# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 XLNet model. """ from __future__ import annotations import warnings from dataclasses import dataclass import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlnet import XLNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased" _CONFIG_FOR_DOC = "XLNetConfig" class TFXLNetRelativeAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.d_model % config.n_head != 0: raise ValueError( f"The hidden size ({config.d_model}) is not a multiple of the number of attention " f"heads ({config.n_head}" ) self.n_head = config.n_head self.d_head = config.d_head self.d_model = config.d_model self.scale = 1 / (config.d_head**0.5) self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.config = config def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.q = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="q" ) self.k = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="k" ) self.v = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="v" ) self.o = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="o" ) self.r = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="r" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_s_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_s_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.seg_embed = self.add_weight( shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed" ) if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) def prune_heads(self, heads): raise NotImplementedError def rel_shift(self, x, klen=-1): """perform relative shift to form the relative attention score.""" x_size = shape_list(x) x = tf.reshape(x, (x_size[1], x_size[0], x_size[2], x_size[3])) x = x[1:, ...] x = tf.reshape(x, (x_size[0], x_size[1] - 1, x_size[2], x_size[3])) x = x[:, 0:klen, :, :] # x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) return x def rel_attn_core( self, q_head, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask, head_mask, output_attentions, training=False ): """Core relative positional attention operations.""" # content based attention score ac = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_w_bias, k_head_h) # position based attention score bd = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_r_bias, k_head_r) bd = self.rel_shift(bd, klen=shape_list(ac)[1]) # segment based attention score if seg_mat is None: ef = 0 else: ef = tf.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) ef = tf.einsum("ijbs,ibns->ijbn", seg_mat, ef) # merge attention scores and perform masking attn_score = (ac + bd + ef) * self.scale if attn_mask is not None: # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask if attn_mask.dtype == tf.float16 or attn_mask.dtype == tf.bfloat16: attn_score = attn_score - 65500 * attn_mask else: attn_score = attn_score - 1e30 * attn_mask # attention probability attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropout(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # attention output attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h) if output_attentions: return attn_vec, attn_prob return attn_vec def post_attention(self, h, attn_vec, residual=True, training=False): """Post-attention processing.""" # post-attention projection (back to `d_model`) attn_out = tf.einsum("ibnd,hnd->ibh", attn_vec, self.o) attn_out = self.dropout(attn_out, training=training) if residual: attn_out = attn_out + h output = self.layer_norm(attn_out) return output def call( self, h, g, attn_mask_h, attn_mask_g, r, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = False, training: bool = False, ): if g is not None: # Two-stream attention with relative positional encoding. # content based attention score if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content-based key head k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) # content-based value head v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # position-based key head k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # h-stream # content-stream query head q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) # core attention ops attn_vec_h = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_h, attn_prob_h = attn_vec_h # post processing output_h = self.post_attention(h, attn_vec_h, training=training) # g-stream # query-stream query head q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.q) # core attention ops if target_mapping is not None: q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) else: attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g # post processing output_g = self.post_attention(g, attn_vec_g, training=training) if output_attentions: attn_prob = attn_prob_h, attn_prob_g else: # Multi-head attention with relative positional encoding if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content heads q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # positional heads k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # core attention ops attn_vec = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec, attn_prob = attn_vec # post processing output_h = self.post_attention(h, attn_vec, training=training) output_g = None outputs = (output_h, output_g) if output_attentions: outputs = outputs + (attn_prob,) return outputs class TFXLNetFeedForward(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.layer_1 = keras.layers.Dense( config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1" ) self.layer_2 = keras.layers.Dense( config.d_model, kernel_initializer=get_initializer(config.initializer_range), name="layer_2" ) self.dropout = keras.layers.Dropout(config.dropout) if isinstance(config.ff_activation, str): self.activation_function = get_tf_activation(config.ff_activation) else: self.activation_function = config.ff_activation self.config = config def call(self, inp, training=False): output = inp output = self.layer_1(output) output = self.activation_function(output) output = self.dropout(output, training=training) output = self.layer_2(output) output = self.dropout(output, training=training) output = self.layer_norm(output + inp) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layer_1", None) is not None: with tf.name_scope(self.layer_1.name): self.layer_1.build([None, None, self.config.d_model]) if getattr(self, "layer_2", None) is not None: with tf.name_scope(self.layer_2.name): self.layer_2.build([None, None, self.config.d_inner]) class TFXLNetLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn") self.ff = TFXLNetFeedForward(config, name="ff") self.dropout = keras.layers.Dropout(config.dropout) def call( self, output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = False, training: bool = False, ): outputs = self.rel_attn( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems, target_mapping, head_mask, output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_g is not None: output_g = self.ff(output_g, training=training) output_h = self.ff(output_h, training=training) outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rel_attn", None) is not None: with tf.name_scope(self.rel_attn.name): self.rel_attn.build(None) if getattr(self, "ff", None) is not None: with tf.name_scope(self.ff.name): self.ff.build(None) class TFXLNetLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @keras_serializable class TFXLNetMainLayer(keras.layers.Layer): config_class = XLNetConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.return_dict self.mem_len = config.mem_len self.reuse_len = config.reuse_len self.d_model = config.d_model self.same_length = config.same_length self.attn_type = config.attn_type self.bi_data = config.bi_data self.clamp_len = config.clamp_len self.n_layer = config.n_layer self.use_bfloat16 = config.use_bfloat16 self.initializer_range = config.initializer_range self.word_embedding = TFSharedEmbeddings( config.vocab_size, config.d_model, initializer_range=config.initializer_range, name="word_embedding" ) self.layer = [TFXLNetLayer(config, name=f"layer_._{i}") for i in range(config.n_layer)] self.dropout = keras.layers.Dropout(config.dropout) self.use_mems_eval = config.use_mems_eval self.use_mems_train = config.use_mems_train def get_input_embeddings(self): return self.word_embedding def set_input_embeddings(self, value): self.word_embedding.weight = value self.word_embedding.vocab_size = shape_list(value)[0] def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.mask_emb = self.add_weight( shape=(1, 1, self.d_model), initializer=initializer, trainable=True, name="mask_emb" ) if self.built: return self.built = True if getattr(self, "word_embedding", None) is not None: with tf.name_scope(self.word_embedding.name): self.word_embedding.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) def _prune_heads(self, heads_to_prune): raise NotImplementedError def create_mask(self, qlen, mlen): """ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. Args: qlen: TODO Lysandre didn't fill mlen: TODO Lysandre didn't fill ``` same_length=False: same_length=True: < qlen > < qlen > ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] ``` """ attn_mask = tf.ones([qlen, qlen]) mask_u = tf.linalg.band_part(attn_mask, 0, -1) mask_dia = tf.linalg.band_part(attn_mask, 0, 0) attn_mask_pad = tf.zeros([qlen, mlen]) ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) if self.same_length: mask_l = tf.linalg.band_part(attn_mask, -1, 0) ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) return ret def cache_mem(self, curr_out, prev_mem): # cache hidden states into memory. if self.reuse_len is not None and self.reuse_len > 0: curr_out = curr_out[: self.reuse_len] if self.mem_len is None or self.mem_len == 0: # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time # and returns all of the past and current hidden states. cutoff = 0 else: # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden # states. This is the preferred setting for training and long-form generation. cutoff = -self.mem_len if prev_mem is None: # if `use_mems` is active and `mem_len` is defined, the model new_mem = curr_out[cutoff:] else: new_mem = tf.concat([prev_mem, curr_out], 0)[cutoff:] return tf.stop_gradient(new_mem) @staticmethod def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = tf.einsum("i,d->id", pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], axis=-1) pos_emb = pos_emb[:, None, :] if bsz is not None: pos_emb = tf.tile(pos_emb, [1, bsz, 1]) return pos_emb def relative_positional_encoding(self, qlen, klen, bsz=None): """create relative positional encoding.""" freq_seq = tf.range(0, self.d_model, 2.0) inv_freq = 1 / (10000 ** (freq_seq / self.d_model)) if self.attn_type == "bi": # beg, end = klen - 1, -qlen beg, end = klen, -qlen elif self.attn_type == "uni": # beg, end = klen - 1, -1 beg, end = klen, -1 else: raise ValueError(f"Unknown `attn_type` {self.attn_type}.") if self.bi_data: fwd_pos_seq = tf.range(beg, end, -1.0) bwd_pos_seq = tf.range(-beg, -end, 1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len, self.clamp_len) if bsz is not None: if bsz % 2 != 0: raise ValueError(f"With bi_data, the batch size {bsz} should be divisible by 2") fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1) else: fwd_pos_seq = tf.range(beg, end, -1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) return pos_emb @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ): if training and use_mems is None: use_mems = self.use_mems_train else: use_mems = self.use_mems_eval # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end # but we want a unified interface in the library with the batch size on the first dimension # so we move here the first dimension (batch) to the end if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids)[:2] elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0 klen = mlen + qlen # Attention mask # causal attention mask if self.attn_type == "uni": attn_mask = self.create_mask(qlen, mlen) attn_mask = attn_mask[:, :, None, None] elif self.attn_type == "bi": attn_mask = None else: raise ValueError(f"Unsupported attention type: {self.attn_type}") # data mask: input mask & perm mask assert input_mask is None or attention_mask is None, ( "You can only use one of input_mask (uses 1 for padding) " "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." ) if input_mask is None and attention_mask is not None: one_cst = tf.constant(1.0) input_mask = 1.0 - tf.cast(attention_mask, dtype=one_cst.dtype) if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: # all mems can be attended to if mlen > 0: mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz]) data_mask = tf.concat([mems_mask, data_mask], axis=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = tf.cast(attn_mask > 0, dtype=attn_mask.dtype) if attn_mask is not None: non_tgt_mask = -tf.eye(qlen) if mlen > 0: non_tgt_mask = tf.concat([tf.zeros([qlen, mlen]), non_tgt_mask], axis=-1) non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=non_tgt_mask.dtype) else: non_tgt_mask = None # Word embeddings and prepare h & g hidden states if inputs_embeds is not None: word_emb_k = inputs_embeds else: check_embeddings_within_bounds(input_ids, self.word_embedding.vocab_size) word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k, training=training) if target_mapping is not None: word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1]) # else: # We removed the inp_q input which was same as target mapping # inp_q_ext = inp_q[:, :, None] # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k output_g = self.dropout(word_emb_q, training=training) else: output_g = None # Segment embedding if token_type_ids is not None: # Convert `token_type_ids` to one-hot `seg_mat` if mlen > 0: mem_pad = tf.zeros([mlen, bsz], dtype=token_type_ids.dtype) cat_ids = tf.concat([mem_pad, token_type_ids], 0) else: cat_ids = token_type_ids # `1` indicates not in the same segment [qlen x klen x bsz] seg_mat = tf.cast( tf.logical_not(tf.equal(token_type_ids[:, None], cat_ids[None, :])), dtype=token_type_ids.dtype, ) seg_mat = tf.one_hot(seg_mat, 2) else: seg_mat = None # Positional encoding pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) pos_emb = self.dropout(pos_emb, training=training) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] if output_attentions else None hidden_states = [] if output_hidden_states else None for i, layer_module in enumerate(self.layer): # cache new mems if use_mems: new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems[i], target_mapping, head_mask[i], output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_attentions: attentions.append(outputs[2]) # Add last hidden state if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h, training=training) # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) output = tf.transpose(output, perm=(1, 0, 2)) if not use_mems: new_mems = None if output_hidden_states: if output_g is not None: hidden_states = tuple(tf.transpose(h, perm=(1, 0, 2)) for hs in hidden_states for h in hs) else: hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in hidden_states) if output_attentions: if target_mapping is not None: # when target_mapping is provided, there are 2-tuple of attentions attentions = tuple( tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions ) else: attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) return TFXLNetModelOutput( last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions ) class TFXLNetPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLNetConfig base_model_prefix = "transformer" @dataclass class TFXLNetModelOutput(ModelOutput): """ Output type of [`TFXLNetModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`list[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor | None = None mems: list[tf.Tensor] | None = None hidden_states: tuple[tf.Tensor, ...] | None = None attentions: tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetLMHeadModelOutput(ModelOutput): """ Output type of [`TFXLNetLMHeadModel`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`tf.Tensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`list[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor | None = None mems: list[tf.Tensor] | None = None hidden_states: tuple[tf.Tensor, ...] | None = None attentions: tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForSequenceClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForSequenceClassification`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`list[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor | None = None mems: list[tf.Tensor] | None = None hidden_states: tuple[tf.Tensor, ...] | None = None attentions: tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForTokenClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForTokenClassificationOutput`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). mems (`list[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor | None = None mems: list[tf.Tensor] | None = None hidden_states: tuple[tf.Tensor, ...] | None = None attentions: tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForMultipleChoiceOutput(ModelOutput): """ Output type of [`TFXLNetForMultipleChoice`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`tf.Tensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). mems (`list[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor | None = None mems: list[tf.Tensor] | None = None hidden_states: tuple[tf.Tensor, ...] | None = None attentions: tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput): """ Output type of [`TFXLNetForQuestionAnsweringSimple`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-end scores (before SoftMax). mems (`list[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None start_logits: tf.Tensor | None = None end_logits: tf.Tensor | None = None mems: list[tf.Tensor] | None = None hidden_states: tuple[tf.Tensor, ...] | None = None attentions: tuple[tf.Tensor, ...] | None = None XLNET_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! Parameters: config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) mems (`list[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. `use_mems` has to be set to `True` to make use of `mems`. perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. If not set, each token attends to all the others (full bidirectional attention). Only used during pretraining (to define factorization order) or for sequential decoding (generation). target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction or for sequential decoding (generation). token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding which is kept for compatibility with the original code base. Mask values selected in `[0, 1]`: - 1 for tokens that are **masked**, - 0 for tokens that are **not masked**. You can only uses one of `input_mask` and `attention_mask`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", XLNET_START_DOCSTRING, ) class TFXLNetModel(TFXLNetPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFXLNetModelOutput | tuple[tf.Tensor]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XLNET_START_DOCSTRING, ) class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss") # generate fails to convert to a graph with XLNet self.supports_xla_generation = False def get_lm_head(self): return self.lm_loss def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_loss.name def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_mems=None, **kwargs): # Add dummy token at the end (no attention on this one) effective_batch_size = inputs.shape[0] dummy_token = tf.zeros((effective_batch_size, 1), dtype=inputs.dtype) # At every pass, the attention values for the new token and the two last generated tokens # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have # offset = 1; offset = 2 seems to have slightly better computation. offset = 2 if past_key_values: input_ids = tf.concat([inputs[:, -offset:], dummy_token], axis=1) else: input_ids = tf.concat([inputs, dummy_token], axis=1) # Build permutation mask so that previous tokens don't see last token sequence_length = input_ids.shape[1] perm_mask = tf.zeros((effective_batch_size, sequence_length, sequence_length - 1)) perm_mask_seq_end = tf.ones((effective_batch_size, sequence_length, 1)) perm_mask = tf.concat([perm_mask, perm_mask_seq_end], axis=-1) # We'll only predict the last token target_mapping = tf.zeros((effective_batch_size, 1, sequence_length - 1)) target_mapping_seq_end = tf.ones((effective_batch_size, 1, 1)) target_mapping = tf.concat([target_mapping, target_mapping_seq_end], axis=-1) inputs = { "input_ids": input_ids, "perm_mask": perm_mask, "target_mapping": target_mapping, "use_mems": use_mems, } # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) return inputs @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFXLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFXLNetLMHeadModelOutput | tuple[tf.Tensor]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. Return: Examples: ```python >>> import tensorflow as tf >>> import numpy as np >>> from transformers import AutoTokenizer, TFXLNetLMHeadModel >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased") >>> model = TFXLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased") >>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very ", add_special_tokens=True))[ ... None, : ... ] # We will predict the masked token >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1])) >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> target_mapping = np.zeros( ... (1, 1, input_ids.shape[1]) ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model( ... input_ids, ... perm_mask=tf.constant(perm_mask, dtype=tf.float32), ... target_mapping=tf.constant(target_mapping, dtype=tf.float32), ... ) >>> next_token_logits = outputs[ ... 0 ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ```""" transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = transformer_outputs[0] logits = self.lm_loss(hidden_state, training=training) loss = None if labels is not None: loss = self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetLMHeadModelOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "lm_loss", None) is not None: with tf.name_scope(self.lm_loss.name): self.lm_loss.build(None) @add_start_docstrings( """ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForSequenceClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFXLNetForSequenceClassificationOutput | tuple[tf.Tensor]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForSequenceClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNET Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForMultipleChoiceOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFXLNetForMultipleChoiceOutput | tuple[tf.Tensor]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_input_mask = tf.reshape(input_mask, (-1, seq_length)) if input_mask is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, mems, perm_mask, target_mapping, flat_token_type_ids, flat_input_mask, head_mask, flat_inputs_embeds, use_mems, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForMultipleChoiceOutput( loss=loss, logits=reshaped_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForTokenClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFXLNetForTokenClassificationOutput | tuple[tf.Tensor]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.classifier(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForTokenClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForQuestionAnsweringSimpleOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFXLNetForQuestionAnsweringSimpleOutput | tuple[tf.Tensor]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForQuestionAnsweringSimpleOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) __all__ = [ "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ]