# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/blt/modular_blt.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_blt.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Union import torch import torch.distributions import torch.nn as nn import torch.nn.functional as F from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...masking_utils import create_causal_mask from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple from ...utils.deprecation import deprecate_kwarg from ...utils.generic import OutputRecorder, check_model_inputs from .configuration_blt import ( BltConfig, BltGlobalTransformerConfig, BltLocalDecoderConfig, BltLocalEncoderConfig, BltPatcherConfig, ) class BltMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) # Ignore copy self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class BltRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ BltRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class BltRotaryEmbedding(nn.Module): inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, config: BltConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.repeat_interleave(freqs, 2, dim=-1) # diff from Llama: we interleave() instead of cat() cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer class BltTransformerLayer(GradientCheckpointingLayer): def __init__(self, config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = BltSelfAttention(config=config, layer_idx=layer_idx) self.mlp = BltMLP(config) self.input_layernorm = BltRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = BltRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, cross_attention_states: Optional[torch.Tensor] = None, cross_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, full_text_row_masked_out_mask: Optional[tuple[torch.Tensor, torch.Tensor]] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_values (`Cache`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights def rotate_half(x): # Split and rotate. Note that this function is different from e.g. Llama. x1 = x[..., ::2] x2 = x[..., 1::2] rot_x = torch.stack([-x2, x1], dim=-1).flatten(-2) return rot_x def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class BltSelfAttention(nn.Module): def __init__(self, config: BltConfig, layer_idx: int): super().__init__() self.config = config self.num_heads = config.num_attention_heads self.dropout = config.dropout self.hidden_size = config.hidden_size self.num_key_value_heads = config.num_key_value_heads self.head_dim = config.hidden_size // self.num_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.scaling = self.head_dim**-0.5 self.rope_theta = config.rope_theta self.layer_idx = layer_idx self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.is_causal = True @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: torch.Tensor, use_cache: bool = False, past_key_values=None, cache_position=None, **kwargs, ): bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class BltCrossAttention(nn.Module): """Cross-attention module for Blt, following transformers style""" def __init__(self, config: BltConfig, layer_idx: int, hidden_size: Optional[int] = None): super().__init__() self.config = config self.num_heads = self.config.num_attention_heads self.num_key_value_heads = self.config.num_key_value_heads self.dropout = config.dropout self.hidden_size = config.hidden_size self.head_dim = config.hidden_size // self.num_heads self.layer_idx = layer_idx self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.scaling = self.head_dim**-0.5 self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.q_norm = BltRMSNorm(self.hidden_size, eps=config.rms_norm_eps) self.k_norm = BltRMSNorm(self.hidden_size, eps=config.rms_norm_eps) self.is_causal = False @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, cross_attention_states: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, q_len, _ = hidden_states.size() query_states = self.q_norm(hidden_states) query_states = self.q_proj(query_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) if cross_attention_states is not None: cross_attention_states = self.k_norm(cross_attention_states) key_states = self.k_proj(cross_attention_states) value_states = self.v_proj(cross_attention_states) key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) if past_key_values is not None: key_states, value_states = past_key_values.