# coding=utf-8 # Copyright 2025 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ConvNeXT model configuration""" from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class DINOv3ConvNextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DINOv3ConvNextModel`]. It is used to instantiate an DINOv3ConvNext model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DINOv3ConvNext [facebook/dinov3-convnext-tiny-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-convnext-tiny-pretrain-lvd1689m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. hidden_sizes (`list[int]`, *optional*, defaults to [96, 192, 384, 768]): Dimensionality (hidden size) at each stage. depths (`list[int]`, *optional*, defaults to [3, 3, 9, 3]): The number of layers for each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 1e-06): The initial value for the layer scale. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop rate for stochastic depth. image_size (`int`, *optional*, defaults to 224): The size (resolution) of input images. Example: ```python >>> from transformers import DINOv3ConvNextConfig, DINOv3ConvNextModel >>> # Initializing a DINOv3ConvNext (tiny variant) style configuration >>> config = DINOv3ConvNextConfig() >>> # Initializing a model (with random weights) >>> model = DINOv3ConvNextModel(config) >>> # Accessing the model config >>> config = model.config ```""" model_type = "dinov3_convnext" def __init__( self, num_channels: int = 3, hidden_sizes: Optional[list[int]] = None, depths: Optional[list[int]] = None, hidden_act: str = "gelu", initializer_range: float = 0.02, layer_norm_eps: float = 1e-6, layer_scale_init_value: float = 1e-6, drop_path_rate: float = 0.0, image_size: int = 224, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes self.depths = [3, 3, 9, 3] if depths is None else depths self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.image_size = image_size @property def num_stages(self) -> int: return len(self.hidden_sizes) __all__ = ["DINOv3ConvNextConfig"]