# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model specific for generation.""" import math from typing import Optional, Union import torch from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from ...generation import GenerationMixin from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import auto_docstring, logging from ...utils.deprecation import deprecate_kwarg from .configuration_bert_generation import BertGenerationConfig logger = logging.get_logger(__name__) # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BertGeneration class BertGenerationSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->BertGeneration class BertGenerationSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder self.layer_idx = layer_idx @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, past_key_values: Optional[Cache] = None, output_attentions: Optional[bool] = False, cache_position: Optional[torch.Tensor] = None, ) -> tuple[torch.Tensor]: batch_size, seq_length, _ = hidden_states.shape query_layer = self.query(hidden_states) query_layer = query_layer.view(batch_size, -1, self.num_attention_heads, self.attention_head_size).transpose( 1, 2 ) is_updated = False is_cross_attention = encoder_hidden_states is not None if past_key_values is not None: if isinstance(past_key_values, EncoderDecoderCache): is_updated = past_key_values.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_layer from cache curr_past_key_value = past_key_values.cross_attention_cache else: curr_past_key_value = past_key_values.self_attention_cache else: curr_past_key_value = past_key_values current_states = encoder_hidden_states if is_cross_attention else hidden_states if is_cross_attention and past_key_values is not None and is_updated: # reuse k,v, cross_attentions key_layer = curr_past_key_value.layers[self.layer_idx].keys value_layer = curr_past_key_value.layers[self.layer_idx].values else: key_layer = self.key(current_states) key_layer = key_layer.view(batch_size, -1, self.num_attention_heads, self.attention_head_size).transpose( 1, 2 ) value_layer = self.value(current_states) value_layer = value_layer.view( batch_size, -1, self.num_attention_heads, self.attention_head_size ).transpose(1, 2) if past_key_values is not None: # save all key/value_layer to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_layer, value_layer = curr_past_key_value.update( key_layer, value_layer, self.layer_idx, {"cache_position": cache_position} ) # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls if is_cross_attention and isinstance(past_key_values, EncoderDecoderCache): past_key_values.is_updated[self.layer_idx] = True # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if past_key_values is not None: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, attention_probs BERT_GENERATION_SELF_ATTENTION_CLASSES = { "eager": BertGenerationSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BertGeneration,BERT->BERT_GENERATION class BertGenerationAttention(nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): super().__init__() self.self = BERT_GENERATION_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type, layer_idx=layer_idx, ) self.output = BertGenerationSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, past_key_values: Optional[Cache] = None, output_attentions: Optional[bool] = False, cache_position: Optional[torch.Tensor] = None, ) -> tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, output_attentions=output_attentions, cache_position=cache_position, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BertGeneration class BertGenerationIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BertGeneration class BertGenerationOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->BertGeneration class BertGenerationLayer(GradientCheckpointingLayer): def __init__(self, config, layer_idx=None): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertGenerationAttention(config, layer_idx=layer_idx) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BertGenerationAttention( config, position_embedding_type="absolute", layer_idx=layer_idx ) self.intermediate = BertGenerationIntermediate(config) self.output = BertGenerationOutput(config) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Cache] = None, output_attentions: Optional[bool] = False, cache_position: Optional[torch.Tensor] = None, ) -> tuple[torch.Tensor]: self_attention_outputs = self.attention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, past_key_values=past_key_values, cache_position=cache_position, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) cross_attention_outputs = self.crossattention( attention_output, attention_mask=encoder_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, output_attentions=output_attentions, cache_position=cache_position, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() self.config = config self.layer = nn.ModuleList([BertGenerationLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, cache_position: Optional[torch.Tensor] = None, ) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache and past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config)) if use_cache and isinstance(past_key_values, tuple): logger.warning_once( "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. " "You should pass an instance of `EncoderDecoderCache` instead, e.g. " "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." ) past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, # as a positional argument for gradient checkpointing encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, past_key_values, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) def load_tf_weights_in_bert_generation( model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False ): try: import numpy as np import tensorflow.compat.v1 as tf import tensorflow_hub as hub import tensorflow_text # noqa: F401 tf.disable_eager_execution() except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_model = hub.Module(tf_hub_path) init = tf.global_variables_initializer() with tf.Session() as sess: init.run() all_variables = tf_model.variable_map keep_track_variables = all_variables.copy() for key in list(all_variables.keys()): if "global" in key: logger.info(f"Skipping {key}...") continue if not is_encoder: model_pointer = getattr(model, model_class) else: model_pointer = model is_embedding = False logger.info(f"Trying to match {key}...") # remove start_string = "module/bert/" sub_layers = key.split("/")[2:] if is_encoder_named_decoder and sub_layers[0] == "encoder": logger.info(f"Skipping encoder layer {key} for decoder") continue if is_encoder and sub_layers[0] == "decoder": logger.info(f"Skipping decoder layer {key} for encoder") continue for i, sub_layer in enumerate(sub_layers): if sub_layer == "embeddings": is_embedding = True elif sub_layer == "LayerNorm": is_embedding = False if "layer" in sub_layer: model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])] elif sub_layer in ["kernel", "gamma"]: model_pointer = model_pointer.weight elif sub_layer == "beta": model_pointer = model_pointer.bias elif sub_layer == "encdec": model_pointer = model_pointer.crossattention.self elif sub_layer == "encdec_output": model_pointer = model_pointer.crossattention.output elif is_encoder_named_decoder and sub_layer == "decoder": model_pointer = model_pointer.encoder else: if sub_layer == "attention" and "encdec" in sub_layers[i + 1]: continue try: model_pointer = getattr(model_pointer, sub_layer) except AttributeError: logger.info(f"Skipping to initialize {key} at {sub_layer}...") raise AttributeError array = np.asarray(sess.run(all_variables[key])) if not is_embedding: logger.info(f"Transposing numpy weight of shape {array.shape} for {key}") array = np.transpose(array) else: model_pointer = model_pointer.weight if model_pointer.shape != array.shape: raise ValueError(f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched") logger.info(f"Initialize PyTorch weight {key}") model_pointer.data = torch.from_numpy(array.astype(np.float32)) keep_track_variables.pop(key, None) logger.info(f"Weights not copied to PyTorch model: {', '.join(keep_track_variables.keys())}") return model class BertGenerationEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings @auto_docstring class BertGenerationPreTrainedModel(PreTrainedModel): config: BertGenerationConfig base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, BertGenerationOnlyLMHead): module.bias.data.zero_() @auto_docstring( custom_intro=""" The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top. """ ) class BertGenerationEncoder(BertGenerationPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://huggingface.co/papers/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://huggingface.co/papers/1907.12461) by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = BertGenerationEmbeddings(config) self.encoder = BertEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # NOOP kwargs, for now ) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device past_key_values_length = 0 if past_key_values is not None: past_key_values_length = ( past_key_values[0][0].shape[-2] if not isinstance(past_key_values, Cache) else past_key_values.get_seq_length() ) if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=sequence_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class BertGenerationOnlyLMHead(nn.Module): def __init__(self, config): super().__init__() self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, hidden_states): logits = self.decoder(hidden_states) return logits def _tie_weights(self): # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias @auto_docstring( custom_intro=""" BertGeneration Model with a `language modeling` head on top for CLM fine-tuning. """ ) class BertGenerationDecoder(BertGenerationPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`") self.bert = BertGenerationEncoder(config) self.lm_head = BertGenerationOnlyLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings self.lm_head.bias = new_embeddings.bias @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Example: ```python >>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") >>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") >>> config.is_decoder = True >>> model = BertGenerationDecoder.from_pretrained( ... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config ... ) >>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: lm_loss = self.loss_function( prediction_scores, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) __all__ = [ "BertGenerationDecoder", "BertGenerationEncoder", "BertGenerationPreTrainedModel", "load_tf_weights_in_bert_generation", ]