# coding=utf-8 # Copyright 2024 IDEA Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch DAB-DETR model.""" import math from dataclasses import dataclass from typing import Optional, Union import torch from torch import Tensor, nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, auto_docstring, logging, ) from ...utils.backbone_utils import load_backbone from .configuration_dab_detr import DabDetrConfig logger = logging.get_logger(__name__) @dataclass @auto_docstring( custom_intro=""" Base class for outputs of the Conditional DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. """ ) # Copied from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrDecoderOutput with ConditionalDetr->DabDetr,Conditional DETR->DAB-DETR,2 (anchor points)->4 (anchor points) class DabDetrDecoderOutput(BaseModelOutputWithCrossAttentions): r""" cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. reference_points (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, 2 (anchor points))`): Reference points (reference points of each layer of the decoder). """ intermediate_hidden_states: Optional[torch.FloatTensor] = None reference_points: Optional[tuple[torch.FloatTensor]] = None @dataclass @auto_docstring( custom_intro=""" Base class for outputs of the Conditional DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. """ ) # Copied from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrModelOutput with ConditionalDetr->DabDetr,Conditional DETR->DAB-DETR,2 (anchor points)->4 (anchor points) class DabDetrModelOutput(Seq2SeqModelOutput): r""" last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. reference_points (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, 2 (anchor points))`): Reference points (reference points of each layer of the decoder). """ intermediate_hidden_states: Optional[torch.FloatTensor] = None reference_points: Optional[tuple[torch.FloatTensor]] = None @dataclass @auto_docstring( custom_intro=""" Output type of [`DabDetrForObjectDetection`]. """ ) # Copied from transformers.models.detr.modeling_detr.DetrObjectDetectionOutput with Detr->DabDetr class DabDetrObjectDetectionOutput(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~DabDetrImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[dict] = None logits: Optional[torch.FloatTensor] = None pred_boxes: Optional[torch.FloatTensor] = None auxiliary_outputs: Optional[list[dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None decoder_attentions: Optional[tuple[torch.FloatTensor]] = None cross_attentions: Optional[tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None encoder_attentions: Optional[tuple[torch.FloatTensor]] = None # Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->DabDetr class DabDetrFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it user-friendly weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias # Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->DabDetr def replace_batch_norm(model): r""" Recursively replace all `torch.nn.BatchNorm2d` with `DabDetrFrozenBatchNorm2d`. Args: model (torch.nn.Module): input model """ for name, module in model.named_children(): if isinstance(module, nn.BatchNorm2d): new_module = DabDetrFrozenBatchNorm2d(module.num_features) if module.weight.device != torch.device("meta"): new_module.weight.data.copy_(module.weight) new_module.bias.data.copy_(module.bias) new_module.running_mean.data.copy_(module.running_mean) new_module.running_var.data.copy_(module.running_var) model._modules[name] = new_module if len(list(module.children())) > 0: replace_batch_norm(module) # Modified from transformers.models.detr.modeling_detr.DetrConvEncoder with Detr->DabDetr class DabDetrConvEncoder(nn.Module): """ Convolutional backbone, using either the AutoBackbone API or one from the timm library. nn.BatchNorm2d layers are replaced by DabDetrFrozenBatchNorm2d as defined above. """ def __init__(self, config: DabDetrConfig): super().__init__() self.config = config backbone = load_backbone(config) # replace batch norm by frozen batch norm with torch.no_grad(): replace_batch_norm(backbone) self.model = backbone self.intermediate_channel_sizes = self.model.channels def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): # send pixel_values through the model to get list of feature maps features = self.model(pixel_values).feature_maps out = [] for feature_map in features: # downsample pixel_mask to match shape of corresponding feature_map mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] out.append((feature_map, mask)) return out # Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->DabDetr class DabDetrConvModel(nn.Module): """ This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. """ def __init__(self, conv_encoder, position_embedding): super().