# coding=utf-8 # Copyright 2024 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Kosmos2_5. """ from typing import Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack from ...tokenization_utils_base import TextInput from ...utils import is_torch_available if is_torch_available(): import torch class Kosmos2_5ImagesKwargs(ImagesKwargs, total=False): max_patches: Optional[int] num_image_tokens: Optional[int] class Kosmos2_5ProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: TextKwargs images_kwargs: Kosmos2_5ImagesKwargs _defaults = { "text_kwargs": { "padding": True, "return_token_type_ids": False, "stride": 0, "truncation": True, }, "images_kwargs": { "max_patches": 4096, "num_image_tokens": 2048, }, "common_kwargs": {"return_tensors": "pt"}, } class Kosmos2_5Processor(ProcessorMixin): r""" Constructs a Kosmos2_5 processor which wraps a PreTrainedTokenizerFast and Kosmos2_5 image processor into a single processor. [`Kosmos2_5Processor`] offers all the functionalities of [`Kosmos2_5ImageProcessor`] and [`PreTrainedTokenizerFast`]. See the docstring of [`~Kosmos2_5Processor.__call__`] and [`~Kosmos2_5Processor.decode`] for more information. Args: image_processor (`Kosmos2_5ImageProcessor`): An instance of [`Kosmos2_5ImageProcessor`]. The image processor is a required input. tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]): An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "PreTrainedTokenizerFast" def __init__(self, image_processor, tokenizer): self.image_start_token = tokenizer.boi_token # "" : fixed token for the start of image self.image_end_token = tokenizer.eoi_token # "" : fixed token for the end of image self.image_token = tokenizer.image_token # "" : within a ... pair, these tokens indicate they are positions reserved for an image super().__init__(image_processor, tokenizer) def __call__( self, images: Optional[ImageInput] = None, text: Union[TextInput, list[TextInput]] = None, audio=None, videos=None, **kwargs: Unpack[Kosmos2_5ProcessorKwargs], ) -> BatchFeature: """ This method uses [`Kosmos2_5ImageProcessor.preprocess`] method to prepare image(s) for the model, and [`PreTrainedTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. The rest of this documentation shows the arguments specific to `Kosmos2_5Processor`. """ if images is None and text is None: raise ValueError("You have to specify either images or text.") if images is None: raise ValueError("Kosmos2_5Processor requires images to be passed.") output_kwargs = self._merge_kwargs( Kosmos2_5ProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) num_image_tokens = output_kwargs["images_kwargs"].setdefault("num_image_tokens", None) encoding = BatchFeature() if images is not None: image_encoding = self.image_processor(images, **output_kwargs["images_kwargs"]) image_encoding.pop("rows") image_encoding.pop("cols") encoding.update(image_encoding) prompt = f"{self.tokenizer.bos_token}{self.image_start_token}{self.image_token * num_image_tokens}{self.image_end_token}" if text is not None: if isinstance(text, str): text = [prompt + text] else: text = [prompt + t for t in text] input = self.tokenizer(text, **output_kwargs["text_kwargs"]) batch_size, seq_len = input.input_ids.shape image_embeds_position_mask = [0, -1] + [1] * num_image_tokens + [-1] image_embeds_position_mask += [0] * (seq_len - len(image_embeds_position_mask)) image_embeds_position_mask = ( torch.LongTensor(image_embeds_position_mask).unsqueeze(0).repeat(batch_size, 1) ) encoding.update( { "input_ids": input.input_ids, "attention_mask": input.attention_mask, "image_embeds_position_mask": image_embeds_position_mask, } ) return encoding def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["Kosmos2_5Processor"]