# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/cohere2_vision/modular_cohere2_vision.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_cohere2_vision.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 the Cohere Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Union import torch from torch import nn from ...cache_utils import Cache from ...generation import GenerationMixin from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast, ModelOutput from ...modeling_utils import PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring from ...utils.generic import check_model_inputs from ..auto import AutoModel from .configuration_cohere2_vision import Cohere2VisionConfig class Cohere2VisionMultiModalProjector(nn.Module): def __init__(self, config: Cohere2VisionConfig): super().__init__() self.config = config self.downsample_factor = config.downsample_factor self.intermediate_size = config.alignment_intermediate_size self.linear_1 = nn.Linear( config.vision_config.hidden_size * (config.downsample_factor**2), self.intermediate_size, bias=True ) self.act = nn.SiLU() self.linear_2 = nn.Linear(self.intermediate_size // 2, config.text_config.hidden_size, bias=True) def pixel_shuffle(self, image_features): # B, S, D batch_size, seq_length, feature_dim = image_features.shape height = width = int(seq_length**0.5) image_features = image_features.reshape(image_features.shape[0], width, height, -1) channels = image_features.shape[-1] image_features = image_features.reshape( batch_size, width, int(height / self.downsample_factor), int(channels * self.downsample_factor) ) image_features = image_features.permute(0, 2, 1, 3) image_features = image_features.reshape( batch_size, int(height / self.downsample_factor), int(width / self.downsample_factor), -1 ) image_features = image_features.permute(0, 2, 1, 3) return image_features def forward(self, image_features): image_features = self.pixel_shuffle(image_features) hidden_states = self.linear_1(image_features) # Split along last dimension and apply SwiGLU x, gate = hidden_states.chunk(2, dim=-1) hidden_states = self.act(gate) * x hidden_states = self.linear_2(hidden_states) return hidden_states @dataclass @auto_docstring( custom_intro=""" Base class for Cohere2Vision outputs, with hidden states and attentions. """ ) class Cohere2VisionModelOutputWithPast(BaseModelOutputWithPast): r""" past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ image_hidden_states: Optional[torch.FloatTensor] = None @dataclass @auto_docstring( custom_intro=""" Base class for Cohere2Vision causal language model (or autoregressive) outputs. """ ) class Cohere2VisionCausalLMOutputWithPast(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[Cache] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None @auto_docstring class Cohere2VisionPreTrainedModel(PreTrainedModel): config: Cohere2VisionConfig base_model_prefix = "" supports_gradient_checkpointing = True _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True _can_compile_fullgraph = False _supports_flex_attn = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": "DecoderLayer", "attentions": "Attention", } @auto_docstring( custom_intro=""" The Cohere2Vision model which consists of a vision backbone and a language model, without a language modeling head. """ ) class Cohere2VisionModel(Cohere2VisionPreTrainedModel): _checkpoint_conversion_mapping = {} def __init__(self, config: Cohere2VisionConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = Cohere2VisionMultiModalProjector(config) self.language_model = AutoModel.from_config(config.text_config) self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def set_decoder(self, decoder): self.language_model = decoder def get_decoder(self): return self.language_model def get_image_features(self, pixel_values: torch.FloatTensor): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`) The tensors corresponding to the input images. Returns: image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches and are of shape `(num_patches, image_length, embed_dim)`). """ image_features = self.vision_tower(pixel_values, output_hidden_states=True) selected_image_feature = image_features.last_hidden_state image_features = self.multi_modal_projector(selected_image_feature) return image_features def get_placeholder_mask( self, input_ids: torch.LongTensor, inputs_embeds: torch.FloatTensor, image_features: torch.FloatTensor ): """ Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is equal to the length of multimodal features. If the lengths are different, an error is raised. """ if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) special_image_mask = special_image_mask.all(-1) else: special_image_mask = input_ids == self.config.image_token_id n_image_tokens = special_image_mask.sum() special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) n_image_features = image_features.shape[0] * image_features.shape[1] if inputs_embeds[special_image_mask].numel() != image_features.numel(): raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) return special_image_mask @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Union[tuple, Cohere2VisionModelOutputWithPast]: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features = self.get_image_features(pixel_values) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) special_image_mask = self.get_placeholder_mask( input_ids, inputs_embeds=inputs_embeds, image_features=image_features ) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) return Cohere2VisionModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) @auto_docstring( custom_intro=""" The COHERE2_VISION model which consists of a vision backbone and a language model. """ ) class Cohere2VisionForConditionalGeneration(Cohere2VisionPreTrainedModel, GenerationMixin): _checkpoint_conversion_mapping = {} _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: Cohere2VisionConfig): super().__init__(config) self.model = Cohere2VisionModel(config) self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) def get_output_embeddings(self) -> nn.Module: return self.lm_head def set_decoder(self, decoder): self.model.set_decoder(decoder) def get_decoder(self): return self.model.get_decoder() def get_image_features(self, pixel_values: torch.FloatTensor): return self.model.get_image_features(pixel_values=pixel_values) # Make modules available through conditional class for BC @property def language_model(self): return self.model.language_model @property def vision_tower(self): return self.model.vision_tower @property def multi_modal_projector(self): return self.model.multi_modal_projector @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, image_sizes: Optional[torch.Tensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, Cohere2VisionCausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoProcessor, Cohere2VisionForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("CohereLabs/command-a-vision-07-2025", use_fast=True) >>> model = Cohere2VisionForConditionalGeneration.from_pretrained("CohereLabs/command-a-vision-07-2025", device_map="auto") >>> messages = [ ... { ... "role": "user", ... "content": [ ... { ... "type": "image", ... "url": "https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg", ... }, ... {"type": "text", "text": "what is in this image?"}, ... ], ... }, ... ] >>> inputs = processor.apply_chat_template( ... messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ... ).to(model.device) >>> gen_tokens = model.generate(**inputs, max_new_tokens=300, do_sample=True, temperature=0.3) >>> processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) ```""" outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, image_sizes=image_sizes, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function( logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs ) return Cohere2VisionCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, cache_position=None, logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values return model_inputs __all__ = ["Cohere2VisionForConditionalGeneration", "Cohere2VisionPreTrainedModel", "Cohere2VisionModel"]