# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional, Union import torch from torch import nn from ...cache_utils import Cache from ...generation import GenerationMixin from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple from ..aimv2.modeling_aimv2 import Aimv2Attention, Aimv2EncoderLayer from ..auto import AutoModel from ..llama.modeling_llama import LlamaMLP, LlamaRMSNorm from ..llava.modeling_llava import LlavaForConditionalGeneration, LlavaModel from ..llava_next.modeling_llava_next import LlavaNextCausalLMOutputWithPast, LlavaNextModelOutputWithPast from ..siglip.modeling_siglip import SiglipEncoder, SiglipVisionEmbeddings from .configuration_ovis2 import Ovis2Config, Ovis2VisionConfig def hard_softmax(logits: torch.Tensor, dim: int): y_soft = logits.softmax(dim) # Straight through. index = y_soft.max(dim, keepdim=True)[1] y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) ret = y_hard - y_soft.detach() + y_soft return ret class Ovis2ModelOutputWithPast(LlavaNextModelOutputWithPast): pass class Ovis2CausalLMOutputWithPast(LlavaNextCausalLMOutputWithPast): pass class Ovis2RMSNorm(LlamaRMSNorm): pass class Ovis2VisionMLP(LlamaMLP): pass class Ovis2VisionEmbeddings(SiglipVisionEmbeddings): def __init__(self, config: Ovis2VisionConfig): super().__init__(config) self.rms_norm = Ovis2RMSNorm(config.hidden_size, config.rms_norm_eps) def interpolate_pos_encoding(self): raise NotImplementedError("Not needed for Ovis2") def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) embeddings = patch_embeds.flatten(2).transpose(1, 2) embeddings = self.rms_norm(embeddings) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class Ovis2VisionAttention(Aimv2Attention): pass class Ovis2VisionEncoderLayer(Aimv2EncoderLayer): pass class Ovis2VisionEncoder(SiglipEncoder): def __init__(self, config: Ovis2VisionConfig): super().__init__(config) self.layers = nn.ModuleList([Ovis2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) @can_return_tuple @auto_docstring def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutput: hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states = encoder_layer(hidden_states, attention_mask, **kwargs) return BaseModelOutput(last_hidden_state=hidden_states) class Ovis2VisionTransformer(nn.Module): def __init__(self, config: Ovis2VisionConfig): super().__init__() self.config = config self.embeddings = Ovis2VisionEmbeddings(config) self.encoder = Ovis2VisionEncoder(config) self.rms_norm = Ovis2RMSNorm(config.hidden_size, config.rms_norm_eps) self.gradient_checkpointing = False @can_return_tuple def forward( self, pixel_values, attention_mask: Optional[torch.Tensor] = None, **kwargs, ): hidden_states = self.embeddings(pixel_values) encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, **kwargs, ) last_hidden_state = encoder_outputs.last_hidden_state last_hidden_state = self.rms_norm(last_hidden_state) return BaseModelOutput(last_hidden_state=last_hidden_state) class Ovis2VisualEmbeddingTable(nn.Embedding): def forward(self, visual_tokens: torch.Tensor) -> torch.Tensor: if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]: return super().forward(visual_tokens) return torch.matmul(visual_tokens, self.weight) class Ovis2PreTrainedModel(PreTrainedModel): config: Ovis2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Ovis2VisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_flash_attn = True _supports_flex_attn = True _supports_sdpa = True _can_compile_fullgraph = True _supports_attention_backend = True class Ovis2VisionModel(Ovis2PreTrainedModel): config: Ovis2VisionConfig def __init__(self, config: Ovis2VisionConfig): super().__init__(config) self.config = config self.transformer = Ovis2VisionTransformer(config) self.num_visual_indicator_tokens = config.num_visual_indicator_tokens self.vocab_size = config.vocab_size self.head_linear = nn.Linear( config.hidden_size * config.hidden_stride * config.hidden_stride, self.vocab_size - self.num_visual_indicator_tokens, bias=False, ) self.head_norm = nn.LayerNorm(self.vocab_size - self.num_visual_indicator_tokens) def forward(self, pixel_values: torch.FloatTensor, **kwargs) -> tuple[torch.Tensor, torch.Tensor]: outputs = self.transformer(pixel_values, **kwargs) last_hidden_state = outputs[0] if self.config.hidden_stride > 1: num_images, seq_len, hidden_dim = last_hidden_state.shape hidden_stride = self.config.hidden_stride sqrt_l = int(math.sqrt(seq_len)) if sqrt_l * sqrt_l != seq_len: raise ValueError("Token sequence length must be a perfect square") pad_size = (hidden_stride - (sqrt_l % hidden_stride)) % hidden_stride last_hidden_state = nn.functional.pad(last_hidden_state, (0, 0, 0, pad_size, 0, pad_size), "constant", 0) sqrt_l += pad_size last_hidden_state = last_hidden_state.reshape( num_images, sqrt_l // hidden_stride, hidden_stride, sqrt_l // hidden_stride, hidden_stride, hidden_dim ) last_hidden_state = last_hidden_state.permute(0, 1, 3, 2, 4, 5) last_hidden_state = last_hidden_state.reshape( num_images, -1, hidden_stride * hidden_stride * hidden_dim ) # (n, (sqrt_l//hs)^2, hs^2*d) logits = self.head_linear(last_hidden_state) logits = self.head_norm(logits) if self.config.tokenize_function == "gumbel_argmax": prob_token = nn.functional.gumbel_softmax(logits, dim=-1, hard=True) elif self.config.tokenize_function == "st_argmax": prob_token = hard_softmax(logits, dim=-1) elif self.config.tokenize_function == "softmax": prob_token = nn.functional.softmax(logits, dim=-1) return prob_token class Ovis2Model(LlavaModel): _checkpoint_conversion_mapping = {} def __init__(self, config: Ovis2Config): super().__init__(config) self.vision_tower = Ovis2VisionModel(config.vision_config) self.visual_embeddings_table = Ovis2VisualEmbeddingTable(config.vision_config.vocab_size, config.hidden_size) self.visual_vocab_size = config.vision_config.vocab_size self.vocab_size = config.vocab_size self.visual_indicator_token_ids = config.visual_indicator_token_ids self.language_model = AutoModel.from_config(config.text_config) del self.multi_modal_projector def get_image_features( self, pixel_values: torch.FloatTensor, ) -> torch.FloatTensor: image_features = self.vision_tower(pixel_values) batch_size, img_seq_len, _ = image_features.shape padding_tensor = torch.zeros( (batch_size, img_seq_len, self.vision_tower.num_visual_indicator_tokens), dtype=image_features.dtype, device=image_features.device, requires_grad=False, layout=image_features.layout, ) image_features = torch.cat([image_features, padding_tensor], dim=2) image_features = self.visual_embeddings_table(image_features) visual_indicator = torch.arange( self.visual_vocab_size - self.vision_tower.num_visual_indicator_tokens, self.visual_vocab_size, dtype=torch.long, ).to(image_features.device) visual_indicator_features = self.visual_embeddings_table(visual_indicator) return image_features, visual_indicator_features @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> Union[tuple, Ovis2ModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features, visual_indicator_features = self.get_image_features(pixel_values=pixel_values) special_image_mask = self.get_placeholder_mask( input_ids, inputs_embeds=inputs_embeds, image_features=image_features, ) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) for i, visual_indicator_id in enumerate(self.visual_indicator_token_ids): if input_ids is None: mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(visual_indicator_id, dtype=torch.long, device=inputs_embeds.device) ) mask = mask.all(-1) else: mask = (input_ids == visual_indicator_id).to(inputs_embeds.device) if mask.any(): inputs_embeds[mask] = ( visual_indicator_features[i] .expand_as(inputs_embeds[mask]) .to(inputs_embeds.device, inputs_embeds.dtype) ) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) return Ovis2ModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) @auto_docstring class Ovis2ForConditionalGeneration(LlavaForConditionalGeneration, GenerationMixin): _checkpoint_conversion_mapping = {} def __init__(self, config: Ovis2Config): super().__init__(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) @property def multi_modal_projector(self): raise AttributeError("Not needed for Ovis2") def get_image_features(self, pixel_values: torch.FloatTensor): return self.model.get_image_features(pixel_values=pixel_values) @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> Union[tuple, Ovis2CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Ovis2ForConditionalGeneration >>> model = Ovis2ForConditionalGeneration.from_pretrained("thisisiron/Ovis2-2B-hf") >>> processor = AutoProcessor.from_pretrained("thisisiron/Ovis2-2B-hf") >>> prompt = "<|im_start|>user\n\nDescribe the image.<|im_end|>\n<|im_start|>assistant\n" >>> url = "http://images.cocodataset.org/val2014/COCO_val2014_000000537955.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_new_tokens=15) >>> processor.batch_decode(generate_ids, skip_special_tokens=True)[0] "user\n\nDescribe the image.\nassistant\nThe image features a brown dog standing on a wooden floor, looking up with" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function( logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs ) return Ovis2CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) __all__ = ["Ovis2PreTrainedModel", "Ovis2Model", "Ovis2ForConditionalGeneration"]