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) elif cache_position[0] != 0: key_states, value_states = ( past_key_values.layers[self.layer_idx].keys, past_key_values.layers[self.layer_idx].values, ) else: raise ValueError( "Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!" ) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) attn_output = attn_output + hidden_states return attn_output, attn_weights @auto_docstring class BltPreTrainedModel(PreTrainedModel): config: BltConfig base_model_prefix = "" supports_gradient_checkpointing = True _no_split_modules = ["BltTransformerLayer"] _can_compile_fullgraph = False # static cache cannot have different shapes for each layer _supports_sdpa = True _supports_flash_attn = False _supports_flex_attn = False _supports_attention_backend = False _can_record_outputs = { "hidden_states": OutputRecorder(BltTransformerLayer, index=0, layer_name="local_decoder"), "attentions": OutputRecorder(BltSelfAttention, index=1, layer_name="local_decoder"), } class BltLocalEncoder(BltPreTrainedModel): config: BltLocalEncoderConfig _can_record_outputs = { "encoder_attentions": OutputRecorder(BltSelfAttention, index=1, layer_name="local_encoder"), } def __init__(self, config: BltLocalEncoderConfig): super().__init__(config) self.gradient_checkpointing = False self.config = config self.layers = nn.ModuleList( [BltTransformerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.rotary_emb = BltRotaryEmbedding(config=config) self.patch_embedding_projection = nn.Linear( in_features=config.hidden_size, out_features=config.hidden_size * config.cross_attn_k, bias=False, ) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.cross_attn_layers = nn.ModuleList() layers_to_add = config.num_hidden_layers if config.cross_attn_all_layers else 1 for layer_idx in range(layers_to_add): self.cross_attn_layers.append( BltCrossAttention(config=config, layer_idx=layer_idx, hidden_size=config.hidden_size) ) self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None, patch_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, num_patches: Optional[int] = None, patch_ids: Optional[torch.Tensor] = None, **kwargs: Unpack[TransformersKwargs], ): if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) batch_size = inputs_embeds.shape[0] hidden_states = F.dropout(inputs_embeds, p=self.config.dropout, training=self.training) if position_ids is None: position_ids = ( torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1) ) position_embeddings = self.rotary_emb(hidden_states, position_ids) hidden_states = F.dropout(hidden_states, p=self.config.dropout, training=self.training) for idx, layer in enumerate(self.layers): hidden_states = layer( hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) if idx == len(self.layers) - 1 or self.config.cross_attn_all_layers: patch_embeds = self.patch_reduce(hidden_states, num_patches, patch_ids) patch_embeds = self.patch_embedding_projection(patch_embeds) patch_embeds = patch_embeds.reshape( batch_size, patch_embeds.shape[1] * self.config.cross_attn_k, self.config.hidden_size ) layer_idx = idx if self.config.cross_attn_all_layers else 0 cross_attention_output, _ = self.cross_attn_layers[layer_idx]( hidden_states=patch_embeds, cross_attention_states=hidden_states, attention_mask=encoder_attention_mask, **kwargs, ) patch_embeds = patch_embeds + cross_attention_output encoder_cross_states = patch_embeds return hidden_states, encoder_cross_states def patch_reduce(self, hidden_states, max_num_patches, patch_ids): """ Reduce variable length patches to single embedding per patch Note: this works with variable number of patches for different sequences in the batch It handles variable length patches by assuming that patch_lengths will be 0 for any extra patches on the *right*. Since there can be a variable number of patches this function also return the number of patches for each sequence in the batch. Any embeddings on the right that are not allocated to a patch (i.e. if the sum(patch_lengths[i]) < seq_len for any i) will be sent to a dummy patch, which is trimmed before returning. """ batch_size = hidden_states.shape[0] embedding_dim = hidden_states.shape[-1] patch_ids = patch_ids.unsqueeze(-1).expand(-1, -1, hidden_states.shape[-1]) reduced_embeddings = torch.zeros( (batch_size, max_num_patches, embedding_dim), dtype=hidden_states.dtype, device=hidden_states.device ) reduced_embeddings = reduced_embeddings.scatter_reduce( src=hidden_states, dim=1, index=patch_ids, reduce="amax", include_self=False, ) reduced_embeddings = reduced_embeddings[:, :max_num_patches, :] return reduced_embeddings class BltLocalDecoder(BltPreTrainedModel): config: BltLocalDecoderConfig def __init__(self, config: BltLocalDecoderConfig): super().__init__(config) self.gradient_checkpointing = False self.config = config self.cross_attn_decoder = True self.layers = nn.ModuleList( [BltTransformerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.rotary_emb = BltRotaryEmbedding(config=config) self.patch_embedding_projection = nn.Linear( in_features=config.hidden_size_global, out_features=config.hidden_size * config.cross_attn_k, bias=False, ) self.norm = BltRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.cross_attn_layers = nn.ModuleList() layers_to_add = config.num_hidden_layers if config.cross_attn_all_layers else 1 for layer_idx in range(layers_to_add): self.cross_attn_layers.append( BltCrossAttention(config=config, layer_idx=layer_idx, hidden_size=config.hidden_size) ) self.post_init() @check_model_inputs def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None, patch_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, **kwargs: Unpack[TransformersKwargs], ): batch_size = inputs_embeds.shape[0] hidden_states = inputs_embeds patch_embeds = self.patch_embedding_projection(patch_embeds) patch_embeds = patch_embeds.reshape( batch_size, patch_embeds.shape[1] * self.config.cross_attn_k, self.config.hidden_size ) if patch_embeds is not None and not self.cross_attn_decoder: hidden_states = hidden_states + patch_embeds if position_ids is None: position_ids = ( torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1) ) position_embeddings = self.rotary_emb(hidden_states, position_ids) hidden_states = F.dropout(hidden_states, p=self.config.dropout, training=self.training) for i, layer in enumerate(self.layers): if i == 0 or self.config.cross_attn_all_layers: cross_attention_output, _ = self.cross_attn_layers[i]( hidden_states=hidden_states, cross_attention_states=patch_embeds, attention_mask=encoder_attention_mask, **kwargs, ) hidden_states = hidden_states + cross_attention_output hidden_states = layer( hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) logits = self.norm(hidden_states) return logits class BltGlobalTransformer(BltPreTrainedModel): config: BltGlobalTransformerConfig _can_record_outputs = { "global_attentions": OutputRecorder(BltSelfAttention, index=1, layer_name="global_transformer"), } def __init__(self, config: BltGlobalTransformerConfig): super().__init__(config) self.config = config self.layers = nn.ModuleList() for layer_idx in range(config.num_hidden_layers): self.layers.append(BltTransformerLayer(config, layer_idx)) self.rotary_emb = BltRotaryEmbedding(config=config) # Create token embedding projection (use nn.Identity() when no projection needed) if getattr(config, "encoder_cross_output_size", None) is not None: self.token_embedding_projection = nn.Linear( config.encoder_cross_output_size, config.hidden_size, bias=False ) else: self.token_embedding_projection = nn.Identity() self.post_init() def forward( self, input_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ): batch_size, seq_len, _ = input_embeds.shape hidden_states = self.token_embedding_projection(input_embeds) hidden_states = F.dropout(hidden_states, p=self.config.dropout, training=self.training) if position_ids is None: position_ids = ( torch.arange(input_embeds.shape[1], device=input_embeds.device).unsqueeze(0).expand(batch_size, -1) ) position_embeddings = self.rotary_emb(hidden_states, position_ids) for i, layer in enumerate(self.layers): hidden_states = layer( hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) return hidden_states def process_patch_lengths(patch_lengths: torch.Tensor, max_patch_length: Optional[int]) -> torch.Tensor: """ Splits patch lengths into smaller segments if they exceed `max_patch_length`. Pads the result to uniform length across the batch. Args: patch_lengths (torch.Tensor): [batch_size, num_patches] tensor of patch lengths. max_patch_length (int, optional): Maximum allowed length per patch. Returns: torch.Tensor: [batch_size, max_len] tensor of split and padded patch lengths. """ if max_patch_length is None: return patch_lengths batch_size = patch_lengths.size(0) processed = [] for seq in patch_lengths: splits = [] for length in seq[seq > 0]: length = length.item() full_chunks, remainder = divmod(length, max_patch_length) splits.extend([max_patch_length] * full_chunks) if remainder: splits.append(remainder) processed.append(splits) # Find max length to pad to max_len = max(len(splits) for splits in processed) padded = torch.zeros((batch_size, max_len), dtype=patch_lengths.dtype, device=patch_lengths.device) for i, splits in enumerate(processed): if splits: padded[i, : len(splits)] = torch.tensor(splits, dtype=patch_lengths.dtype, device=patch_lengths.device) # Trim zero columns if (padded != 0).any(dim=0).sum() < padded.shape[1]: last_nonzero = (padded != 0).any(dim=0).nonzero().max().item() + 1 padded = padded[:, :last_nonzero] return padded class BltPatcher(BltPreTrainedModel): config: BltPatcherConfig def __init__(self, config: BltPatcherConfig): super().__init__(config) self.rotary_emb = BltRotaryEmbedding(config=self.config) self.layers = nn.ModuleList() for layer_idx in range(self.config.num_hidden_layers): self.layers.append(BltTransformerLayer(self.config, layer_idx)) self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size) self.norm = BltRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) self.lm_head = nn.Linear( self.config.hidden_size, self.config.vocab_size, bias=False, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, patch_size: Optional[int] = None, threshold: Optional[float] = None, max_patch_length: Optional[int] = None, **kwargs: Unpack[TransformersKwargs], ): if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids) for layer in self.layers: hidden_states = layer(hidden_states, position_embeddings=position_embeddings, attention_mask=causal_mask) logits = self.lm_head(self.norm(hidden_states)) prediction_entropies = torch.distributions.Categorical(logits=logits).entropy() batch_size, sequence_length = inputs_embeds.shape[:2] if patch_size is not None: patch_lengths = self.patch_lengths_from_entropies( entropies=prediction_entropies, sequence_length=sequence_length, patch_size=patch_size, threshold=threshold, ) else: patch_lengths = torch.ones( (batch_size, sequence_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device ) patch_lengths = process_patch_lengths(patch_lengths, max_patch_length) return prediction_entropies, patch_lengths, logits @staticmethod def patch_lengths_from_entropies( entropies, sequence_length, patch_size=None, threshold=None, ): """ Computes patch lengths from token entropies. Depending on whether a threshold is provided, the function uses either: - Thresholding the entropy values (when `threshold` is set). """ batch_size = entropies.shape[0] # Always include token 0 and 1 as starting tokens init_tokens = ( torch.tensor([0, 1], dtype=torch.long, device=entropies.device).unsqueeze(0).repeat(batch_size, 1) ) offset = init_tokens.shape[1] # Ignore first token entropy (BOS) entropies = entropies[:, 1:] # Threshold the entropy values to define patch start points patch_mask = entropies > threshold seq_len = patch_mask.shape[1] # Create patch IDs (token indices), and add a sentinel to ensure alignment token_indices = torch.arange(seq_len, device=entropies.device).unsqueeze(0).expand(batch_size, -1) sentinel = torch.full_like(token_indices, seq_len) padded_indices = torch.cat([token_indices, sentinel], dim=1) # Pad mask with inverse to align sentinel correctly padded_mask = torch.cat([patch_mask, ~patch_mask], dim=1) # Select indices where mask is True patch_starts = padded_indices[padded_mask].reshape(batch_size, seq_len) max_valid_patches = patch_mask.sum(dim=1).max() patch_starts = patch_starts[:, :max_valid_patches] # Offset patch starts to account for the two initial tokens patch_start_ids = torch.cat((init_tokens, patch_starts + offset), dim=1) # Compute patch end positions by shifting start positions last_token = torch.full_like(patch_start_ids[:, :1], sequence_length - 1) patch_ends = torch.cat((patch_start_ids[:, 1:] - 1, last_token), dim=1) patch_lengths = patch_ends - patch_start_ids + 1 return patch_lengths def rolling_polynomial_hash(token_tensor, prime: int = 1000000007): """ A polynomial rolling hash algorithm that converts sequences of tokens into hash values. The hash is computed as: hash = (token_0 * prime^0 + token_1 * prime^1 + ... + token_n * prime^n) The rolling hash allows the model to efficiently identify and encode recurring byte-level patterns in the input text. Args: token_tensor (torch.Tensor): [batch_size, seq_len, group_size] containing token IDs to hash prime (int): Prime number