# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/modernbert_decoder/modular_modernbert_decoder.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_modernbert_decoder.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Copyright 2025 Johns Hopkins University, LightOn, and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from collections.abc import Callable from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging from ...utils.deprecation import deprecate_kwarg from ...utils.generic import check_model_inputs from .configuration_modernbert_decoder import ModernBertDecoderConfig logger = logging.get_logger(__name__) class ModernBertDecoderEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config: ModernBertDecoderConfig): super().__init__() self.config = config self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) self.drop = nn.Dropout(config.embedding_dropout) @torch.compile(dynamic=True) def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor: return self.drop(self.norm(self.tok_embeddings(input_ids))) def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None ) -> torch.Tensor: if inputs_embeds is not None: hidden_states = self.drop(self.norm(inputs_embeds)) else: hidden_states = ( self.compiled_embeddings(input_ids) if self.config.reference_compile else self.drop(self.norm(self.tok_embeddings(input_ids))) ) return hidden_states class ModernBertDecoderMLP(nn.Module): """Applies the GLU at the end of each ModernBertDecoder layer. Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate` and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality. """ def __init__(self, config: ModernBertDecoderConfig): super().__init__() self.config = config self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_bias) self.act = ACT2FN[config.hidden_activation] self.drop = nn.Dropout(config.mlp_dropout) self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: input, gate = self.Wi(hidden_states).chunk(2, dim=-1) return self.Wo(self.drop(self.act(input) * gate)) class ModernBertDecoderRotaryEmbedding(nn.Module): inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, config: ModernBertDecoderConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def eager_attention_forward( module: "ModernBertDecoderAttention", query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, sliding_window: Optional[int] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: """A simple eager attention implementation for ModernBERT decoder.""" if scaling is None: scaling = module.head_dim**-0.5 # Compute attention scores attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling # Use the pre-computed attention mask causal_mask = attention_mask[:, :, :, : key.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class ModernBertDecoderAttention(nn.Module): """Performs causal multi-headed self attention for ModernBERT decoder. It supports both local attention (sliding window) and global attention patterns. """ def __init__(self, config: ModernBertDecoderConfig, layer_idx: Optional[int] = None): super().__init__() self.is_sliding = config.layer_types[layer_idx] == "sliding_attention" self.config = config self.layer_idx = layer_idx self.head_dim = config.hidden_size // config.num_attention_heads self.num_heads = config.num_attention_heads self.all_head_size = self.head_dim * self.num_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = self.config.attention_dropout self.is_causal = True if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})" ) # NOTE: this is different than ModernBERT (separated QKV) so be sure to adapt to this self.q_proj = nn.Linear(self.config.hidden_size, self.all_head_size, bias=self.config.attention_bias) self.k_proj = nn.Linear(self.config.hidden_size, self.all_head_size, bias=self.config.attention_bias) self.v_proj = nn.Linear(self.config.hidden_size, self.all_head_size, bias=self.config.attention_bias) self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias) self.out_drop = nn.Dropout(config.attention_dropout) self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, position_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor], past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=self.attention_dropout if self.training else 0.0, scaling=self.scaling, sliding_window=self.sliding_window, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.out_drop(self.Wo(attn_output)) return attn_output, attn_weights class ModernBertDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: ModernBertDecoderConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_type = config.layer_types[layer_idx] self.attn_norm = ( nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) if layer_idx != 0 else nn.Identity() ) self.attn = ModernBertDecoderAttention(config=config, layer_idx=layer_idx) self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) self.mlp = ModernBertDecoderMLP(config) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, position_embeddings_global: torch.Tensor, position_embeddings_local: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.attn_norm(hidden_states) # apply global RoPE to non-sliding layer only if self.attn.is_sliding: position_embeddings = position_embeddings_local else: position_embeddings = position_embeddings_global # Self Attention attn_outputs = self.attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) hidden_states = attn_outputs[0] # Add residual connection hidden_states = residual + hidden_states # MLP residual = hidden_states hidden_states = self.mlp_norm(hidden_states) mlp_output = self.mlp(hidden_states) hidden_states = residual + mlp_output return hidden_states class ModernBertDecoderPredictionHead(nn.Module): def __init__(self, config: ModernBertDecoderConfig): super().