# coding=utf-8 # Copyright 2018 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for model T5.""" import os import re import warnings from shutil import copyfile from typing import Optional from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_t5 import T5Tokenizer else: T5Tokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} # TODO(PVP) - this should be removed in Transformers v5 class T5TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" T5 tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `""`): The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `""`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `""`): The token used for padding, for example when batching sequences of different lengths. extra_ids (`int`, *optional*, defaults to 100): Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as "" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method additional_special_tokens (`list[str]`, *optional*): Additional special tokens used by the tokenizer. add_prefix_space (`bool`, *optional*): Whether or not the tokenizer should automatically add a prefix space from_slow (`book`, *optional*, defaults to `False`): Whether or not the tokenizer should be converted from a slow one. If `add_prefix_space` is set, this will be set to `True`. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = T5Tokenizer prefix_tokens: list[int] = [] def __init__( self, vocab_file=None, tokenizer_file=None, eos_token="", unk_token="", pad_token="", extra_ids=100, additional_special_tokens=None, add_prefix_space=None, **kwargs, ): # Add extra_ids to the special token list if additional_special_tokens is not None: extra_tokens = [x for x in additional_special_tokens if "" for i in range(extra_ids)] elif extra_ids > 0 and extra_ids != len(extra_tokens): raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) else: extra_tokens = [f"" for i in range(extra_ids)] additional_special_tokens = extra_tokens if add_prefix_space is not None: logger.warning_once( "You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers" ) kwargs["from_slow"] = True super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, extra_ids=extra_ids, additional_special_tokens=additional_special_tokens, add_prefix_space=add_prefix_space, **kwargs, ) self.vocab_file = vocab_file self._extra_ids = extra_ids @staticmethod def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): if pretrained_model_name_or_path in T5TokenizerFast.max_model_input_sizes: deprecated_max_model_length = T5TokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value.", FutureWarning, ) return max_model_length def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) logger.info(f"Copy vocab file to {out_vocab_file}") return (out_vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None ) -> list[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X ` - pair of sequences: `A B ` Args: token_ids_0 (`list[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`list[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `list[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return self.prefix_tokens + token_ids_0 else: token_ids_1 = token_ids_1 + [self.eos_token_id] return self.prefix_tokens + token_ids_0 + token_ids_1 def create_token_type_ids_from_sequences( self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None ) -> list[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`list[int]`): List of IDs. token_ids_1 (`list[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `list[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] def get_sentinel_tokens(self): return list( set(filter(lambda x: bool(re.search(r"", x)) is not None, self.additional_special_tokens)) ) def get_sentinel_token_ids(self): return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()] __all__ = ["T5TokenizerFast"]