used as the base for the polynomial hash. Returns: torch.Tensor: Hash values of shape [batch_size, seq_len] where each value represents the hash of the corresponding token group Example: >>> tokens = torch.tensor([[1, 2, 3], [4, 5, 6]]) >>> hashes = rolling_polynomial_hash(tokens, prime=31) >>> # hash[0] = 1*31^0 + 2*31^1 + 3*31^2 >>> # hash[1] = 4*31^0 + 5*31^1 + 6*31^2 """ prime_tensor = torch.tensor(prime, dtype=torch.int64, device=token_tensor.device) powers = torch.arange(token_tensor.shape[-1], device=token_tensor.device) prime_powers = prime_tensor**powers return torch.sum(token_tensor * prime_powers, dim=-1) def byte_group_hash_function( token_ids: torch.Tensor, group_size: int = 2, prime: int = 1000000007, max_hash: int = 30000 ): """Hash token groups and map to range [0, max_hash].""" with torch.no_grad(): batch_size, seq_len = token_ids.shape # Add padding for sliding window padding = torch.zeros(batch_size, group_size - 1, dtype=torch.int64, device=token_ids.device) padded_tokens = torch.cat([padding, token_ids], dim=1) # Create sliding windows and compute hashes windows = padded_tokens.unfold(1, group_size, 1) hashes = rolling_polynomial_hash(windows, prime) hash_values = hashes % max_hash return hash_values def compute_hash_embeddings( local_encoder_tokens: torch.Tensor, local_encoder, encoder_hash_tok_embedding: nn.Embedding, encoder_hash_byte_group_nb_functions: int, encoder_hash_byte_group_size: list, encoder_hash_byte_group_vocab: int, ) -> torch.Tensor: """Compute token embeddings enhanced with hash-based embeddings.""" # Available primes for hash functions primes = [ 1000000007, 5915587277, 1500450271, 3267000013, 5754853343, 4093082899, 9576890767, 3628273133, 2860486313, 5463458053, 3367900313, ] embeddings = local_encoder.embed_tokens(local_encoder_tokens) embedding_idx = 0 for func_nb in range(encoder_hash_byte_group_nb_functions): prime = primes[func_nb % len(primes)] # Cycle through primes if more functions than primes for group_size in encoder_hash_byte_group_size: hash_ids = byte_group_hash_function(local_encoder_tokens, group_size, prime, encoder_hash_byte_group_vocab) # Apply offset to get the correct slice of the fused embedding offset_hash_ids = hash_ids + embedding_idx * encoder_hash_byte_group_vocab embeddings += encoder_hash_tok_embedding(offset_hash_ids) embedding_idx += 1 return embeddings def _prepare_patch_cross_attention_mask( patch_ids: torch.Tensor, num_patches: int, sequence_length: int, patches_as_queries: bool = False, cross_attn_k: int = 1, dtype: torch.dtype = torch.float32, ) -> tuple[torch.Tensor, torch.Tensor]: """ Prepare cross-attention mask for patch-based attention, following mllama's robust approach. This function creates masks that control which patches can attend to which other patches, with support for query/key role swapping and cross-attention multipliers. Args: patch_ids (torch.Tensor): Tensor of shape [batch_size, seq_len] containing patch ids. num_patches (int): Total number of patches. sequence_length (int): Length of the sequence. patches_as_queries (bool): If True, patches are used as queries, otherwise as keys. cross_attn_k (int): Cross-attention multiplier for repeating patches. dtype (torch.dtype): Data type for the output mask. Returns: Tuple[torch.Tensor, torch.Tensor]: - cross_attention_mask: 4D tensor [batch_size, 1, q_len, kv_len] """ batch_size, seq_len = patch_ids.shape device = patch_ids.device # Determine query and key lengths based on configuration if patches_as_queries: q_len = num_patches * cross_attn_k kv_len = sequence_length # Create patch-to-sequence mapping q_patch_ids = ( torch.arange(num_patches, device=device) .unsqueeze(0) .unsqueeze(-1) .expand(batch_size, num_patches, seq_len) ) kv_patch_ids = patch_ids.unsqueeze(1).expand(batch_size, num_patches, seq_len) else: q_len = sequence_length kv_len = num_patches * cross_attn_k # Create sequence-to-patch mapping q_patch_ids = patch_ids.unsqueeze(-1).expand(batch_size, seq_len, num_patches) kv_patch_ids = ( torch.arange(num_patches, device=device).unsqueeze(0).unsqueeze(0).expand(batch_size, seq_len, num_patches) ) # Create base attention mask - boolean mask where True means "should attend" # Exact patch matching cross_attention_mask = q_patch_ids == kv_patch_ids # Handle cross_attn_k multiplier by repeating along appropriate dimension repeat_dim = 1 if patches_as_queries else -1 cross_attention_mask = cross_attention_mask.repeat_interleave(cross_attn_k, dim=repeat_dim) # Validate dimensions expected_shape = (batch_size, q_len, kv_len) if cross_attention_mask.shape != expected_shape: raise ValueError( f"Cross attention mask shape {cross_attention_mask.shape} doesn't match expected {expected_shape}" ) # Reshape so it can be used by attn module - add head dimension cross_attention_mask = cross_attention_mask.unsqueeze(1) # [batch_size, 1, q_len, kv_len] # Invert the mask (following mllama pattern exactly) # True -> 0.0 (attend), False -> 1.0 (will become -inf) inverted_cross_attn_mask = 1.0 - cross_attention_mask.to(dtype) cross_attention_mask = inverted_cross_attn_mask.masked_fill( inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min ) return cross_attention_mask class BltModel(BltPreTrainedModel): def __init__(self, config: BltConfig): super().__init__(config) self.gradient_checkpointing = False self.config = config self.local_encoder = BltLocalEncoder(config.encoder_config) self.global_transformer = BltGlobalTransformer(config.global_config) self.local_decoder = BltLocalDecoder(config.decoder_config) num_embeddings = config.encoder_hash_byte_group_nb_functions * len(config.encoder_hash_byte_group_size) total_vocab_size = config.encoder_hash_byte_group_vocab * num_embeddings self.encoder_hash_tok_embedding = nn.Embedding(total_vocab_size, config.encoder_config.hidden_size) if self.config.patch_in_forward: self.patcher = BltPatcher(config.patcher_config) self.patcher.eval() for param in self.patcher.parameters(): param.requires_grad = False else: self.patcher = None self.post_init() @check_model_inputs def forward( self, input_ids: Optional[torch.LongTensor] = None, patch_lengths: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") # Extract input embeddings as early as possible if inputs_embeds is not None: encoder_embeds = inputs_embeds batch_size, sequence_length, _ = inputs_embeds.shape else: batch_size, sequence_length = input_ids.shape encoder_embeds = compute_hash_embeddings( input_ids, self.local_encoder, self.encoder_hash_tok_embedding, self.config.encoder_hash_byte_group_nb_functions, self.config.encoder_hash_byte_group_size, self.config.encoder_hash_byte_group_vocab, ) if patch_lengths is None: if self.config.patching_mode == "entropy" and self.patcher is not None: if input_ids is None: raise ValueError("input_ids is required for entropy-based patching") _, patch_lengths, _ = self.patcher( input_ids, patch_size=self.config.patch_size, threshold=self.config.patching_threshold, max_patch_length=self.config.max_patch_length, patching_batch_size=self.config.patching_batch_size, device=input_ids.device, ) else: device = input_ids.device if input_ids is not None else inputs_embeds.device dtype = input_ids.dtype if input_ids is not None else inputs_embeds.dtype patch_lengths = process_patch_lengths( torch.ones((batch_size, sequence_length + 1), dtype=dtype, device=device), self.config.max_patch_length, ) patch_ids = self._patch_ids_from_lengths(patch_lengths, sequence_length) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + encoder_embeds.shape[1], device=encoder_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=encoder_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) cross_attn_mask_enc = _prepare_patch_cross_attention_mask( patch_ids=patch_ids, num_patches=patch_lengths.shape[1], sequence_length=sequence_length, patches_as_queries=True, cross_attn_k=self.config.cross_attn_k, dtype=encoder_embeds.dtype, ) encoder_hidden_states, encoder_cross_states = self.local_encoder( input_ids=input_ids, inputs_embeds=encoder_embeds, attention_mask=causal_mask, position_ids=position_ids, encoder_attention_mask=cross_attn_mask_enc, num_patches=patch_lengths.shape[1], patch_ids=patch_ids, **kwargs, ) encoder_cross_states = encoder_cross_states.view(batch_size, patch_lengths.shape[1], -1) global_cache_position = torch.arange(0, encoder_cross_states.shape[1], device=encoder_cross_states.device) global_position_ids = global_cache_position.unsqueeze(0) global_causal_mask = create_causal_mask( config=self.config, input_embeds=encoder_cross_states, attention_mask=None, cache_position=global_cache_position, past_key_values=None, position_ids=None, ) global_hidden_states = self.global_transformer( input_embeds=encoder_cross_states, attention_mask=global_causal_mask, position_ids=global_position_ids, **kwargs, ) decoder_patch_ids = self._patch_ids_from_lengths(patch_lengths[:, 