# coding=utf-8 # Copyright 2023 The Bigcode team and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch GPTBigCode model.""" import math from typing import Callable, Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from ...generation import GenerationMixin from ...masking_utils import create_causal_mask from ...modeling_flash_attention_utils import is_flash_attn_available from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import ( auto_docstring, can_return_tuple, logging, ) from .configuration_gpt_bigcode import GPTBigCodeConfig if is_flash_attn_available(): pass logger = logging.get_logger(__name__) # Fused kernels # Use separate functions for each case because conditionals prevent kernel fusion. # TODO: Could have better fused kernels depending on scaling, dropout and head mask. # Is it doable without writing 32 functions? @torch.jit.script def upcast_masked_softmax( x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype ): input_dtype = x.dtype x = x.to(softmax_dtype) * scale x = torch.where(mask, x, mask_value) x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) return x @torch.jit.script def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype): input_dtype = x.dtype x = x.to(softmax_dtype) * scale x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) return x @torch.jit.script def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor): x = torch.where(mask, x, mask_value) x = torch.nn.functional.softmax(x, dim=-1) return x def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, head_mask: Optional[torch.Tensor] = None, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) if head_mask is not None: attn_weights = attn_weights * head_mask.view(1, -1, 1, 1) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class GPTBigCodeAttention(nn.Module): def __init__(self, config, is_cross_attention=False, layer_idx=None): super().__init__() self.config = config self.mask_value = None self.multi_query = config.multi_query self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.kv_heads = 1 if self.multi_query else self.num_heads self.kv_dim = self.kv_heads * self.head_dim self.num_key_value_groups = self.num_heads // self.kv_heads self.split_size = self.embed_dim self.is_causal = True if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale_attn_weights = config.scale_attn_weights self.scaling = self.head_dim**-0.5 if config.scale_attn_weights else 1.0 self.is_cross_attention = is_cross_attention self.layer_idx = layer_idx self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 self.scale_attention_softmax_in_fp32 = ( config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32 ) self.attn_pdrop = config.attn_pdrop if self.is_cross_attention: if self.multi_query: raise NotImplementedError("Multi-Query Attention not supported for cross_attention") self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim) self.q_attn = nn.Linear(self.embed_dim, self.embed_dim) else: self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim) self.c_proj = nn.Linear(self.embed_dim, self.embed_dim) self.attn_dropout = config.attn_pdrop self.resid_dropout = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: torch.Tensor, layer_past: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, cache_position: Optional[torch.Tensor] = None, **kwargs, ) -> Union[ tuple[torch.Tensor, Optional[torch.Tensor]], tuple[torch.Tensor, Optional[torch.Tensor], tuple[torch.Tensor, ...]], ]: input_shape = hidden_states.shape[:-1] if layer_past is not None: if isinstance(layer_past, EncoderDecoderCache): is_updated = layer_past.is_updated.get(self.layer_idx) if self.is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache curr_past_key_value = layer_past.cross_attention_cache else: curr_past_key_value = layer_past.self_attention_cache else: curr_past_key_value = layer_past if self.is_cross_attention: if not hasattr(self, "q_attn") or not self.is_cross_attention: raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`." ) if layer_past is not None and is_updated: # reuse k,v, cross_attentions key = curr_past_key_value.layers[self.layer_idx].keys value = curr_past_key_value.layers[self.layer_idx].values else: query = self.q_attn(hidden_states).view(*input_shape, -1, self.head_dim).transpose(1, 2) key, value = self.c_attn(encoder_hidden_states).split((self.head_dim, self.head_dim), dim=-1) else: if self.multi_query: query, key, value = ( self.c_attn(hidden_states).unsqueeze(1).split((self.embed_dim, self.kv_dim, self.kv_dim), dim=3) ) query = query.view(*input_shape, -1, self.head_dim).transpose(1, 2) else: query, key, value = ( self.c_attn(hidden_states) .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) .transpose(1, 2) .split(3 * [self.head_dim], dim=3) ) if layer_past is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not self.is_cross_attention else None key, value = curr_past_key_value.update(key, value, self.layer_idx, {"cache_position": cache_position}) # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls if self.is_cross_attention: layer_past.is_updated[self.layer_idx] = True attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query, key, value, attention_mask, dropout=0.0 if not self.training else self.attn_dropout, scaling=self.scaling, head_mask=head_mask, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) return attn_output, attn_weights class GPTBigCodeMLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, intermediate_size) self.c_proj = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward def forward(self, hidden_states: Optional[tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class GPTBigCodeBlock(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() hidden_size = config.hidden_size self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPTBigCodeAttention(config, layer_idx=layer_idx) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: if config.multi_query: raise NotImplementedError("Cross-attention not implemented for MQA") self.crossattention = GPTBigCodeAttention(config, is_cross_attention=True, layer_idx=layer_idx) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPTBigCodeMLP(self.inner_dim, config) def forward( self, hidden_states: Optional[tuple[torch.Tensor]], layer_past: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, cache_position: Optional[torch.Tensor] = None, **kwargs, ) -> Union[ tuple[torch.Tensor], tuple[torch.Tensor, torch.Tensor], tuple[torch.Tensor, torch.Tensor, torch.Tensor] ]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, **kwargs, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual if encoder_hidden_states is not None: # add one self-attention block for cross-attention if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " "cross-attention layers by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.ln_cross_attn(hidden_states) cross_attn_outputs = self.crossattention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, cache_position=cache_position, **kwargs, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = residual + attn_output outputs = outputs + cross_attn_outputs[1:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = residual + feed_forward_hidden_states return (hidden_states,) + outputs @auto_docstring class GPTBigCodePreTrainedModel(PreTrainedModel): config: GPTBigCodeConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["GPTBigCodeBlock"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)): # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py module.c_proj.weight.data.normal_( mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)) ) module.c_proj._is_hf_initialized = True elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @auto_docstring class GPTBigCodeModel(GPTBigCodePreTrainedModel): def __init__(self, config): super().__init__(config) self.multi_query = config.multi_query self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False ) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, ) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") if use_cache and past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config)) if use_cache and isinstance(past_key_values, tuple): logger.warning_once( "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. " "You should pass an instance of `EncoderDecoderCache` instead, e.g. " "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." ) past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, position_ids=position_ids, past_key_values=past_key_values, ) if self.config._attn_implementation == "flash_attention_2": encoder_attention_mask = ( encoder_attention_mask.bool() if (encoder_attention_mask is not None and 0 in encoder_attention_mask) else None ) else: # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if ( self.config.add_cross_attention and encoder_hidden_states is not None and encoder_attention_mask is not None ): if encoder_attention_mask.dim() == 2: encoder_attention_mask.unsqueeze(1) assert encoder_attention_mask.dim() == 3 encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, block in enumerate(self.h): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = block( hidden_states, past_key_values, causal_mask, head_mask[i], encoder_hidden_states, # as a positional argument for gradient checkpointing encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[2],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @auto_docstring( custom_intro=""" The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """ ) class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPTBigCodeModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, ) -> Union[tuple, CausalLMOutputWithCrossAttentions]: r""" input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = self.loss_function( lm_logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @auto_docstring( custom_intro=""" The GPTBigCode Model transformer with a sequence classification head on top (linear layer). [`GPTBigCodeForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """ ) class GPTBigCodeForSequenceClassification(GPTBigCodePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTBigCodeModel(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[tuple, SequenceClassifierOutputWithPast]: r""" input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @auto_docstring class GPTBigCodeForTokenClassification(GPTBigCodePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTBigCodeModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, TokenClassifierOutput]: r""" input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1).to(logits.device)) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = [ "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ]