# coding=utf-8 # Copyright 2023 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ViViT model.""" from typing import Callable, Optional import torch from torch import nn from ...activations import ACT2FN from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import TransformersKwargs, auto_docstring, logging, torch_int from ...utils.generic import can_return_tuple, check_model_inputs from .configuration_vivit import VivitConfig logger = logging.get_logger(__name__) class VivitTubeletEmbeddings(nn.Module): """ Construct Vivit Tubelet embeddings. This module turns a batch of videos of shape (batch_size, num_frames, num_channels, height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder. The seq_len (the number of patches) equals (number of frames // tubelet_size[0]) * (height // tubelet_size[1]) * (width // tubelet_size[2]). """ def __init__(self, config: VivitConfig): super().__init__() self.num_frames = config.num_frames self.image_size = config.image_size self.patch_size = config.tubelet_size self.num_patches = ( (self.image_size // self.patch_size[2]) * (self.image_size // self.patch_size[1]) * (self.num_frames // self.patch_size[0]) ) self.embed_dim = config.hidden_size self.projection = nn.Conv3d( config.num_channels, config.hidden_size, kernel_size=config.tubelet_size, stride=config.tubelet_size ) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_frames, num_channels, height, width = pixel_values.shape if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): raise ValueError( f"Image image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) # permute to (batch_size, num_channels, num_frames, height, width) pixel_values = pixel_values.permute(0, 2, 1, 3, 4) x = self.projection(pixel_values) # out_batch_size, out_num_channels, out_num_frames, out_height, out_width = x.shape # flattens time and space dimensions, transposes to (out_batch_size, flat_tokens, out_num_channels) x = x.flatten(2).transpose(1, 2) return x class VivitEmbeddings(nn.Module): """ Vivit Embeddings. Creates embeddings from a video using VivitTubeletEmbeddings, adds CLS token and positional embeddings. """ def __init__(self, config: VivitConfig): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = VivitTubeletEmbeddings(config) self.position_embeddings = nn.Parameter( torch.zeros(1, self.patch_embeddings.num_patches + 1, config.hidden_size) ) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.patch_size = config.tubelet_size[1:] self.config = config # Adapted from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size[0] new_width = width // self.patch_size[1] sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_frames, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) cls_tokens = self.cls_token.tile([batch_size, 1, 1]) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.vit.modeling_vit.eager_attention_forward def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): # Take the dot product between "query" and "key" to get the raw attention scores. attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling # Normalize the attention scores to probabilities. attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) # Mask heads if we want to if attention_mask is not None: attn_weights = attn_weights * attention_mask attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Vivit class VivitSelfAttention(nn.Module): def __init__(self, config: VivitConfig): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.config = config self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.dropout_prob = config.attention_probs_dropout_prob self.scaling = self.attention_head_size**-0.5 self.is_causal = False self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None ) -> tuple[torch.Tensor, torch.Tensor]: batch_size = hidden_states.shape[0] new_shape = batch_size, -1, self.num_attention_heads, self.attention_head_size key_layer = self.key(hidden_states).view(*new_shape).transpose(1, 2) value_layer = self.value(hidden_states).view(*new_shape).transpose(1, 2) query_layer = self.query(hidden_states).view(*new_shape).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] context_layer, attention_probs = attention_interface( self, query_layer, key_layer, value_layer, head_mask, is_causal=self.is_causal, scaling=self.scaling, dropout=0.0 if not self.training else self.dropout_prob, ) new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.reshape(new_context_layer_shape) return context_layer, attention_probs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Vivit class VivitSelfOutput(nn.Module): """ The residual connection is defined in VivitLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: VivitConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Vivit class VivitAttention(nn.Module): def __init__(self, config: VivitConfig): super().__init__() self.attention = VivitSelfAttention(config) self.output = VivitSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: set[int]): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None) -> torch.Tensor: self_attn_output, _ = self.attention(hidden_states, head_mask) output = self.output(self_attn_output, hidden_states) return output class VivitIntermediate(nn.Module): def __init__(self, config: VivitConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class VivitOutput(nn.Module): def __init__(self, config: VivitConfig): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class VivitLayer(GradientCheckpointingLayer): """This corresponds to the EncoderBlock class in the scenic/vivit implementation.""" def __init__(self, config: VivitConfig): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VivitAttention(config) self.intermediate = VivitIntermediate(config) self.output = VivitOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None) -> torch.Tensor: hidden_states_norm = self.layernorm_before(hidden_states) attention_output = self.attention(hidden_states_norm, head_mask) # first residual connection hidden_states = attention_output + hidden_states # in Vivit, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) return layer_output class VivitEncoder(nn.Module): def __init__(self, config: VivitConfig): super().