# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax Wav2Vec2 model.""" from functools import partial from typing import Optional, Union import flax import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_wav2vec2 import Wav2Vec2Config logger = logging.get_logger(__name__) @flax.struct.dataclass class FlaxWav2Vec2BaseModelOutput(ModelOutput): """ Output type of [`FlaxWav2Vec2BaseModelOutput`], with potential hidden states and attentions. Args: last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. extract_features (`jnp.ndarray` of shape `(batch_size, sequence_length, last_conv_dim)`): Sequence of extracted feature vectors of the last convolutional layer of the model with `last_conv_dim` being the dimension of the last convolutional layer. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: jnp.ndarray = None extract_features: jnp.ndarray = None hidden_states: Optional[tuple[jnp.ndarray]] = None attentions: Optional[tuple[jnp.ndarray]] = None @flax.struct.dataclass class FlaxWav2Vec2ForPreTrainingOutput(ModelOutput): """ Output type of [`FlaxWav2Vec2ForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `jnp.ndarray` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://huggingface.co/papers/2006.11477). projected_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ projected_states: jnp.ndarray = None projected_quantized_states: jnp.ndarray = None codevector_perplexity: jnp.ndarray = None hidden_states: Optional[tuple[jnp.ndarray]] = None attentions: Optional[tuple[jnp.ndarray]] = None def _compute_mask_indices( shape: tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[np.ndarray] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://huggingface.co/papers/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_length: size of the mask min_masks: minimum number of masked spans """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and" f" `sequence_length`: {sequence_length}`" ) # compute number of masked spans in batch num_masked_spans = int(mask_prob * sequence_length / mask_length + np.random.rand(1).item()) num_masked_spans = max(num_masked_spans, min_masks) # make sure num masked indices <= sequence_length if num_masked_spans * mask_length > sequence_length: num_masked_spans = sequence_length // mask_length # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) # get random indices to mask spec_aug_mask_idxs = np.array( [ np.random.choice(np.arange(sequence_length - (mask_length - 1)), num_masked_spans, replace=False) for _ in range(batch_size) ] ) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to(spec_aug_mask_idxs[:, :, None], (batch_size, num_masked_spans, mask_length)) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, num_masked_spans * mask_length) offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, num_masked_spans, mask_length)).reshape( batch_size, num_masked_spans * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) if attention_mask is not None: # make sure padded input ids cannot be masked spec_aug_mask = np.where(attention_mask, spec_aug_mask, False) return spec_aug_mask def _sample_negative_indices(features_shape: tuple, num_negatives: int, attention_mask: Optional[np.ndarray] = None): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length, hidden_size = features_shape if sequence_length <= 1: raise ValueError( "`features should have `sequence_length` > 1, but are of shape " f"(batch_size, sequence_length, hidden_size) = ({batch_size, sequence_length, hidden_size})." ) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = [] for batch_idx in range(batch_size): high = attention_mask[batch_idx].sum() - 1 if attention_mask is not None else sequence_length - 1 sampled_indices_slice = np.random.randint(0, high, size=(num_negatives * sequence_length,)) sampled_negative_indices.append(sampled_indices_slice) sampled_negative_indices = np.asarray(sampled_negative_indices, dtype=np.int32) # generate indices of the positive vectors themselves, repeat them `num_negatives` times feature_indices = np.broadcast_to(np.arange(sequence_length)[:, None], (sequence_length, num_negatives)).flatten() # avoid sampling the same positive vector, but keep the distribution uniform sampled_negative_indices[sampled_negative_indices >= feature_indices] += 1 # correct for batch size for batch_idx in range(1, batch_size): sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices WAV2VEC2_START_DOCSTRING = r""" Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://huggingface.co/papers/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ WAV2VEC2_INPUTS_DOCSTRING = r""" Args: input_values (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]`, a `numpy.ndarray` or a `torch.Tensor`, *e.g.