# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/deepseek_v2/modular_deepseek_v2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_deepseek_v2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Callable, Optional, Union import torch import torch.nn.functional as F from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...integrations import use_kernel_forward_from_hub from ...masking_utils import create_causal_mask from ...modeling_layers import GenericForSequenceClassification, GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple from ...utils.deprecation import deprecate_kwarg from ...utils.generic import check_model_inputs from .configuration_deepseek_v2 import DeepseekV2Config class DeepseekV2MoEGate(nn.Module): def __init__(self, config: DeepseekV2Config): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.num_experts = config.n_routed_experts self.routed_scaling_factor = config.routed_scaling_factor self.alpha = config.aux_loss_alpha self.seq_aux = config.seq_aux self.topk_method = config.topk_method self.num_group = config.n_group self.topk_group = config.topk_group # topk selection algorithm self.norm_topk_prob = config.norm_topk_prob self.gating_dim = config.hidden_size self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim))) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, seq_len, hidden_dim = hidden_states.shape ### compute gating score hidden_states = hidden_states.view(-1, hidden_dim) logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32), None) scores = logits.softmax(dim=-1, dtype=torch.float32) # select top-k experts # greedy method is used for DeepSeek-V2-Lite # group_limited_greedy for DeepSeek-V2 and DeepSeek-V2-Chat if self.topk_method == "greedy": topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) elif self.topk_method == "group_limited_greedy": group_scores = scores.view(batch_size * seq_len, self.num_group, -1).max(dim=-1).values # [n, num_group] group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] # [n, top_k_group] group_mask = torch.zeros_like(group_scores) # [n, num_group] group_mask.scatter_(1, group_idx, 1) # [n, num_group] score_mask = ( group_mask.unsqueeze(-1) .expand(batch_size * seq_len, self.num_group, self.num_experts // self.num_group) .reshape(batch_size * seq_len, -1) ) # [n, e] tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] topk_weight, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False) topk_weight = topk_weight * self.routed_scaling_factor ### expert-level computation auxiliary loss return topk_idx, topk_weight class DeepseekV2MoE(nn.Module): """ A mixed expert module containing shared experts. """ def __init__(self, config: DeepseekV2Config): super().__init__() self.config = config self.num_experts_per_tok = config.num_experts_per_tok self.experts = nn.ModuleList( [ (DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)) for _ in range(config.n_routed_experts) ] ) self.gate = DeepseekV2MoEGate(config) if config.n_shared_experts is not None: intermediate_size = config.moe_intermediate_size * config.n_shared_experts self.shared_experts = DeepseekV2MLP(config=config, intermediate_size=intermediate_size) self.ep_rank = 0 self.experts_per_rank = config.n_routed_experts def moe(self, hidden_states: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor: cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) cnts.scatter_(1, topk_ids, 1) tokens_per_expert = cnts.sum(dim=0) indices = topk_ids.view(-1).argsort() sorted_tokens = hidden_states[indices // topk_ids.shape[1]] # Process experts outputs = [] start_idx = 0 for i, num_tokens in enumerate(tokens_per_expert): if num_tokens == 0: continue end_idx = start_idx + num_tokens expert = self.experts[i + self.ep_rank * self.experts_per_rank] tokens_for_this_expert = sorted_tokens[start_idx:end_idx] expert_out = expert(tokens_for_this_expert) outputs.append(expert_out) start_idx = end_idx outs = torch.cat(outputs, dim=0) if outputs else sorted_tokens.new_empty(0) # Reorder and combine outputs new_x = torch.empty_like(outs) new_x[indices] = outs hidden_states = ( new_x.view(*topk_ids.shape, -1) .type(topk_weight.dtype) .mul_(topk_weight.unsqueeze(dim=-1)) .sum(dim=1) .type(new_x.dtype) ) return hidden_states def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residuals = hidden_states orig_shape = hidden_states.shape topk_indices, topk_weights = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape) hidden_states = hidden_states + self.shared_experts(residuals) return hidden_states class DeepseekV2MLP(nn.Module): def __init__(self, config: DeepseekV2Config, hidden_size=None, intermediate_size=None): super().__init__() self.config = config self.hidden_size = config.hidden_size if hidden_size is None else hidden_size self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj @use_kernel_forward_from_hub("RMSNorm") class DeepseekV2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ DeepseekV2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class DeepseekV2RotaryEmbedding(nn.Module): inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, config: DeepseekV2Config, device=None): super().