# coding=utf-8 # Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch PEGASUS-X model.""" import math from dataclasses import dataclass from typing import Callable, Optional, Union import numpy as np import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import ( AttentionMaskConverter, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa, ) from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import auto_docstring, is_torch_flex_attn_available, is_torchdynamo_compiling, logging from ...utils.deprecation import deprecate_kwarg from .configuration_pegasus_x import PegasusXConfig if is_torch_flex_attn_available(): from ...integrations.flex_attention import BlockMask, make_flex_block_causal_mask logger = logging.get_logger(__name__) @dataclass class DimensionInfo: """Wrapper for dimension info.""" batch_size: int # batch size seq_len: int # token length block_size: int # block size num_heads: int # num heads hidden_dim: int # hidden dim dim_per_head: int # dim per head num_blocks: int # num blocks global_len: int # global length padded_seq_len: int # padded token seq length # Note: Compared to the original Flax implementation, we will pad the token representations to # a multiple of block size at the start of the encoder layers, so T=P always. # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->PegasusX class PegasusXScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale class PegasusXSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, embed_dim, max_scale: int = 10000.0): super().__init__() self.embed_dim = embed_dim self.max_scale = max_scale @torch.no_grad() def forward( self, input_embeds: torch.Tensor, past_key_values_length: int = 0, position_ids: Optional[torch.Tensor] = None ) -> torch.Tensor: """`input_ids_shape` is expected to be [bsz x seqlen].""" batch_size, seq_len = input_embeds.shape[:2] if position_ids is None: position_ids = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=input_embeds.device )[:, None] pe = torch.zeros((seq_len, self.embed_dim), device=input_embeds.device, dtype=input_embeds.dtype) half_d_feature = self.embed_dim // 2 div_term = torch.exp( torch.arange(half_d_feature, device=input_embeds.device, dtype=torch.int64).type_as(input_embeds) * -(np.log(float(self.max_scale)) / (half_d_feature - 1)) ) pe[:, :half_d_feature] = torch.sin(position_ids * div_term) pe[:, half_d_feature:] = torch.cos(position_ids * div_term) return pe[None].expand(batch_size, -1, -1) # Copied from transformers.models.bart.modeling_bart.eager_attention_forward def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: Optional[float] = None, dropout: float = 0.0, head_mask: Optional[torch.Tensor] = None, **kwargs, ): if scaling is None: scaling = query.size(-1) ** -0.5 attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) if head_mask is not None: attn_weights = attn_weights * head_mask.view(1, -1, 1, 1) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PegasusX class PegasusXAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[PegasusXConfig] = None, layer_idx: Optional[int] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.layer_idx = layer_idx if layer_idx is None and self.is_decoder: logger.warning_once( f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " "will lead to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, cache_position: Optional[torch.Tensor] = None, # TODO: we need a refactor so that the different attention modules can get their specific kwargs # ATM, we have mixed things encoder, decoder, and encoder-decoder attn **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None # determine input shapes bsz, tgt_len = hidden_states.shape[:-1] src_len = key_value_states.shape[1] if is_cross_attention else tgt_len q_input_shape = (bsz, tgt_len, -1, self.head_dim) kv_input_shape = (bsz, src_len, -1, self.head_dim) # get query proj query_states = self.q_proj(hidden_states).view(*q_input_shape).transpose(1, 2) is_updated = False if past_key_values is not None: if isinstance(past_key_values, EncoderDecoderCache): is_updated = past_key_values.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache curr_past_key_value = past_key_values.cross_attention_cache else: curr_past_key_value = past_key_values.self_attention_cache else: curr_past_key_value = past_key_values current_states = key_value_states if is_cross_attention else hidden_states if is_cross_attention and past_key_values is not None and is_updated: # reuse k,v, cross_attentions key_states = curr_past_key_value.layers[self.layer_idx].keys value_states = curr_past_key_value.layers[self.layer_idx].values else: key_states = self.k_proj(current_states) value_states = self.v_proj(current_states) key_states = key_states.view(*kv_input_shape).transpose(1, 2) value_states = value_states.view(*kv_input_shape).transpose(1, 2) if past_key_values is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = curr_past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls if is_cross_attention and isinstance(past_key_values, EncoderDecoderCache): past_key_values.is_updated[self.layer_idx] = True attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.dropout, scaling=self.scaling, output_attentions=output_attentions, head_mask=layer_head_mask, **kwargs, ) attn_output = attn_output.reshape(bsz, tgt_len, -1).contiguous() attn_output = self.out_proj(attn_output) return attn_output, attn_weights class PegasusXGlobalLocalAttention(nn.Module): """Global + Local attention. For use with Encoder only.""" def __init__( self, embed_dim: int, num_heads: int, block_size: int, dropout: float = 0.0, is_decoder: bool = False, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.block_size = block_size self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, token_hidden_states: torch.Tensor, global_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" dim = DimensionInfo( batch_size=token_hidden_states.shape[0], seq_len=token_hidden_states.shape[1], block_size=self.block_size, num_heads=self.num_heads, hidden_dim=token_hidden_states.shape[2], dim_per_head=self.head_dim, num_blocks=token_hidden_states.shape[1] // self.block_size, global_len=global_hidden_states.shape[1], padded_seq_len=token_hidden_states.shape[1], ) # [batch_size, num_heads, padded_seq_len, dim_per_head] local_q = self._shape( self.q_proj(token_hidden_states) * self.scaling, seq_len=dim.padded_seq_len, bsz=dim.batch_size, ) local_k = self._shape( self.k_proj(token_hidden_states), seq_len=dim.padded_seq_len, bsz=dim.batch_size, ) local_v = self._shape( self.v_proj(token_hidden_states), seq_len=dim.padded_seq_len, bsz=dim.batch_size, ) # [batch_size, num_heads, global_len, dim_per_head] global_q = self._shape( self.q_proj(global_hidden_states) * self.scaling, seq_len=dim.global_len, bsz=dim.batch_size, ) global_k = self._shape( self.k_proj(global_hidden_states), seq_len=dim.global_len, bsz=dim.batch_size, ) global_v = self._shape( self.v_proj(global_hidden_states), seq_len=dim.global_len, bsz=dim.batch_size, ) global_attn_output, global_attn_probs = self.compute_global_attention_representations( global_q=global_q, global_k=global_k, global_v=global_v, local_k=local_k, local_v=local_v, mask=attention_mask, dim=dim, ) local_attn_output, local_attn_probs = self.compute_local_attention_representations( global_k=global_k, global_v=global_v, local_q=local_q, local_k=local_k, local_v=local_v, mask=attention_mask, dim=dim, ) # [batch_size, global_len, hidden_dim] global_attn_output = ( global_attn_output.transpose(1, 2).contiguous().view(dim.batch_size, dim.global_len, dim.hidden_dim) ) # [batch_size, global_len, hidden_dim] global_attn_output = self.out_proj(global_attn_output) # [batch_size, num_heads, block_size, num_heads, dim_per_head] local_attn_output = local_attn_output.permute(0, 2, 3, 1, 4).contiguous() # [batch_size, padded_seq_len, hidden_dim] local_attn_output = local_attn_output.view(dim.batch_size, dim.padded_seq_len, dim.hidden_dim) # [batch_size, padded_seq_len, hidden_dim] local_attn_output = self.out_proj(local_attn_output) if output_attentions: attn_probs = {"global": global_attn_probs, "local": local_attn_probs} else: attn_probs = None return local_attn_output, global_attn_output, attn_probs def compute_global_attention_representations( self, global_q, global_k, global_v, local_k, local_v, mask, dim: DimensionInfo ): """Compute attention representations for global tokens. Global tokens will attend to both global tokens as well as all input sequence tokens. Because the input sequence tokens are arranged in blocks for local attention, we unblock them and compute attention. Args: global_q (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: query vectors from global tokens global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: key vectors from global tokens global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: value vectors from global tokens local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: key vectors from local tokens local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: value vectors from local tokens mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask dim (DimensionInfo): DimensionInfo wrapper for dimensions Returns: output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size """ # [batch_size, num_heads, global_len+padded_seq_len, dim_per_head] global_and_local_k = torch.cat([global_k, local_k], dim=2) # [batch_size, num_heads, global_len+padded_seq_len, dim_per_head] global_and_local_v = torch.cat([global_v, local_v], dim=2) # [batch_size, global_len+padded_seq_len] extended_mask = nn.functional.pad(mask, pad=(dim.global_len, 0), value=0) # [batch_size, num_heads, global_len, global_len+padded_seq_len] attn_weights = torch.einsum("BHGF,BHXF->BHGX", global_q, global_and_local_k) attn_weights = attn_weights + extended_mask[:, None, None, :] attn_probs = nn.functional.softmax(attn_weights, dim=-1) attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) # [batch_size, num_heads, global_len, F] attn_output = torch.einsum("BHGX,BHXF->BHGF", attn_probs, global_and_local_v) return attn_output, attn_probs def compute_local_attention_representations( self, global_k, global_v, local_q, local_k, local_v, mask, dim: DimensionInfo ): """Compute attention representations for local tokens. Local tokens will attend to both global tokens as well as all other tokens within the same local block. Hence, we need to tile and concatenate the global tokens to every local block Args: global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: key vectors from global tokens global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: value vectors from global tokens local_q (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: query vectors from local tokens local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: key vectors from local tokens local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: value vectors from local tokens mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask dim (DimensionInfo): DimensionInfo wrapper for dimensions Returns: output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size """ # [batch_size, num_heads, num_blocks, block_size, dim_per_head] blocked_local_q = local_q.