* via the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `jnp.ndarray`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) .. warning:: `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. mask_time_indices (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxWav2Vec2LayerNormConvLayer(nn.Module): config: Wav2Vec2Config layer_id: int = 0 dtype: jnp.dtype = jnp.float32 def setup(self): self.in_conv_dim = self.config.conv_dim[self.layer_id] if self.layer_id > 0 else 1 self.out_conv_dim = self.config.conv_dim[self.layer_id] self.conv = nn.Conv( features=self.config.conv_dim[self.layer_id], kernel_size=(self.config.conv_kernel[self.layer_id],), strides=(self.config.conv_stride[self.layer_id],), use_bias=self.config.conv_bias, kernel_init=jax.nn.initializers.he_normal(), padding="VALID", dtype=self.dtype, ) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.activation = ACT2FN[self.config.feat_extract_activation] def __call__(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class FlaxConvWithWeightNorm(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( features=self.config.hidden_size, kernel_size=(self.config.num_conv_pos_embeddings,), kernel_init=jax.nn.initializers.he_normal(), padding="VALID", feature_group_count=self.config.num_conv_pos_embedding_groups, dtype=self.dtype, ) weight_shape = ( self.conv.features, self.conv.features // self.conv.feature_group_count, self.conv.kernel_size[0], ) self.weight_v = self.param("weight_v", jax.nn.initializers.he_normal(), weight_shape) self.weight_g = self.param("weight_g", lambda _: jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :]) self.bias = self.param("bias", jax.nn.initializers.zeros, (self.conv.features,)) self.prev_padding = self.conv.kernel_size[0] // 2 def _get_normed_weights(self): weight_v_norm = jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :] normed_weight_v = jnp.divide(self.weight_v, weight_v_norm) normed_kernel = jnp.multiply(normed_weight_v, self.weight_g) return normed_kernel def __call__(self, hidden_states): kernel = self._get_normed_weights() hidden_states = jnp.pad(hidden_states, ((0, 0), (self.prev_padding, self.prev_padding), (0, 0))) hidden_states = self.conv.apply({"params": {"kernel": kernel.T, "bias": self.bias}}, hidden_states) return hidden_states class FlaxWav2Vec2PositionalConvEmbedding(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = FlaxConvWithWeightNorm(self.config, dtype=self.dtype) self.activation = ACT2FN[self.config.feat_extract_activation] self.num_pad_remove = 1 if self.config.num_conv_pos_embeddings % 2 == 0 else 0 def __call__(self, hidden_states): hidden_states = hidden_states.transpose((0, 1, 2)) hidden_states = self.conv(hidden_states) if self.num_pad_remove > 0: hidden_states = hidden_states[:, : -self.num_pad_remove, :] hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose((0, 1, 2)) return hidden_states class FlaxConvLayersCollection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): if self.config.feat_extract_norm == "layer": self.layers = [ FlaxWav2Vec2LayerNormConvLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) for i in range(self.config.num_feat_extract_layers) ] elif self.config.feat_extract_norm == "group": raise NotImplementedError("At the moment only ``config.feat_extract_norm == 'layer'`` is supported") else: raise ValueError( f"`config.feat_extract_norm` is {self.config.feat_extract_norm}, but has to be one of ['group'," " 'layer']" ) def __call__(self, hidden_states): for i, conv_layer in enumerate(self.layers): hidden_states = conv_layer(hidden_states) return hidden_states class FlaxWav2Vec2FeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv_layers = FlaxConvLayersCollection(self.config, dtype=self.dtype) def __call__(self, input_values, freeze_feature_encoder=False): hidden_states = input_values[:, :, None] hidden_states = self.conv_layers(hidden_states) if freeze_feature_encoder: hidden_states = jax.lax.stop_gradient(hidden_states) return hidden_states class FlaxWav2Vec2FeatureProjection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.projection = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.feat_proj_dropout) def __call__(self, hidden_states, deterministic=True): norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states, norm_hidden_states class FlaxWav2Vec2Attention(nn.Module): config: Wav2Vec2Config embed_dim: int num_heads: int dropout: float = 0.0 bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, ) -> tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # get query proj query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) if attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class FlaxWav2Vec2FeedForward(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.intermediate_dropout = nn.Dropout(rate=self.config.activation_dropout) self.intermediate_dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) if isinstance(self.config.hidden_act, str): self.intermediate_act_fn = ACT2FN[self.config.hidden_act] else: self.intermediate_act_fn = self.config.hidden_act self.output_dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.output_dropout = nn.Dropout(rate=self.config.hidden_dropout) def __call__(self, hidden_states, deterministic=True): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states, deterministic=deterministic) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxWav2Vec2EncoderLayerStableLayerNorm(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.attention = FlaxWav2Vec2Attention( config=self.config, embed_dim=self.config.hidden_size, num_heads=self.config.num_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.feed_forward = FlaxWav2Vec2FeedForward(self.config, dtype=self.dtype) self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_mask=None, deterministic=True, output_attentions=False): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights = self.attention( hidden_states, attention_mask=attention_mask, deterministic=deterministic ) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward( self.final_layer_norm(hidden_states), deterministic=deterministic ) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class FlaxWav2Vec2EncoderLayerStableLayerNormCollection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = [ FlaxWav2Vec2EncoderLayerStableLayerNorm(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxWav2Vec2StableLayerNormEncoder(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.pos_conv_embed = FlaxWav2Vec2PositionalConvEmbedding(self.config, dtype=self.dtype) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout) self.layers = FlaxWav2Vec2EncoderLayerStableLayerNormCollection(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, deterministic=True, output_attentions=False, output_hidden_states=False, return_dict=True, ): if attention_mask is not None: # make sure padded tokens are not attended to hidden_states = jnp.where( jnp.broadcast_to(attention_mask[:, :, None], hidden_states.shape), hidden_states, 0 ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = self.layer_norm(outputs[0]) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions ) class FlaxWav2Vec2GumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://huggingface.co/papers/1611.01144) for more information. """ config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.num_groups = self.config.num_codevector_groups self.num_vars = self.config.num_codevectors_per_group if self.config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {self.config.codevector_dim} must be divisible by" f" `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = self.param( "codevectors", jax.nn.initializers.uniform(), (1, self.num_groups * self.num_vars, self.config.codevector_dim // self.num_groups), ) self.weight_proj = nn.Dense( self.num_groups * self.num_vars, kernel_init=jax.nn.initializers.normal(1.0), dtype=self.dtype, ) @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = jnp.broadcast_to(mask.flatten()[:, None, None], probs.shape) probs = jnp.where(mask_extended, probs, jnp.zeros_like(probs)) marginal_probs = probs.sum(axis=0) / mask.sum() else: marginal_probs = probs.mean(axis=0) perplexity = jnp.exp(-jnp.sum(marginal_probs * jnp.log(marginal_probs + 1e-7), axis=-1)).sum() return perplexity def __call__(self, hidden_states, mask_time_indices=None, deterministic=True, temperature=1): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.reshape(batch_size * sequence_length * self.num_groups, -1) if not deterministic: # sample code vector probs via gumbel in differentiateable way gumbel_rng = self.make_rng("gumbel") gumbels = jax.random.gumbel(gumbel_rng, hidden_states.shape) codevector_probs = nn.softmax((hidden_states + gumbels) / temperature) # compute perplexity codevector_soft_dist = nn.softmax( hidden_states.reshape(batch_size * sequence_length, self.num_groups, -1), axis=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(axis=-1) codevector_probs = jax.nn.one_hot(codevector_idx, hidden_states.shape[-1]) * 1.0 codevector_probs = codevector_probs.reshape(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.reshape(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = jnp.expand_dims(codevector_probs, axis=-1) * self.codevectors codevectors = codevectors_per_group.reshape(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).reshape(batch_size, sequence_length, -1) return codevectors, perplexity class FlaxWav2Vec2Adapter(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): # hidden_states require down-projection if feature dims don't match if self.config.output_hidden_size != self.config.hidden_size: self.proj = nn.Dense( self.config.output_hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.proj_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) else: self.proj = self.proj_layer_norm = None self.layers = FlaxWav2Vec2AdapterLayersCollection(self.config, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): # down-project hidden_states if required if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = self.layers(hidden_states) return hidden_states class FlaxWav2Vec2AdapterLayer(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( features=2 * self.config.output_hidden_size, kernel_size=(self.config.adapter_kernel_size,), strides=(self.config.adapter_stride,), padding=((1, 1),), kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.glu(hidden_states, axis=2) return hidden_states class FlaxWav2Vec2AdapterLayersCollection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = [ FlaxWav2Vec2AdapterLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_adapter_layers) ] def __call__(self, hidden_states): for conv_layer in self.layers: hidden_states = conv_layer(hidden_states) return hidden_states class FlaxWav2Vec2PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2Config base_model_prefix: str = "wav2vec2" main_input_name = "input_values" module_class: nn.Module = None def __init__( self, config: Wav2Vec2Config, input_shape: tuple = (1, 1024), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_values = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_values) params_rng, dropout_rng = jax.random.split(rng, 2) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_values, attention_mask, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(WAV2VEC2_INPUTS_DOCSTRING) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, params: Optional[dict] = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, freeze_feature_encoder: bool = False, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_values.shape if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} return self.module.apply( inputs, jnp.array(input_values, dtype="f4"), jnp.array(attention_mask, dtype="i4"), mask_time_indices, not train, output_attentions, output_hidden_states, freeze_feature_encoder, return_dict, rngs=rngs, ) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): return self.module._get_feat_extract_output_lengths(input_lengths, add_adapter=add_adapter) class FlaxWav2Vec2Module(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.feature_extractor = FlaxWav2Vec2FeatureEncoder(self.config, dtype=self.dtype) self.feature_projection = FlaxWav2Vec2FeatureProjection(self.config, dtype=self.dtype) self.masked_spec_embed = self.param( "masked_spec_embed", jax.nn.initializers.uniform(), (self.config.hidden_size,) ) if self.config.do_stable_layer_norm: self.encoder = FlaxWav2Vec2StableLayerNormEncoder(self.config, dtype=self.dtype) else: raise NotImplementedError("``config.do_stable_layer_norm is False`` is currently not supported.") self.adapter = FlaxWav2Vec2Adapter(self.config, dtype=self.dtype) if self.config.add_adapter else None def __call__( self, input_values, attention_mask=None, mask_time_indices=None, deterministic=True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): extract_features = self.feature_extractor(input_values, freeze_feature_encoder=freeze_feature_encoder) # make sure that no loss is computed on padded inputs if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features, deterministic=deterministic) if mask_time_indices is not None: # apply SpecAugment along time axis with given indices hidden_states = jnp.where( jnp.broadcast_to(mask_time_indices[:, :, None], hidden_states.shape), jnp.broadcast_to(self.masked_spec_embed[None, None, :], hidden_states.shape), hidden_states, ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return FlaxWav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) batch_size = attention_mask.shape[0] attention_mask = jnp.zeros((batch_size, feature_vector_length), dtype=attention_mask.dtype) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask = attention_mask.at[jnp.arange(attention_mask.shape[0]), output_lengths - 1].set(1) attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool") return attention_mask @add_start_docstrings( "The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.", WAV2VEC2_START_DOCSTRING, ) class FlaxWav2Vec2Model(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2Module FLAX_WAV2VEC2_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoProcessor, FlaxWav2Vec2Model >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-lv60") >>> model = FlaxWav2Vec2Model.from_pretrained("facebook/wav2vec2-large-lv60") >>> def map_to_array(example): ... example["speech"] = example["audio"]["array"] ... return example >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor( ... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ).input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state ``` """ overwrite_call_docstring( FlaxWav2Vec2Model, WAV2VEC2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_MODEL_DOCSTRING, ) append_replace_return_docstrings( FlaxWav2Vec2Model, output_type=FlaxWav2Vec2BaseModelOutput, config_class=Wav2Vec2Config ) class FlaxWav2Vec2ForCTCModule(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.final_dropout) self.lm_head = nn.Dense( self.config.vocab_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, deterministic=True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): outputs = self.wav2vec2( input_values, attention_mask=attention_mask, mask_time_indices=mask_time_indices, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, freeze_feature_encoder=freeze_feature_encoder, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.lm_head(hidden_states) if not return_dict: return (logits,) + outputs[2:] return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None, ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths @add_start_docstrings( "Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).", WAV2VEC2_START_DOCSTRING, ) class FlaxWav2Vec2ForCTC(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2ForCTCModule FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """ Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoProcessor, FlaxWav2Vec2ForCTC >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-960h-lv60") >>> model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60") >>> def map_to_array(example): ... example["speech"] = example["audio"]["array"] ... return example >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor( ... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ).input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = jnp.argmax(logits, axis=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # should give: "A MAN SAID TO THE UNIVERSE SIR I EXIST" ``` """ overwrite_call_docstring( FlaxWav2Vec2ForCTC, WAV2VEC2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_CTC_DOCSTRING, ) append_replace_return_docstrings(FlaxWav2Vec2ForCTC, output_type=FlaxCausalLMOutput, config_class=Wav2Vec2Config) class FlaxWav2Vec2ForPreTrainingModule(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype) self.dropout_features = nn.Dropout(self.config.feat_quantizer_dropout) self.quantizer = FlaxWav2Vec2GumbelVectorQuantizer(self.config, dtype=self.dtype) self.project_q = nn.Dense( self.config.proj_codevector_dim, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.project_hid = nn.Dense( self.config.proj_codevector_dim, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, gumbel_temperature: int = 1, deterministic: bool = True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): r""" Returns: Example: ```python ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, deterministic=deterministic, freeze_feature_encoder=freeze_feature_encoder, return_dict=return_dict, ) # project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1], deterministic=deterministic) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices, deterministic=deterministic, temperature=gumbel_temperature ) quantized_features = self.project_q(quantized_features) if not return_dict: return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return FlaxWav2Vec2ForPreTrainingOutput( projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths @add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV2VEC2_START_DOCSTRING) class FlaxWav2Vec2ForPreTraining(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2ForPreTrainingModule @add_start_docstrings_to_model_forward(WAV2VEC2_INPUTS_DOCSTRING) # overwrite since has `gumbel_temperature` input def __call__( self, input_values, attention_mask=None, mask_time_indices=None, gumbel_temperature: int = 1, params: Optional[dict] = None, dropout_rng: jax.random.PRNGKey = None, gumbel_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, freeze_feature_encoder: bool = False, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_values.shape if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng if gumbel_rng is not None: rngs["gumbel"] = gumbel_rng inputs = {"params": params or self.params} return self.module.apply( inputs, jnp.array(input_values, dtype="f4"), jnp.array(attention_mask, dtype="i4"), mask_time_indices, gumbel_temperature, not train, output_attentions, output_hidden_states, freeze_feature_encoder, return_dict, rngs=rngs, ) FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING = """ Returns: Example: ```python >>> import optax >>> import numpy as np >>> import jax.numpy as jnp >>> from transformers import AutoFeatureExtractor, FlaxWav2Vec2ForPreTraining >>> from transformers.models.wav2vec2.modeling_flax_wav2vec2 import _compute_mask_indices >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-large-lv60") >>> model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60") >>> def map_to_array(example): ... example["speech"] = example["audio"]["array"] ... return example >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = feature_extractor(ds["speech"][0], return_tensors="np").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) >>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2) >>> outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = optax.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states) >>> # show that cosine similarity is much higher than random >>> assert np.asarray(cosine_sim)[mask_time_indices].mean() > 0.5 ``` """ overwrite_call_docstring( FlaxWav2Vec2ForPreTraining, WAV2VEC2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING, ) append_replace_return_docstrings( FlaxWav2Vec2ForPreTraining, output_type=FlaxWav2Vec2ForPreTrainingOutput, config_class=Wav2Vec2Config ) __all__ = ["FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel"]