-major order (the elements in /// each of the matrix rows are contiguous in memory). /// /// @note /// This API does not support XERBLA. Instead, unlike the standard BLAS /// functions, this one returns a dnnl_status_t value to allow error /// handling. /// /// @warning /// On some architectures saturation may happen during intermediate /// computations, which would lead to unexpected results. For more /// details, refer to @ref dev_guide_int8_computations. /// /// @param transa Transposition flag for matrix A: 'N' or 'n' means A is not /// transposed, and 'T' or 't' means that A is transposed. /// @param transb Transposition flag for matrix B: 'N' or 'n' means B is not /// transposed, and 'T' or 't' means that B is transposed. /// @param offsetc Flag specifying how offsets should be applied to matrix C: /// - 'F' means that the same offset will be applied to each element of /// the matrix C, /// - 'C' means that individual offset will be applied to each element /// within each column, /// - 'R' means that individual offset will be applied to each element /// within each row. /// @param M The M dimension. /// @param N The N dimension. /// @param K The K dimension. /// @param alpha The alpha parameter that is used to scale the product of /// matrices A and B. /// @param A A pointer to the A matrix data. /// @param lda The leading dimension for the matrix A. /// @param ao The offset value for the matrix A. /// @param B A pointer to the B matrix data. /// @param ldb The leading dimension for the matrix B. /// @param bo The offset value for the matrix B. /// @param beta The beta parameter that is used to scale the matrix C. /// @param C A pointer to the C matrix data. /// @param ldc The leading dimension for the matrix C. /// @param co An array of offset values for the matrix C. The number of /// elements in the array depends on the value of @p offsetc. /// @returns #dnnl_success/#dnnl::status::success on success and a status /// describing the error otherwise. dnnl_status_t DNNL_API dnnl_gemm_s8s8s32(char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const int8_t *A, dnnl_dim_t lda, int8_t ao, const int8_t *B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t *C, dnnl_dim_t ldc, const int32_t *co); /// @} dnnl_api_blas /// @} dnnl_api #ifdef __cplusplus } #endif #endif /* ONEAPI_DNNL_DNNL_H */