1:], sequence_length) cross_attn_mask_dec = _prepare_patch_cross_attention_mask( patch_ids=decoder_patch_ids, num_patches=patch_lengths.shape[1], sequence_length=sequence_length, patches_as_queries=False, cross_attn_k=self.config.cross_attn_k, dtype=encoder_embeds.dtype, ) output = self.local_decoder( input_ids=input_ids, inputs_embeds=encoder_hidden_states, patch_embeds=global_hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, cache_position=cache_position, encoder_attention_mask=cross_attn_mask_dec, **kwargs, ) return BaseModelOutputWithPast( last_hidden_state=output, past_key_values=past_key_values, ) def get_input_embeddings(self): return self.local_encoder.embed_tokens def set_input_embeddings(self, value): self.local_encoder.embed_tokens = value def _patch_ids_from_lengths(self, patch_lengths: torch.Tensor, seq_len: int) -> torch.Tensor: batch_size = patch_lengths.shape[0] patch_starts = torch.cat( [ torch.zeros(batch_size, 1, dtype=patch_lengths.dtype, device=patch_lengths.device), patch_lengths.cumsum(dim=-1)[:, :-1], ], dim=-1, ) token_positions = torch.arange(seq_len, device=patch_lengths.device) return (patch_starts.unsqueeze(1) <= token_positions.unsqueeze(0).unsqueeze(-1)).sum(dim=-1) - 1 @auto_docstring( custom_intro=""" The Blt Text Model with a language modeling head on top. """ ) class BltForCausalLM(BltPreTrainedModel, GenerationMixin): config: BltConfig _can_compile_fullgraph = False base_model_prefix = "model" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: BltConfig): super().__init__(config.get_text_config()) self.text_config = config.get_text_config() self.vocab_size = config.vocab_size self.model = BltModel(config) self.lm_head = nn.Linear(config.decoder_config.hidden_size, config.vocab_size, bias=False) self.post_init() @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, cross_attention_states: Optional[torch.LongTensor] = None, # Keep for compatibility cross_attention_mask: Optional[torch.LongTensor] = None, full_text_row_masked_out_mask: Optional[tuple[torch.Tensor, torch.Tensor]] = None, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, CausalLMOutputWithPast]: r""" cross_attention_states (`torch.FloatTensor`, *optional*): Output of the vision model, used for cross-attention. This tensor contains the processed image features that the language model will attend to. cross_attention_mask (`torch.Tensor` of shape `(batch_size, seq_length, max_num_images, max_num_tiles)`, *optional*): Cross-attention mask to control the interaction between text tokens and image tiles. This 4D tensor defines which image tiles each text token should attend to. For each text token (in seq_length): - 1 indicates the token **should attend** to the corresponding image tile - 0 indicates the token **should not attend** to the corresponding image tile full_text_row_masked_out_mask (`tuple[torch.Tensor, torch.Tensor]`, *optional*): A tuple containing two tensors that mask out rows in the cross-attention mechanism: - The first tensor has shape `(batch_size, 1, seq_length, 1)` and contains values of 0 or 1. A value of 0 indicates that the corresponding text token's entire row in the cross-attention matrix should be masked out (all image tokens ignored). - The second tensor has the same shape and is used internally to apply the masking during the forward pass of cross-attention layers. This mask is derived from the cross_attention_mask and is used to handle cases where a text token should not attend to any image token. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, BltForCausalLM >>> model = BltForCausalLM.from_pretrained("Llama-3.2-11B-Vision") >>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision") >>> prompt = "If I had to write a haiku, it would be:" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6) >>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] >>> print(result) If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful. I love the idea of snowflakes gently falling, each one ``` """ # Call parent forward but exclude cross_attention_states from model call outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, cross_attention_mask=cross_attention_mask, full_text_row_masked_out_mask=full_text_row_masked_out_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]).float() loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["BltPreTrainedModel", "BltModel", "BltPatcher", "BltForCausalLM"]