__init__() self.config = config self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias) self.act = ACT2FN[config.classifier_activation] self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.norm(self.act(self.dense(hidden_states))) @auto_docstring class ModernBertDecoderPreTrainedModel(PreTrainedModel): config: ModernBertDecoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["ModernBertDecoderLayer"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _skip_keys_device_placement = ["past_key_values"] _supports_attention_backend = True _can_record_outputs = { "hidden_states": ModernBertDecoderLayer, "attentions": ModernBertDecoderAttention, } def _init_weights(self, module: nn.Module): cutoff_factor = self.config.initializer_cutoff_factor if cutoff_factor is None: cutoff_factor = 3 def init_weight(module: nn.Module, std: float): nn.init.trunc_normal_( module.weight, mean=0.0, std=std, a=-cutoff_factor * std, b=cutoff_factor * std, ) if isinstance(module, nn.Linear): if module.bias is not None: nn.init.zeros_(module.bias) stds = { "in": self.config.initializer_range, "out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers), "embedding": self.config.initializer_range, "final_out": self.config.hidden_size**-0.5, } if isinstance(module, ModernBertDecoderEmbeddings): init_weight(module.tok_embeddings, stds["embedding"]) elif isinstance(module, ModernBertDecoderMLP): init_weight(module.Wi, stds["in"]) init_weight(module.Wo, stds["out"]) elif isinstance(module, ModernBertDecoderAttention): init_weight(module.q_proj, stds["in"]) init_weight(module.k_proj, stds["in"]) init_weight(module.v_proj, stds["in"]) init_weight(module.Wo, stds["out"]) elif isinstance(module, ModernBertDecoderPredictionHead): init_weight(module.dense, stds["out"]) elif isinstance(module, ModernBertDecoderForSequenceClassification): init_weight(module.classifier, stds["final_out"]) elif isinstance(module, ModernBertDecoderForCausalLM): init_weight(module.decoder, stds["out"]) elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) if module.bias is not None: module.bias.data.zero_() @auto_docstring class ModernBertDecoderModel(ModernBertDecoderPreTrainedModel): def __init__(self, config: ModernBertDecoderConfig): super().__init__(config) self.config = config self.embeddings = ModernBertDecoderEmbeddings(config) self.layers = nn.ModuleList( [ModernBertDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) self.gradient_checkpointing = False self.global_rotary_emb = ModernBertDecoderRotaryEmbedding(config=config) self.local_rotary_emb = ModernBertDecoderRotaryEmbedding(config=config) self.post_init() def get_input_embeddings(self): return self.embeddings.tok_embeddings def set_input_embeddings(self, value): self.embeddings.tok_embeddings = value @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[tuple[torch.Tensor, ...], BaseModelOutputWithPast]: if (input_ids is None) == (inputs_embeds is None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) batch_size, seq_length = input_ids.shape[:2] else: batch_size, seq_length = inputs_embeds.shape[:2] # Handle past_key_values and cache setup if use_cache and past_key_values is None and not self.training: past_key_values = DynamicCache(config=self.config) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + seq_length, device=input_ids.device if input_ids is not None else inputs_embeds.device, ) if position_ids is None: position_ids = cache_position.unsqueeze(0).expand(batch_size, -1) # Calculate embeddings hidden_states = self.embeddings(input_ids=input_ids, inputs_embeds=inputs_embeds) # It may already have been prepared by e.g. `generate` if not isinstance(causal_mask_mapping := attention_mask, dict): # Prepare mask arguments mask_kwargs = { "config": self.config, "input_embeds": hidden_states, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, "position_ids": position_ids, } causal_mask_mapping = { "full_attention": create_causal_mask(**mask_kwargs), "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs), } # create position embeddings to be shared across the decoder layers position_embeddings_global = self.global_rotary_emb(hidden_states, position_ids) position_embeddings_local = self.local_rotary_emb(hidden_states, position_ids) for idx, decoder_layer in enumerate(self.layers): hidden_states = decoder_layer( hidden_states, position_embeddings_global=position_embeddings_global, position_embeddings_local=position_embeddings_local, attention_mask=causal_mask_mapping[decoder_layer.attention_type], past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.final_norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) @auto_docstring( custom_intro=""" The ModernBert Decoder Model with a language modeling head on top for causal language modeling (CLM). """ ) class ModernBertDecoderForCausalLM(ModernBertDecoderPreTrainedModel, GenerationMixin): _tied_weights_keys = ["decoder.weight"] def __init__(self, config: ModernBertDecoderConfig): super().__init__(config) self.config = config self.model = ModernBertDecoderModel(config) self.lm_head = ModernBertDecoderPredictionHead(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, new_embeddings): self.decoder = new_embeddings @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, **kwargs, ) -> Union[tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: [`~modeling_outputs.CausalLMOutputWithPast`] comprising various elements depending on the configuration and inputs. Example: ```python >>> from transformers import AutoTokenizer, ModernBertDecoderForCausalLM >>> model = ModernBertDecoderForCausalLM.from_pretrained("blab-jhu/test-32m-dec") >>> tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec") >>> prompt = "The capital of France is" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=1) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "The capital of France is Paris" ``` """ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, **kwargs, ) hidden_states = outputs[0] logits = self.decoder(self.lm_head(hidden_states)) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @auto_docstring( custom_intro=""" The ModernBert Decoder Model with a sequence classification head on top (linear layer). [`ModernBertDecoderForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1, GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """ ) class ModernBertDecoderForSequenceClassification(ModernBertDecoderPreTrainedModel): def __init__(self, config: ModernBertDecoderConfig): super().__init__(config) self.num_labels = config.num_labels self.model = ModernBertDecoderModel(config) self.head = ModernBertDecoderPredictionHead(config) self.classifier = nn.Linear(config.hidden_size, config.num_labels, bias=config.classifier_bias) self.drop = torch.nn.Dropout(config.classifier_dropout) # Initialize weights and apply final processing self.post_init() @can_return_tuple @auto_docstring(checkpoint="blab-jhu/test-32m-dec") def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, **kwargs, ) -> Union[tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, **kwargs, ) hidden_states = transformer_outputs[0] hidden_states = self.drop(self.head(hidden_states)) logits = self.classifier(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = [ "ModernBertDecoderModel", "ModernBertDecoderPreTrainedModel", "ModernBertDecoderForCausalLM", "ModernBertDecoderForSequenceClassification", ]