__init__() self.conv_encoder = conv_encoder self.position_embedding = position_embedding def forward(self, pixel_values, pixel_mask): # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples out = self.conv_encoder(pixel_values, pixel_mask) pos = [] for feature_map, mask in out: # position encoding pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) return out, pos # Modified from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrSinePositionEmbedding with ConditionalDetr->DabDetr class DabDetrSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, config: DabDetrConfig): super().__init__() self.config = config self.embedding_dim = config.hidden_size / 2 self.temperature_height = config.temperature_height self.temperature_width = config.temperature_width scale = config.sine_position_embedding_scale if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, pixel_values, pixel_mask): if pixel_mask is None: raise ValueError("No pixel mask provided") y_embed = pixel_mask.cumsum(1, dtype=torch.float32) x_embed = pixel_mask.cumsum(2, dtype=torch.float32) y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale # We use float32 to ensure reproducibility of the original implementation dim_tx = torch.arange(self.embedding_dim, dtype=torch.float32, device=pixel_values.device) # Modifying dim_tx in place to avoid extra memory allocation -> dim_tx = self.temperature_width ** (2 * (dim_tx // 2) / self.embedding_dim) dim_tx //= 2 dim_tx.mul_(2 / self.embedding_dim) dim_tx.copy_(self.temperature_width**dim_tx) pos_x = x_embed[:, :, :, None] / dim_tx # We use float32 to ensure reproducibility of the original implementation dim_ty = torch.arange(self.embedding_dim, dtype=torch.float32, device=pixel_values.device) # Modifying dim_ty in place to avoid extra memory allocation -> dim_ty = self.temperature_height ** (2 * (dim_ty // 2) / self.embedding_dim) dim_ty //= 2 dim_ty.mul_(2 / self.embedding_dim) dim_ty.copy_(self.temperature_height**dim_ty) pos_y = y_embed[:, :, :, None] / dim_ty pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos # function to generate sine positional embedding for 4d coordinates def gen_sine_position_embeddings(pos_tensor, hidden_size=256): """ This function computes position embeddings using sine and cosine functions from the input positional tensor, which has a shape of (batch_size, num_queries, 4). The last dimension of `pos_tensor` represents the following coordinates: - 0: x-coord - 1: y-coord - 2: width - 3: height The output shape is (batch_size, num_queries, 512), where final dim (hidden_size*2 = 512) is the total embedding dimension achieved by concatenating the sine and cosine values for each coordinate. """ scale = 2 * math.pi dim = hidden_size // 2 dim_t = torch.arange(dim, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / dim) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.size(-1) == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError(f"Unknown pos_tensor shape(-1):{pos_tensor.size(-1)}") return pos.to(pos_tensor.dtype) def inverse_sigmoid(x, eps=1e-5): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) # Modified from transformers.models.detr.modeling_detr.DetrAttention class DetrAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, config: DabDetrConfig, bias: bool = True, ): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.encoder_attention_heads self.attention_dropout = config.attention_dropout self.head_dim = self.hidden_size // self.num_heads if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=bias) self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=bias) self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=bias) self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=bias) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" batch_size, q_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if object_queries is not None: hidden_states_original = hidden_states hidden_states = hidden_states + object_queries query_states = self.q_proj(hidden_states) * self.scaling key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states_original) query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_len, embed_dim) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # Modified from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrAttention with ConditionalDetr->DABDETR,Conditional DETR->DabDetr class DabDetrAttention(nn.Module): """ Cross-Attention used in DAB-DETR 'DAB-DETR for Fast Training Convergence' paper. The key q_proj, k_proj, v_proj are defined outside the attention. This attention allows the dim of q, k to be different to v. """ def __init__(self, config: DabDetrConfig, bias: bool = True, is_cross: bool = False): super().