# coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MobileNetV1 model.""" from typing import Optional, Union import torch from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import auto_docstring, logging from .configuration_mobilenet_v1 import MobileNetV1Config logger = logging.get_logger(__name__) def _build_tf_to_pytorch_map(model, config, tf_weights=None): """ A map of modules from TF to PyTorch. """ tf_to_pt_map = {} if isinstance(model, MobileNetV1ForImageClassification): backbone = model.mobilenet_v1 else: backbone = model prefix = "MobilenetV1/Conv2d_0/" tf_to_pt_map[prefix + "weights"] = backbone.conv_stem.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = backbone.conv_stem.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = backbone.conv_stem.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.normalization.running_var for i in range(13): tf_index = i + 1 pt_index = i * 2 pointer = backbone.layer[pt_index] prefix = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" tf_to_pt_map[prefix + "depthwise_weights"] = pointer.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var pointer = backbone.layer[pt_index + 1] prefix = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" tf_to_pt_map[prefix + "weights"] = pointer.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var if isinstance(model, MobileNetV1ForImageClassification): prefix = "MobilenetV1/Logits/Conv2d_1c_1x1/" tf_to_pt_map[prefix + "weights"] = model.classifier.weight tf_to_pt_map[prefix + "biases"] = model.classifier.bias return tf_to_pt_map def load_tf_weights_in_mobilenet_v1(model, config, tf_checkpoint_path): """Load TensorFlow checkpoints in a PyTorch model.""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model init_vars = tf.train.list_variables(tf_checkpoint_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_checkpoint_path, name) tf_weights[name] = array # Build TF to PyTorch weights loading map tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}") if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping") continue array = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise") array = np.transpose(array, (2, 3, 0, 1)) elif "weights" in name: logger.info("Transposing") if len(pointer.shape) == 2: # copying into linear layer array = array.squeeze().transpose() else: array = np.transpose(array, (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") logger.info(f"Initialize PyTorch weight {name} {array.shape}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/RMSProp", None) tf_weights.pop(name + "/RMSProp_1", None) tf_weights.pop(name + "/ExponentialMovingAverage", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor: """ Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at: https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2 """ in_height, in_width = features.shape[-2:] stride_height, stride_width = conv_layer.stride kernel_height, kernel_width = conv_layer.kernel_size if in_height % stride_height == 0: pad_along_height = max(kernel_height - stride_height, 0) else: pad_along_height = max(kernel_height - (in_height % stride_height), 0) if in_width % stride_width == 0: pad_along_width = max(kernel_width - stride_width, 0) else: pad_along_width = max(kernel_width - (in_width % stride_width), 0) pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top padding = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(features, padding, "constant", 0.0) class MobileNetV1ConvLayer(nn.Module): def __init__( self, config: MobileNetV1Config, in_channels: int, out_channels: int, kernel_size: int, stride: Optional[int] = 1, groups: Optional[int] = 1, bias: bool = False, use_normalization: Optional[bool] = True, use_activation: Optional[Union[bool, str]] = True, ) -> None: super().__init__() self.config = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=config.layer_norm_eps, momentum=0.9997, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: if self.config.tf_padding: features = apply_tf_padding(features, self.convolution) features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features @auto_docstring class MobileNetV1PreTrainedModel(PreTrainedModel): config: MobileNetV1Config load_tf_weights = load_tf_weights_in_mobilenet_v1 base_model_prefix = "mobilenet_v1" main_input_name = "pixel_values" supports_gradient_checkpointing = False _no_split_modules = [] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.bias.data.zero_() module.weight.data.fill_(1.0) @auto_docstring class MobileNetV1Model(MobileNetV1PreTrainedModel): def __init__(self, config: MobileNetV1Config, add_pooling_layer: bool = True): r""" add_pooling_layer (bool, *optional*, defaults to `True`): Whether to add a pooling layer """ super().__init__(config) self.config = config depth = 32 out_channels = max(int(depth * config.depth_multiplier), config.min_depth) self.conv_stem = MobileNetV1ConvLayer( config, in_channels=config.num_channels, out_channels=out_channels, kernel_size=3, stride=2, ) strides = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] self.layer = nn.ModuleList() for i in range(13): in_channels = out_channels if strides[i] == 2 or i == 0: depth *= 2 out_channels = max(int(depth * config.depth_multiplier), config.min_depth) self.layer.append( MobileNetV1ConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=strides[i], groups=in_channels, ) ) self.layer.append( MobileNetV1ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, ) ) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): raise NotImplementedError @auto_docstring def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.conv_stem(pixel_values) all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) last_hidden_state = hidden_states if self.pooler is not None: pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1) else: pooled_output = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=all_hidden_states, ) @auto_docstring( custom_intro=""" MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ) class MobileNetV1ForImageClassification(MobileNetV1PreTrainedModel): def __init__(self, config: MobileNetV1Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilenet_v1 = MobileNetV1Model(config) last_hidden_size = self.mobilenet_v1.layer[-1].convolution.out_channels # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilenet_v1(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: loss = self.loss_function(labels, logits, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) __all__ = [ "MobileNetV1ForImageClassification", "MobileNetV1Model", "MobileNetV1PreTrainedModel", "load_tf_weights_in_mobilenet_v1", ]