# coding=utf-8 # Copyright 2025 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Lfm2-VL model.""" from typing import Optional, Union import torch from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging from ..llava.modeling_llava import ( LlavaCausalLMOutputWithPast, LlavaForConditionalGeneration, LlavaModel, LlavaModelOutputWithPast, LlavaPreTrainedModel, ) from .configuration_lfm2_vl import Lfm2VlConfig logger = logging.get_logger(__name__) class Lfm2VlMultiModalProjector(nn.Module): def __init__(self, config: Lfm2VlConfig): super().__init__() in_channels = config.vision_config.hidden_size * (config.downsample_factor**2) self.factor = config.downsample_factor self.layer_norm = nn.LayerNorm(in_channels) self.linear_1 = nn.Linear( in_channels, config.projector_hidden_size, bias=config.projector_bias, ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear( config.projector_hidden_size, config.text_config.hidden_size, bias=config.projector_bias, ) def forward(self, image_features: torch.Tensor): image_features = self.pixel_unshuffle(image_features) image_features = self.layer_norm(image_features) hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states def pixel_unshuffle(self, hidden_states: torch.Tensor): batch_size, width, height, channels = hidden_states.size() hidden_states = hidden_states.reshape(batch_size, width, height // self.factor, channels * self.factor) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape( batch_size, height // self.factor, width // self.factor, channels * self.factor**2 ) hidden_states = hidden_states.permute(0, 2, 1, 3) return hidden_states class Lfm2VlPreTrainedModel(LlavaPreTrainedModel): _can_compile_fullgraph = False class Lfm2VlCausalLMOutputWithPast(LlavaCausalLMOutputWithPast): pass class Lfm2VlModelOutputWithPast(LlavaModelOutputWithPast): pass class Lfm2VlModel(LlavaModel): _checkpoint_conversion_mapping = {} def __init__(self, config: Lfm2VlConfig): super().__init__(config) def get_image_features( self, pixel_values: torch.FloatTensor, spatial_shapes: torch.Tensor, pixel_attention_mask: torch.Tensor, **kwargs, ) -> list[torch.Tensor]: """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`): The tensors corresponding to the input images. spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`): The spatial shapes of the input images. pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`): The pixel attention mask of the input images. Returns: image_features (`list[torch.Tensor]`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ image_outputs = self.vision_tower( pixel_values=pixel_values, spatial_shapes=spatial_shapes, pixel_attention_mask=pixel_attention_mask, ).last_hidden_state img_feature_lengths = pixel_attention_mask.sum(dim=1) image_features = [] for img_idx in range(image_outputs.size(0)): feature = image_outputs[img_idx] # unpad the image representation feature = feature[: img_feature_lengths[img_idx], :].unsqueeze(0) # reshape to original height and width feature_org_h, feature_org_w = spatial_shapes[img_idx] feature = feature.reshape(1, feature_org_h, feature_org_w, -1) # project the image representation img_embedding = self.multi_modal_projector(feature) # flatten here to handle variable length in naflex img_embedding = img_embedding.reshape(-1, img_embedding.size(-1)) image_features.append(img_embedding) return image_features def get_placeholder_mask( self, input_ids: torch.LongTensor, inputs_embeds: torch.FloatTensor, image_features: torch.FloatTensor ): """ Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is equal to the length of multimodal features. If the lengths are different, an error is raised. """ if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) special_image_mask = special_image_mask.all(-1) else: special_image_mask = input_ids == self.config.image_token_id n_image_tokens = special_image_mask.sum() special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) n_image_features = image_features.shape[0] if inputs_embeds[special_image_mask].numel() != image_features.numel(): raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) return special_image_mask @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, spatial_shapes: Optional[torch.Tensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, Lfm2VlModelOutputWithPast]: r""" spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*): The spatial shapes of the input images. pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*): The pixel attention mask of the input images. """ if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features = self.get_image_features( pixel_values=pixel_values, spatial_shapes=spatial_shapes, pixel_attention_mask=pixel_attention_mask, ) image_features = torch.cat(image_features, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) special_image_mask = self.get_placeholder_mask( input_ids=input_ids, inputs_embeds=inputs_embeds, image_features=image_features, ) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) return Lfm2VlModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) class Lfm2VlForConditionalGeneration(LlavaForConditionalGeneration): _checkpoint_conversion_mapping = {} def get_image_features( self, pixel_values: torch.FloatTensor, spatial_shapes: torch.Tensor, pixel_attention_mask: torch.Tensor, **kwargs, ): return self.model.get_image_features( pixel_values=pixel_values, spatial_shapes=spatial_shapes, pixel_attention_mask=pixel_attention_mask, **kwargs, ) @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, spatial_shapes: Optional[torch.Tensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, Lfm2VlCausalLMOutputWithPast]: r""" pixel_values (`torch.FloatTensor` of shape `(batch_size, channels, height, width)`, *optional*): The input image tensors. spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*): The spatial shapes of the input images. pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*): The pixel attention mask of the input images. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, AutoModelForImageTextToText >>> from transformers.image_utils import load_image >>> model = AutoModelForImageTextToText.from_pretrained( ... "LiquidAI/LFM2-VL-1.6B", ... ) >>> processor = AutoProcessor.from_pretrained( ... "LiquidAI/LFM2-VL-1.6B", ... ) >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = load_image(url) >>> conversation = [ ... { ... "role": "user", ... "content": [ ... {"type": "image", "image": image}, ... {"type": "text", "text": "What is in this image?"}, ... ], ... }, ... ] >>> inputs = processor.apply_chat_template( ... conversation, ... add_generation_prompt=True, ... tokenize=True, ... return_dict=True, ... return_tensors="pt" ... ) >>> # Generate >>> outputs = model.generate(**inputs, max_new_tokens=45) >>> processor.batch_decode(outputs, skip_special_tokens=True)[0] 'This image depicts a vibrant street scene in what appears to be a Chinatown or similar cultural area. The focal point is a large red stop sign with white lettering, mounted on a pole.' ```""" outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, spatial_shapes=spatial_shapes, pixel_attention_mask=pixel_attention_mask, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function( logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs, ) return Lfm2VlCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) __all__ = ["Lfm2VlForConditionalGeneration", "Lfm2VlPreTrainedModel", "Lfm2VlModel"]