__init__() self.config = config self.embed_dim = config.hidden_size * 2 if is_cross else config.hidden_size self.output_dim = config.hidden_size self.attention_heads = config.decoder_attention_heads self.attention_dropout = config.attention_dropout self.attention_head_dim = self.embed_dim // self.attention_heads if self.attention_head_dim * self.attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `attention_heads`:" f" {self.attention_heads})." ) # head dimension of values self.values_head_dim = self.output_dim // self.attention_heads if self.values_head_dim * self.attention_heads != self.output_dim: raise ValueError( f"output_dim must be divisible by attention_heads (got `output_dim`: {self.output_dim} and `attention_heads`: {self.attention_heads})." ) self.scaling = self.attention_head_dim**-0.5 self.output_proj = nn.Linear(self.output_dim, self.output_dim, bias=bias) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, key_states: Optional[torch.Tensor] = None, value_states: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" batch_size, q_len, _ = hidden_states.size() # scaling query and refactor key-, value states query_states = hidden_states * self.scaling query_states = query_states.view(batch_size, -1, self.attention_heads, self.attention_head_dim).transpose(1, 2) key_states = key_states.view(batch_size, -1, self.attention_heads, self.attention_head_dim).transpose(1, 2) value_states = value_states.view(batch_size, -1, self.attention_heads, self.values_head_dim).transpose(1, 2) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_probs = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_probs, value_states) if attn_output.size() != (batch_size, self.attention_heads, q_len, self.values_head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.attention_heads, q_len, self.values_head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_len, self.output_dim) attn_output = self.output_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class DabDetrDecoderLayerSelfAttention(nn.Module): def __init__(self, config: DabDetrConfig): super().__init__() self.dropout = config.dropout self.self_attn_query_content_proj = nn.Linear(config.hidden_size, config.hidden_size) self.self_attn_query_pos_proj = nn.Linear(config.hidden_size, config.hidden_size) self.self_attn_key_content_proj = nn.Linear(config.hidden_size, config.hidden_size) self.self_attn_key_pos_proj = nn.Linear(config.hidden_size, config.hidden_size) self.self_attn_value_proj = nn.Linear(config.hidden_size, config.hidden_size) self.self_attn = DabDetrAttention(config) self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size) def forward( self, hidden_states: torch.Tensor, query_position_embeddings: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ): residual = hidden_states query_content = self.self_attn_query_content_proj(hidden_states) query_pos = self.self_attn_query_pos_proj(query_position_embeddings) key_content = self.self_attn_key_content_proj(hidden_states) key_pos = self.self_attn_key_pos_proj(query_position_embeddings) value = self.self_attn_value_proj(hidden_states) query = query_content + query_pos key = key_content + key_pos hidden_states, attn_weights = self.self_attn( hidden_states=query, attention_mask=attention_mask, key_states=key, value_states=value, output_attentions=True, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) return hidden_states, attn_weights class DabDetrDecoderLayerCrossAttention(nn.Module): def __init__(self, config: DabDetrConfig, is_first: bool = False): super().__init__() hidden_size = config.hidden_size self.cross_attn_query_content_proj = nn.Linear(hidden_size, hidden_size) self.cross_attn_query_pos_proj = nn.Linear(hidden_size, hidden_size) self.cross_attn_key_content_proj = nn.Linear(hidden_size, hidden_size) self.cross_attn_key_pos_proj = nn.Linear(hidden_size, hidden_size) self.cross_attn_value_proj = nn.Linear(hidden_size, hidden_size) self.cross_attn_query_pos_sine_proj = nn.Linear(hidden_size, hidden_size) self.decoder_attention_heads = config.decoder_attention_heads self.cross_attn_layer_norm = nn.LayerNorm(hidden_size) self.cross_attn = DabDetrAttention(config, is_cross=True) self.keep_query_pos = config.keep_query_pos if not self.keep_query_pos and not is_first: self.cross_attn_query_pos_proj = None self.is_first = is_first self.dropout = config.dropout def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, query_sine_embed: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ): query_content = self.cross_attn_query_content_proj(hidden_states) key_content = self.cross_attn_key_content_proj(encoder_hidden_states) value = self.cross_attn_value_proj(encoder_hidden_states) batch_size, num_queries, n_model = query_content.shape _, height_width, _ = key_content.shape key_pos = self.cross_attn_key_pos_proj(object_queries) # For the first decoder layer, we add the positional embedding predicted from # the object query (the positional embedding) into the original query (key) in DETR. if self.is_first or self.keep_query_pos: query_pos = self.cross_attn_query_pos_proj(query_position_embeddings) query = query_content + query_pos key = key_content + key_pos else: query = query_content key = key_content query = query.view( batch_size, num_queries, self.decoder_attention_heads, n_model // self.decoder_attention_heads ) query_sine_embed = self.cross_attn_query_pos_sine_proj(query_sine_embed) query_sine_embed = query_sine_embed.view( batch_size, num_queries, self.decoder_attention_heads, n_model // self.decoder_attention_heads ) query = torch.cat([query, query_sine_embed], dim=3).view(batch_size, num_queries, n_model * 2) key = key.view(batch_size, height_width, self.decoder_attention_heads, n_model // self.decoder_attention_heads) key_pos = key_pos.view( batch_size, height_width, self.decoder_attention_heads, n_model // self.decoder_attention_heads ) key = torch.cat([key, key_pos], dim=3).view(batch_size, height_width, n_model * 2) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.cross_attn( hidden_states=query, attention_mask=encoder_attention_mask, key_states=key, value_states=value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.cross_attn_layer_norm(hidden_states) return hidden_states, cross_attn_weights class DabDetrDecoderLayerFFN(nn.Module): def __init__(self, config: DabDetrConfig): super().__init__() hidden_size = config.hidden_size self.final_layer_norm = nn.LayerNorm(hidden_size) self.fc1 = nn.Linear(hidden_size, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, hidden_size) self.activation_fn = ACT2FN[config.activation_function] self.dropout = config.dropout self.activation_dropout = config.activation_dropout self.keep_query_pos = config.keep_query_pos def forward(self, hidden_states: torch.Tensor): residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states # Modified from transformers.models.detr.modeling_detr.DetrEncoderLayer with DetrEncoderLayer->DabDetrEncoderLayer,DetrConfig->DabDetrConfig class DabDetrEncoderLayer(GradientCheckpointingLayer): def __init__(self, config: DabDetrConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = DetrAttention(config) self.self_attn_layer_norm = nn.LayerNorm(self.hidden_size) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.fc1 = nn.Linear(self.hidden_size, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.hidden_size) self.final_layer_norm = nn.LayerNorm(self.hidden_size) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, object_queries: torch.Tensor, output_attentions: Optional[bool] = None, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): Object queries (also called content embeddings), to be added to the hidden states. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, object_queries=object_queries, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Modified from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrDecoderLayer with ConditionalDetr->DabDetr class DabDetrDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: DabDetrConfig, is_first: bool = False): super().__init__() self.self_attn = DabDetrDecoderLayerSelfAttention(config) self.cross_attn = DabDetrDecoderLayerCrossAttention(config, is_first) self.mlp = DabDetrDecoderLayerFFN(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, query_sine_embed: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): object_queries that are added to the queries and keys in the cross-attention layer. query_position_embeddings (`torch.FloatTensor`, *optional*): object_queries that are added to the queries and keys in the self-attention layer. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, query_position_embeddings=query_position_embeddings, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states, cross_attn_weights = self.cross_attn( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, query_position_embeddings=query_position_embeddings, object_queries=object_queries, encoder_attention_mask=encoder_attention_mask, query_sine_embed=query_sine_embed, output_attentions=output_attentions, ) hidden_states = self.mlp(hidden_states=hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Modified from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with DetrMLPPredictionHead->DabDetrMLP class DabDetrMLP(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, input_tensor): for i, layer in enumerate(self.layers): input_tensor = nn.functional.relu(layer(input_tensor)) if i < self.num_layers - 1 else layer(input_tensor) return input_tensor # Modified from transformers.models.detr.modeling_detr.DetrPreTrainedModel with Detr->DabDetr @auto_docstring class DabDetrPreTrainedModel(PreTrainedModel): config: DabDetrConfig base_model_prefix = "model" main_input_name = "pixel_values" _no_split_modules = [r"DabDetrConvEncoder", r"DabDetrEncoderLayer", r"DabDetrDecoderLayer"] def _init_weights(self, module): std = self.config.init_std xavier_std = self.config.init_xavier_std