# coding=utf-8 # Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Longformer configuration""" from collections import OrderedDict from collections.abc import Mapping from typing import TYPE_CHECKING, Any, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase logger = logging.get_logger(__name__) class LongformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LongformerModel`] or a [`TFLongformerModel`]. It is used to instantiate a Longformer model according to the specified arguments, defining the model architecture. This is the configuration class to store the configuration of a [`LongformerModel`]. It is used to instantiate an Longformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LongFormer [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) architecture with a sequence length 4,096. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Longformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LongformerModel`] or [`TFLongformerModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`LongformerModel`] or [`TFLongformerModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. attention_window (`int` or `list[int]`, *optional*, defaults to 512): Size of an attention window around each token. If an `int`, use the same size for all layers. To specify a different window size for each layer, use a `list[int]` where `len(attention_window) == num_hidden_layers`. Example: ```python >>> from transformers import LongformerConfig, LongformerModel >>> # Initializing a Longformer configuration >>> configuration = LongformerConfig() >>> # Initializing a model from the configuration >>> model = LongformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "longformer" def __init__( self, attention_window: Union[list[int], int] = 512, sep_token_id: int = 2, pad_token_id: int = 1, bos_token_id: int = 0, eos_token_id: int = 2, vocab_size: int = 30522, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 512, type_vocab_size: int = 2, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, onnx_export: bool = False, **kwargs, ): """Constructs LongformerConfig.""" super().__init__(pad_token_id=pad_token_id, **kwargs) self.attention_window = attention_window self.sep_token_id = sep_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.onnx_export = onnx_export class LongformerOnnxConfig(OnnxConfig): def __init__( self, config: "PretrainedConfig", task: str = "default", patching_specs: "Optional[list[PatchingSpec]]" = None ): super().__init__(config, task, patching_specs) config.onnx_export = True @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: outputs = super().outputs if self.task == "default": outputs["pooler_output"] = {0: "batch"} return outputs @property def atol_for_validation(self) -> float: """ What absolute tolerance value to use during model conversion validation. Returns: Float absolute tolerance value. """ return 1e-4 @property def default_onnx_opset(self) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset, 14) def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizerBase", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: inputs = super().generate_dummy_inputs( preprocessor=tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly inputs["global_attention_mask"] = torch.zeros_like(inputs["input_ids"]) # make every second token global inputs["global_attention_mask"][:, ::2] = 1 return inputs __all__ = ["LongformerConfig", "LongformerOnnxConfig"]