__init__() self.config = config self.layer = nn.ModuleList([VivitLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None) -> BaseModelOutput: for i, layer_module in enumerate(self.layer): layer_head_mask = head_mask[i] if head_mask is not None else None hidden_states = layer_module(hidden_states, layer_head_mask) return BaseModelOutput(last_hidden_state=hidden_states) class VivitPooler(nn.Module): def __init__(self, config: VivitConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @auto_docstring class VivitPreTrainedModel(PreTrainedModel): config: VivitConfig base_model_prefix = "vivit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = [] _supports_sdpa = True _supports_flash_attn = True _supports_flex_attn = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": VivitLayer, "attentions": VivitSelfAttention, } def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv3d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, VivitEmbeddings): module.cls_token.data.zero_() module.position_embeddings.data.zero_() @auto_docstring class VivitModel(VivitPreTrainedModel): def __init__(self, config: VivitConfig, add_pooling_layer: bool = True): r""" add_pooling_layer (bool, *optional*, defaults to `True`): Whether to add a pooling layer """ super().__init__(config) self.config = config self.embeddings = VivitEmbeddings(config) self.encoder = VivitEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = VivitPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. Args: heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @check_model_inputs @auto_docstring def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, interpolate_pos_encoding: bool = False, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPooling: r""" Examples: ```python >>> import av >>> import numpy as np >>> from transformers import VivitImageProcessor, VivitModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`list[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`list[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 32 frames >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container=container, indices=indices) >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400") >>> model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400") >>> # prepare video for the model >>> inputs = image_processor(list(video), return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 3137, 768] ```""" if pixel_values is None: raise ValueError("You have to specify pixel_values") head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) encoder_outputs: BaseModelOutput = self.encoder(embedding_output, head_mask=head_mask) sequence_output = encoder_outputs.last_hidden_state sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None return BaseModelOutputWithPooling(last_hidden_state=sequence_output, pooler_output=pooled_output) @auto_docstring( custom_intro=""" ViViT Transformer model with a video classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for Kinetics-400. Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained position embeddings to the higher resolution. """ ) class VivitForVideoClassification(VivitPreTrainedModel): def __init__(self, config: VivitConfig): super().__init__(config) self.num_labels = config.num_labels self.vivit = VivitModel(config, add_pooling_layer=False) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @can_return_tuple @auto_docstring def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, interpolate_pos_encoding: bool = False, **kwargs: Unpack[TransformersKwargs], ) -> ImageClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Examples: ```python >>> import av >>> import numpy as np >>> import torch >>> from transformers import VivitImageProcessor, VivitForVideoClassification >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`list[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`list[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 32 frames >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=4, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container=container, indices=indices) >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400") >>> model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400") >>> inputs = image_processor(list(video), return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits >>> # model predicts one of the 400 Kinetics-400 classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) LABEL_116 ```""" outputs: BaseModelOutput = self.vivit( pixel_values, head_mask=head_mask, interpolate_pos_encoding=interpolate_pos_encoding, **kwargs ) sequence_output = outputs.last_hidden_state logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: loss = self.loss_function(labels, logits, self.config, **kwargs) return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification"]