if isinstance(module, DabDetrMHAttentionMap): nn.init.zeros_(module.k_linear.bias) nn.init.zeros_(module.q_linear.bias) nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std) nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std) if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, DabDetrForObjectDetection): nn.init.constant_(module.bbox_predictor.layers[-1].weight.data, 0) nn.init.constant_(module.bbox_predictor.layers[-1].bias.data, 0) # init prior_prob setting for focal loss prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1) bias_value = -math.log((1 - prior_prob) / prior_prob) module.class_embed.bias.data.fill_(bias_value) elif isinstance(module, nn.PReLU): module.reset_parameters() # Modified from transformers.models.detr.modeling_detr.DetrEncoder with Detr->DabDetr,DETR->ConditionalDETR class DabDetrEncoder(DabDetrPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`DabDetrEncoderLayer`]. The encoder updates the flattened feature map through multiple self-attention layers. Small tweak for DAB-DETR: - object_queries are added to the forward pass. Args: config: DabDetrConfig """ def __init__(self, config: DabDetrConfig): super().__init__(config) self.dropout = config.dropout self.query_scale = DabDetrMLP(config.hidden_size, config.hidden_size, config.hidden_size, 2) self.layers = nn.ModuleList([DabDetrEncoderLayer(config) for _ in range(config.encoder_layers)]) self.norm = nn.LayerNorm(config.hidden_size) if config.normalize_before else None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds, attention_mask, object_queries, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) object_queries (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`): Object queries that are added to the queries in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # pos scaler pos_scales = self.query_scale(hidden_states) # we add object_queries * pos_scaler as extra input to the encoder_layer scaled_object_queries = object_queries * pos_scales layer_outputs = encoder_layer( hidden_states, attention_mask=attention_mask, object_queries=scaled_object_queries, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.norm: hidden_states = self.norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Modified from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrDecoder with ConditionalDetr->DabDetr,Conditional DETR->DAB-DETR class DabDetrDecoder(DabDetrPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DabDetrDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some small tweaks for DAB-DETR: - object_queries and query_position_embeddings are added to the forward pass. - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. Args: config: DabDetrConfig """ def __init__(self, config: DabDetrConfig): super().__init__(config) self.config = config self.dropout = config.dropout self.num_layers = config.decoder_layers self.gradient_checkpointing = False self.layers = nn.ModuleList( [DabDetrDecoderLayer(config, is_first=(layer_id == 0)) for layer_id in range(config.decoder_layers)] ) # in DAB-DETR, the decoder uses layernorm after the last decoder layer output self.hidden_size = config.hidden_size self.layernorm = nn.LayerNorm(self.hidden_size) # Default cond-elewise self.query_scale = DabDetrMLP(self.hidden_size, self.hidden_size, self.hidden_size, 2) self.ref_point_head = DabDetrMLP( config.query_dim // 2 * self.hidden_size, self.hidden_size, self.hidden_size, 2 ) self.bbox_embed = None # Default decoder_modulate_hw_attn is True self.ref_anchor_head = DabDetrMLP(self.hidden_size, self.hidden_size, 2, 2) # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds, encoder_hidden_states, memory_key_padding_mask, object_queries, query_position_embeddings, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`): The query embeddings that are passed into the decoder. encoder_hidden_states (`torch.FloatTensor` of shape `(encoder_sequence_length, batch_size, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. memory_key_padding_mask (`torch.Tensor.bool` of shape `(batch_size, sequence_length)`): The memory_key_padding_mask indicates which positions in the memory (encoder outputs) should be ignored during the attention computation, ensuring padding tokens do not influence the attention mechanism. object_queries (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`, *optional*): Position embeddings that are added to the queries and keys in each cross-attention layer. query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, number_of_anchor_points)`): Position embeddings that are added to the queries and keys in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds input_shape = inputs_embeds.size()[:-1] # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None intermediate = [] reference_points = query_position_embeddings.sigmoid() ref_points = [reference_points] # expand encoder attention mask if encoder_hidden_states is not None and memory_key_padding_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] memory_key_padding_mask = _prepare_4d_attention_mask( memory_key_padding_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) for layer_id, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) obj_center = reference_points[..., : self.config.query_dim] query_sine_embed = gen_sine_position_embeddings(obj_center, self.hidden_size) query_pos = self.ref_point_head(query_sine_embed) # For the first decoder layer, we do not apply transformation over p_s pos_transformation = 1 if layer_id == 0 else self.query_scale(hidden_states) # apply transformation query_sine_embed = query_sine_embed[..., : self.hidden_size] * pos_transformation # modulated Height Width attentions reference_anchor_size = self.ref_anchor_head(hidden_states).sigmoid() # nq, bs, 2 query_sine_embed[..., self.hidden_size // 2 :] *= ( reference_anchor_size[..., 0] / obj_center[..., 2] ).unsqueeze(-1) query_sine_embed[..., : self.hidden_size // 2] *= ( reference_anchor_size[..., 1] / obj_center[..., 3] ).unsqueeze(-1) layer_outputs = decoder_layer( hidden_states, None, # attention_mask object_queries, query_pos, query_sine_embed, encoder_hidden_states, # as a positional argument for gradient checkpointing encoder_attention_mask=memory_key_padding_mask, output_attentions=output_attentions, ) # iter update hidden_states = layer_outputs[0] if self.bbox_embed is not None: new_reference_points = self.bbox_embed(hidden_states) new_reference_points[..., : self.config.query_dim] += inverse_sigmoid(reference_points) new_reference_points = new_reference_points[..., : self.config.query_dim].sigmoid() if layer_id != self.num_layers - 1: ref_points.append(new_reference_points) reference_points = new_reference_points.detach() intermediate.append(self.layernorm(hidden_states)) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # Layer normalization on hidden states hidden_states = self.layernorm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) output_intermediate_hidden_states = torch.stack(intermediate) output_reference_points = torch.stack(ref_points) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, output_intermediate_hidden_states, output_reference_points, ] if v is not None ) return DabDetrDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, intermediate_hidden_states=output_intermediate_hidden_states, reference_points=output_reference_points, ) @auto_docstring( custom_intro=""" The bare DAB-DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states, intermediate hidden states, reference points, output coordinates without any specific head on top. """ ) class DabDetrModel(DabDetrPreTrainedModel): def __init__(self, config: DabDetrConfig): super().__init__(config) self.auxiliary_loss = config.auxiliary_loss # Create backbone + positional encoding self.backbone = DabDetrConvEncoder(config) object_queries = DabDetrSinePositionEmbedding(config) self.query_refpoint_embeddings = nn.Embedding(config.num_queries, config.query_dim) self.random_refpoints_xy = config.random_refpoints_xy if self.random_refpoints_xy: self.query_refpoint_embeddings.weight.data[:, :2].uniform_(0, 1) self.query_refpoint_embeddings.weight.data[:, :2] = inverse_sigmoid( self.query_refpoint_embeddings.weight.data[:, :2] ) self.query_refpoint_embeddings.weight.data[:, :2].requires_grad = False # Create projection layer self.input_projection = nn.Conv2d( self.backbone.intermediate_channel_sizes[-1], config.hidden_size, kernel_size=1 ) self.backbone = DabDetrConvModel(self.backbone, object_queries) self.encoder = DabDetrEncoder(config) self.decoder = DabDetrDecoder(config) # decoder related variables self.hidden_size = config.hidden_size self.num_queries = config.num_queries self.num_patterns = config.num_patterns if not isinstance(self.num_patterns, int): logger.warning(f"num_patterns should be int but {type(self.num_patterns)}") self.num_patterns = 0 if self.num_patterns > 0: self.patterns = nn.Embedding(self.num_patterns, self.hidden_size) self.aux_loss = config.auxiliary_loss # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.encoder def freeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(False) def unfreeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(True) @auto_docstring def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.FloatTensor], DabDetrModelOutput]: r""" decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*): Not used by default. Can be used to mask object queries. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation. Examples: ```python >>> from transformers import AutoImageProcessor, AutoModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("IDEA-Research/dab_detr-base") >>> model = AutoModel.from_pretrained("IDEA-Research/dab_detr-base") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # the last hidden states are the final query embeddings of the Transformer decoder >>> # these are of shape (batch_size, num_queries, hidden_size) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 300, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, _, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones(((batch_size, height, width)), device=device) # First, sent pixel_values + pixel_mask through Backbone to obtain the features # pixel_values should be of shape (batch_size, num_channels, height, width) # pixel_mask should be of shape (batch_size, height, width) features, object_queries_list = self.backbone(pixel_values, pixel_mask) # get final feature map and downsampled mask feature_map, mask = features[-1] if mask is None: raise ValueError("Backbone does not return downsampled pixel mask") flattened_mask = mask.flatten(1) # Second, apply 1x1 convolution to reduce the channel dimension to hidden_size (256 by default) projected_feature_map = self.input_projection(feature_map) # Third, flatten the feature map + object_queries of shape NxCxHxW to HWxNxC, and permute it to NxHWxC # In other words, turn their shape into ( sequence_length, batch_size, hidden_size) flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) reference_position_embeddings = self.query_refpoint_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1) # Fourth, sent flattened_features + flattened_mask + object_queries through encoder # flattened_features is a Tensor of shape (height*width, batch_size, hidden_size) # flattened_mask is a Tensor of shape (batch_size, height*width) if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=flattened_features, attention_mask=flattened_mask, object_queries=object_queries, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output) num_queries = reference_position_embeddings.shape[1] if self.num_patterns == 0: queries = torch.zeros(batch_size, num_queries, self.hidden_size, device=device) else: queries = ( self.patterns.weight[:, None, None, :] .repeat(1, self.num_queries, batch_size, 1) .flatten(0, 1) .permute(1, 0, 2) ) # bs, n_q*n_pat, hidden_size reference_position_embeddings = reference_position_embeddings.repeat( 1, self.num_patterns, 1 ) # bs, n_q*n_pat, hidden_size # decoder outputs consists of (dec_features, dec_hidden, dec_attn) decoder_outputs = self.decoder( inputs_embeds=queries, query_position_embeddings=reference_position_embeddings, object_queries=object_queries, encoder_hidden_states=encoder_outputs[0], memory_key_padding_mask=flattened_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: # last_hidden_state output = (decoder_outputs[0],) reference_points = decoder_outputs[-1] intermediate_hidden_states = decoder_outputs[-2] # it has to follow the order of DABDETRModelOutput that is based on ModelOutput # If we only use one of the variables then the indexing will change. # E.g: if we return everything then 'decoder_attentions' is decoder_outputs[2], if we only use output_attentions then its decoder_outputs[1] if output_hidden_states and output_attentions: output += ( decoder_outputs[1], decoder_outputs[2], decoder_outputs[3], encoder_outputs[0], encoder_outputs[1], encoder_outputs[2], ) elif output_hidden_states: # decoder_hidden_states, encoder_last_hidden_state, encoder_hidden_states output += ( decoder_outputs[1], encoder_outputs[0], encoder_outputs[1], ) elif output_attentions: # decoder_self_attention, decoder_cross_attention, encoder_attentions output += ( decoder_outputs[1], decoder_outputs[2], encoder_outputs[1], ) output += (intermediate_hidden_states, reference_points) return output reference_points = decoder_outputs.reference_points intermediate_hidden_states = decoder_outputs.intermediate_hidden_states return DabDetrModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states if output_hidden_states else None, decoder_attentions=decoder_outputs.attentions if output_attentions else None, cross_attentions=decoder_outputs.cross_attentions if output_attentions else None, encoder_last_hidden_state=encoder_outputs.last_hidden_state if output_hidden_states else None, encoder_hidden_states=encoder_outputs.hidden_states if output_hidden_states else None, encoder_attentions=encoder_outputs.attentions if output_attentions else None, intermediate_hidden_states=intermediate_hidden_states, reference_points=reference_points, ) # Copied from transformers.models.detr.modeling_detr.DetrMHAttentionMap with Detr->DabDetr class DabDetrMHAttentionMap(nn.Module): """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 def forward(self, q, k, mask: Optional[Tensor] = None): q = self.q_linear(q) k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias) queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads) keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1]) weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head) if mask is not None: weights = weights.masked_fill(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min) weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size()) weights = self.dropout(weights) return weights @auto_docstring( custom_intro=""" DAB_DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks such as COCO detection. """ ) class DabDetrForObjectDetection(DabDetrPreTrainedModel): # When using clones, all layers > 0 will be clones, but layer 0 *is* required _tied_weights_keys = [ r"bbox_predictor\.layers\.