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] blocked_local_k = local_k.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] blocked_local_v = local_v.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) # [batch_size, num_blocks, global_len+block_size] extended_mask = nn.functional.pad( mask.view(dim.batch_size, dim.num_blocks, dim.block_size), pad=(dim.global_len, 0), value=0, ) # [batch_size, num_heads, num_blocks, block_size, global_len] blocked_local2global = torch.einsum("BHNKF,BHGF->BHNKG", blocked_local_q, global_k) # [batch_size, num_heads, num_blocks, block_size, block_size] blocked_local2local = torch.einsum("BHNKF,BHNXF->BHNKX", blocked_local_q, blocked_local_k) # [batch_size, num_heads, num_blocks, block_size, global_len+block_size] attn_weights = torch.cat([blocked_local2global, blocked_local2local], dim=-1) attn_weights = attn_weights + extended_mask[:, None, :, None, :] attn_probs = nn.functional.softmax(attn_weights, dim=-1) attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) # [batch_size, num_heads, num_blocks, block_size, global_len] local2global_attn_probs = attn_probs[:, :, :, :, : dim.global_len] # [batch_size, num_heads, num_blocks, block_size, block_size] local2local_attn_probs = attn_probs[:, :, :, :, dim.global_len :] # [batch_size, num_heads, num_blocks, block_size, dim_per_head] local2global_attn_output = torch.einsum("BHNKG,BHGF->BHNKF", local2global_attn_probs, global_v) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] local2local_attn_output = torch.einsum("BHNKX,BHNXF->BHNKF", local2local_attn_probs, blocked_local_v) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] attn_output = local2global_attn_output + local2local_attn_output return attn_output, attn_probs class PegasusXEncoderLayer(GradientCheckpointingLayer): def __init__(self, stagger_blocks_this_layer: bool, config: PegasusXConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = PegasusXGlobalLocalAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, block_size=config.block_size, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.global_self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) self.stagger_blocks_this_layer = stagger_blocks_this_layer self.block_size = config.block_size def forward( self, hidden_states: torch.Tensor, global_hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* global_hidden_states (`torch.FloatTensor`): global token hidden states *(seq_len, num_global_tokens, embed_dim)* attention_mask (`torch.FloatTensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states global_residual = global_hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) global_hidden_states = self.global_self_attn_layer_norm(global_hidden_states) if self.stagger_blocks_this_layer: # Pad the blocks to simulate staggering hidden_states, attention_mask = self.pad_local_tokens( hidden_states=hidden_states, attention_mask=attention_mask, block_size=self.block_size ) hidden_states, global_hidden_states, attn_weights = self.self_attn( token_hidden_states=hidden_states, global_hidden_states=global_hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) if self.stagger_blocks_this_layer: # Undo the padding hidden_states = self.unpad_local_tokens(padded_hidden_states=hidden_states, block_size=self.block_size) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) global_hidden_states = global_residual + global_hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states global_residual = global_hidden_states global_hidden_states = self.final_layer_norm(global_hidden_states) global_hidden_states = self.activation_fn(self.fc1(global_hidden_states)) global_hidden_states = nn.functional.dropout( global_hidden_states, p=self.activation_dropout, training=self.training ) global_hidden_states = self.fc2(global_hidden_states) global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) global_hidden_states = global_residual + global_hidden_states outputs = (hidden_states, global_hidden_states) if output_attentions: outputs += (attn_weights,) return outputs @classmethod def pad_local_tokens(cls, hidden_states, attention_mask, block_size): # hidden_states: [batch_size, seq_len, hidden_dim] pad_size = block_size // 2 mask_min_value = torch.finfo(hidden_states.dtype).min padded_hidden_states = torch.nn.functional.pad( hidden_states, pad=(0, 0, pad_size, pad_size), ) padded_mask = torch.nn.functional.pad( attention_mask, pad=(pad_size, pad_size), value=mask_min_value, ) return padded_hidden_states, padded_mask @classmethod def unpad_local_tokens(cls, padded_hidden_states, block_size): # padded_hidden_states: [batch_size, padded seq_len, hidden_dim] pad_size = block_size // 2 return padded_hidden_states[:, pad_size:-pad_size, :] class PegasusXDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: PegasusXConfig, layer_idx: Optional[int] = None): super().__init__() self.embed_dim = config.d_model self.self_attn = PegasusXAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, config=config, layer_idx=layer_idx, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = PegasusXAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, config=config, layer_idx=layer_idx, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, cache_position: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* attention_mask (`torch.FloatTensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape *(seq_len, batch, embed_dim)* encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. past_key_values (`Cache`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache: Whether to us KV cache for decoding cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache in the correct position and to infer the complete sequence length. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, past_key_values=past_key_values, attention_mask=attention_mask, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs @auto_docstring class PegasusXPreTrainedModel(PreTrainedModel): config: PegasusXConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = [r"PegasusXEncoderLayer", r"PegasusXDecoderLayer"] _supports_flash_attn = True # Flaky logits _supports_sdpa = False _supports_flex_attn = True _can_compile_fullgraph = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) module.bias.data.zero_() # Copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_full_mask def _update_full_mask( self, attention_mask: Union[torch.Tensor, None], inputs_embeds: torch.Tensor, ): if attention_mask is not None: if self.config._attn_implementation == "flash_attention_2": attention_mask = attention_mask if 0 in attention_mask else None elif self.config._attn_implementation == "sdpa": # output_attentions=True & head_mask can not be supported when using SDPA, fall back to # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) elif self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask, is_causal=False) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) return attention_mask # Copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_causal_mask def _update_causal_mask( self, attention_mask: Optional[Union[torch.Tensor, "BlockMask"]], input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, ): if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) # Other attention flavors support in-built causal (when `mask is None`) # while we need to create our specific block mask regardless elif attention_mask is None: attention_mask = make_flex_block_causal_mask( torch.ones( size=(input_tensor.shape[0], input_tensor.shape[1]), device=attention_mask.device, ) ) return attention_mask if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_compilable_cache: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype = input_tensor.dtype sequence_length = input_tensor.shape[1] if using_compilable_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.gptj.modeling_gptj.GPTJModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask # Copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_cross_attn_mask def _update_cross_attn_mask( self, encoder_hidden_states: Union[torch.Tensor, None], encoder_attention_mask: Union[torch.Tensor, None], input_shape: torch.Size, inputs_embeds: torch.Tensor, ): # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: if self.config._attn_implementation == "flash_attention_2": encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None elif self.config._attn_implementation == "sdpa": # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1], ) elif self.config._attn_implementation == "flex_attention": if isinstance(encoder_attention_mask, torch.Tensor): encoder_attention_mask = make_flex_block_causal_mask( encoder_attention_mask, query_length=input_shape[-1], is_causal=False, ) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) return encoder_attention_mask class PegasusXEncoder(PegasusXPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`PegasusXEncoderLayer`]. Args: config: PegasusXConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = PegasusXScaledWordEmbedding( config.vocab_size, embed_dim, padding_idx, embed_scale=embed_scale ) self.embed_global = nn.Embedding(config.num_global_tokens, embed_dim) self.embed_positions = PegasusXSinusoidalPositionalEmbedding(embed_dim) self.layers = nn.ModuleList( [ PegasusXEncoderLayer( stagger_blocks_this_layer=i % 2 == 1 and config.stagger_local_blocks, config=config ) for i in range(config.encoder_layers) ] ) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") self.config.max_position_embeddings = new_num_position_embeddings self.embed_positions = PegasusXSinusoidalPositionalEmbedding(self.config.d_model) self.embed_positions.to(self.device) def get_position_embeddings(self) -> nn.Embedding: """ Returns the position embeddings matrix """ return self.embed_positions def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) embed_pos = self.embed_positions(inputs_embeds) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) batch_size, seq_len, _ = hidden_states.shape # Setup mask if attention_mask is None: attention_mask = torch.ones(*input_shape, dtype=inputs_embeds.dtype, device=inputs_embeds.device) attention_mask = attention_mask.to(dtype=hidden_states.dtype) mask_min_value = torch.finfo(hidden_states.dtype).min inverted_mask = 1.0 - attention_mask attention_mask = inverted_mask.masked_fill( inverted_mask.to(torch.bool), mask_min_value, ) # padding to block_size if seq_len % self.config.block_size != 0: pad_len = self.config.block_size - seq_len % self.config.block_size hidden_states = nn.functional.pad(hidden_states, pad=(0, 0, 0, pad_len), value=0) attention_mask = nn.functional.pad(attention_mask, pad=(0, pad_len), value=mask_min_value) # Global tokens global_hidden_states = self.embed_global( torch.arange(self.config.num_global_tokens, device=hidden_states.device)[None].expand(batch_size, -1) ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://huggingface.co/papers/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, global_hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] global_hidden_states = layer_outputs[1] if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) # Undo padding-to-block-size hidden_states = hidden_states[:, :seq_len] hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + ((hidden_states, global_hidden_states),) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class PegasusXDecoder(PegasusXPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`] Args: config: PegasusXConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 padding_idx = config.pad_token_id if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = PegasusXScaledWordEmbedding( config.vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale ) self.embed_positions = PegasusXSinusoidalPositionalEmbedding(config.d_model) self.layers = nn.ModuleList([PegasusXDecoderLayer(config, layer_idx=i) for i in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache in the correct position and to infer the complete sequence length. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.shape input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # initialize `past_key_values` if use_cache and past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config)) if use_cache and isinstance(past_key_values, tuple): logger.warning_once( "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. " "You should pass an instance of `EncoderDecoderCache` instead, e.g. " "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." ) past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) batch_size, seq_length = inputs_embeds.size()[:-1] past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device ) if attention_mask is None and not is_torchdynamo_compiling(): # required mask seq length can be calculated via length of past cache mask_seq_length = past_key_values_length + seq_length attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) self_attn_cache = ( past_key_values.self_attention_cache if isinstance(past_key_values, EncoderDecoderCache) else past_key_values ) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, self_attn_cache, ) encoder_attention_mask = self._update_cross_attn_mask( encoder_hidden_states, encoder_attention_mask, input_shape, inputs_embeds, ) # embed positions position_ids = cache_position.unsqueeze(1) position_ids = self.embed_positions(inputs_embeds, past_key_values_length, position_ids) position_ids = position_ids.to(inputs_embeds.device) hidden_states = inputs_embeds + position_ids hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://huggingface.co/papers/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue layer_outputs = decoder_layer( hidden_states, causal_mask, encoder_hidden_states, # as a positional argument for gradient checkpointing encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @auto_docstring class PegasusXModel(PegasusXPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: PegasusXConfig): super().__init__(config) vocab_size = config.vocab_size embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 padding_idx = config.pad_token_id self.shared = PegasusXScaledWordEmbedding( vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale ) self.encoder = PegasusXEncoder(config, self.shared) self.decoder = PegasusXDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.config.max_position_embeddings = new_num_position_embeddings self.encoder.resize_position_embeddings(new_num_position_embeddings) self.decoder.resize_position_embeddings(new_num_position_embeddings) def get_position_embeddings(self) -> tuple[nn.Embedding]: """ Returns the position embeddings matrix """ return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings()) @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[tuple[torch.FloatTensor]] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, ) -> Union[tuple, Seq2SeqModelOutput]: r""" decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) PEGASUS-X uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. Example: ```python >>> from transformers import AutoTokenizer, PegasusModel >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large") >>> model = PegasusModel.from_pretrained("google/pegasus-x-large") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 4, 1024] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @auto_docstring( custom_intro=""" The PEGASUS-X for conditional generation (e.g. summarization). """ ) class PegasusXForConditionalGeneration(PegasusXPreTrainedModel, GenerationMixin): base_model_prefix = "model" _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: PegasusXConfig): super().__init__(config) self.model = PegasusXModel(config) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.config.max_position_embeddings = new_num_position_embeddings self.model.encoder.resize_position_embeddings(new_num_position_embeddings) self.model.decoder.resize_position_embeddings(new_num_position_embeddings) def get_position_embeddings(self) -> tuple[nn.Embedding]: """ Returns the position embeddings matrix """ return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings()) @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[tuple[torch.FloatTensor]] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, ) -> Union[tuple, Seq2SeqLMOutput]: r""" decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) PEGASUS-X uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->PegasusX class PegasusXDecoderWrapper(PegasusXPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = PegasusXDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) __all__ = ["PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel"]