__init__() # BC: "rope_type" was originally "type" self.rope_type = ( config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) if config.rope_scaling is not None else "default" ) self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # Convert to complex representation freqs_cis = freqs_cis * self.attention_scaling return freqs_cis def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # Broadcast to [1, 1, seq_len, dim // 2] freqs_cis = freqs_cis.unsqueeze(1).to(xq_.device) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk) return xq_out, xk_out class DeepseekV2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.head_dim self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.q_lora_rank = config.q_lora_rank self.qk_rope_head_dim = config.qk_rope_head_dim self.kv_lora_rank = config.kv_lora_rank self.v_head_dim = config.v_head_dim self.qk_nope_head_dim = config.qk_nope_head_dim self.qk_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.is_causal = True if self.q_lora_rank is None: self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False) else: self.q_a_proj = nn.Linear(self.hidden_size, config.q_lora_rank, bias=config.attention_bias) self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank) self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False) self.kv_a_proj_with_mqa = nn.Linear( self.hidden_size, config.kv_lora_rank + config.qk_rope_head_dim, bias=config.attention_bias, ) self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank) self.kv_b_proj = nn.Linear( config.kv_lora_rank, self.num_heads * (self.qk_head_dim - self.qk_rope_head_dim + self.v_head_dim), bias=False, ) self.o_proj = nn.Linear( self.num_heads * self.v_head_dim, self.hidden_size, bias=config.attention_bias, ) self.scaling = self.qk_head_dim ** (-0.5) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, position_ids: Optional[torch.Tensor] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) batch_size, seq_length = hidden_states.shape[:-1] query_shape = (batch_size, seq_length, -1, self.qk_head_dim) key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim) if self.q_lora_rank is None: q = self.q_proj(hidden_states) else: q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) q = q.view(query_shape).transpose(1, 2) q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) compressed_kv = self.kv_a_proj_with_mqa(hidden_states) k_nope, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) k_nope = self.kv_b_proj(self.kv_a_layernorm(k_nope)).view(key_shape).transpose(1, 2) k_nope, value_states = torch.split(k_nope, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) k_pe = k_pe.view(batch_size, 1, seq_length, self.qk_rope_head_dim) q_pe, k_pe = apply_rotary_emb(q_pe, k_pe, position_embeddings.to(q_pe.device)) k_pe = k_pe.expand(*k_nope.shape[:-1], -1) query_states = torch.cat((q_nope, q_pe), dim=-1) key_states = torch.cat((k_nope, k_pe), dim=-1) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim]) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: attn_output = attn_output[:, :, :, : self.v_head_dim] attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class DeepseekV2DecoderLayer(GradientCheckpointingLayer): def __init__(self, config: DeepseekV2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = DeepseekV2Attention(config=config, layer_idx=layer_idx) self.mlp = DeepseekV2MoE(config) if layer_idx >= config.first_k_dense_replace else DeepseekV2MLP(config) self.input_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[TransformersKwargs], ) -> torch.Tensor: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states @auto_docstring class DeepseekV2PreTrainedModel(PreTrainedModel): config: DeepseekV2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DeepseekV2DecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = False _supports_attention_backend = True _can_record_outputs = { "hidden_states": DeepseekV2DecoderLayer, "attentions": DeepseekV2Attention, } def _init_weights(self, module): super()._init_weights(module) if isinstance(module, DeepseekV2MoEGate): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) @auto_docstring class DeepseekV2Model(DeepseekV2PreTrainedModel): def __init__(self, config: DeepseekV2Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [DeepseekV2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = DeepseekV2RotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_position: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds: torch.Tensor = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache(config=self.config) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position: torch.Tensor = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers[: self.config.num_hidden_layers]: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) @auto_docstring class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = DeepseekV2Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" Example: ```python >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM >>> model = DeepseekV2ForCausalLM.from_pretrained("meta-deepseek_v2/DeepseekV2-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-deepseek_v2/DeepseekV2-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class DeepseekV2ForSequenceClassification(GenericForSequenceClassification, DeepseekV2PreTrainedModel): pass __all__ = [ "DeepseekV2PreTrainedModel", "DeepseekV2Model", "DeepseekV2ForCausalLM", "DeepseekV2ForSequenceClassification", ]