\d+\.(weight|bias)", r"model\.decoder\.bbox_embed\.layers\.\d+\.(weight|bias)", ] def __init__(self, config: DabDetrConfig): super().__init__(config) self.config = config self.auxiliary_loss = config.auxiliary_loss self.query_dim = config.query_dim # DAB-DETR encoder-decoder model self.model = DabDetrModel(config) _bbox_embed = DabDetrMLP(config.hidden_size, config.hidden_size, 4, 3) # Object detection heads self.class_embed = nn.Linear(config.hidden_size, config.num_labels) # Default bbox_embed_diff_each_layer is False self.bbox_predictor = _bbox_embed # Default iter_update is True self.model.decoder.bbox_embed = self.bbox_predictor # Initialize weights and apply final processing self.post_init() # taken from https://github.com/Atten4Vis/conditionalDETR/blob/master/models/dab_detr.py @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] @auto_docstring def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[list[dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.FloatTensor], DabDetrObjectDetectionOutput]: r""" decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*): Not used by default. Can be used to mask object queries. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation. labels (`list[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Examples: ```python >>> from transformers import AutoImageProcessor, AutoModelForObjectDetection >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("IDEA-Research/dab-detr-resnet-50") >>> model = AutoModelForObjectDetection.from_pretrained("IDEA-Research/dab-detr-resnet-50") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> target_sizes = torch.tensor([(image.height, image.width)]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected remote with confidence 0.833 at location [38.31, 72.1, 177.63, 118.45] Detected cat with confidence 0.831 at location [9.2, 51.38, 321.13, 469.0] Detected cat with confidence 0.804 at location [340.3, 16.85, 642.93, 370.95] Detected remote with confidence 0.683 at location [334.48, 73.49, 366.37, 190.01] Detected couch with confidence 0.535 at location [0.52, 1.19, 640.35, 475.1] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through DAB_DETR base model to obtain encoder + decoder outputs model_outputs = self.model( pixel_values, pixel_mask=pixel_mask, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) reference_points = model_outputs.reference_points if return_dict else model_outputs[-1] intermediate_hidden_states = model_outputs.intermediate_hidden_states if return_dict else model_outputs[-2] # class logits + predicted bounding boxes logits = self.class_embed(intermediate_hidden_states[-1]) reference_before_sigmoid = inverse_sigmoid(reference_points) bbox_with_refinement = self.bbox_predictor(intermediate_hidden_states) bbox_with_refinement[..., : self.query_dim] += reference_before_sigmoid outputs_coord = bbox_with_refinement.sigmoid() pred_boxes = outputs_coord[-1] loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: outputs_class = None if self.config.auxiliary_loss: outputs_class = self.class_embed(intermediate_hidden_states) loss, loss_dict, auxiliary_outputs = self.loss_function( logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord ) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + model_outputs else: output = (logits, pred_boxes) + model_outputs # Since DabDetrObjectDetectionOutput doesn't have reference points + intermedieate_hidden_states we cut down. return ((loss, loss_dict) + output) if loss is not None else output[:-2] return DabDetrObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=model_outputs.last_hidden_state, decoder_hidden_states=model_outputs.decoder_hidden_states if output_hidden_states else None, decoder_attentions=model_outputs.decoder_attentions if output_attentions else None, cross_attentions=model_outputs.cross_attentions if output_attentions else None, encoder_last_hidden_state=model_outputs.encoder_last_hidden_state if output_hidden_states else None, encoder_hidden_states=model_outputs.encoder_hidden_states if output_hidden_states else None, encoder_attentions=model_outputs.encoder_attentions if output_attentions else None, ) __all__ = [ "DabDetrForObjectDetection", "DabDetrModel", "DabDetrPreTrainedModel", ]