# coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Zamba model.""" import math from typing import Any, Callable, Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import auto_docstring, logging from ...utils.deprecation import deprecate_kwarg from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available from .configuration_zamba import ZambaConfig if is_mamba_ssm_available(): from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn from mamba_ssm.ops.triton.selective_state_update import selective_state_update else: selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None is_fast_path_available = all( (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn) ) logger = logging.get_logger(__name__) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Zamba class ZambaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ ZambaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class ZambaHybridDynamicCache: """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ is_compileable = False def __init__(self, config, batch_size, dtype=torch.float16, device=None): self.dtype = dtype self.is_compileable = False self.layers_block_type = config.layers_block_type self.has_previous_state = False # only used by mamba self.intermediate_size = config.mamba_expand * config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.n_mamba_heads = config.n_mamba_heads self.conv_states = [] self.ssm_states = [] self.transformer_layers = [] self._modules = {} self._parameters = {} self._buffers = {} for i in range(config.num_hidden_layers): self.conv_states += [ torch.zeros(batch_size, self.intermediate_size, self.conv_kernel_size, device=device, dtype=dtype) ] cache_shape = ( batch_size, self.n_mamba_heads, self.intermediate_size // self.n_mamba_heads, self.ssm_state_size, ) self.ssm_states += [torch.zeros(cache_shape, device=device, dtype=dtype)] if self.layers_block_type[i] == "hybrid": self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] def __len__(self): return len(self.key_cache) def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]: return self.key_cache[layer_idx], self.value_cache[layer_idx] # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.update def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, cache_kwargs: Optional[dict[str, Any]] = None, ) -> tuple[torch.Tensor, torch.Tensor]: # Update the cache if self.key_cache[layer_idx].shape[-1] == 0: self.key_cache[layer_idx] = key_states self.value_cache[layer_idx] = value_states else: self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) return self.key_cache[layer_idx], self.value_cache[layer_idx] # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.reorder_cache def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" for layer_idx in range(len(self.key_cache)): device = self.key_cache[layer_idx].device self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.value_cache[layer_idx].device self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.conv_states[layer_idx].device self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) device = self.ssm_states[layer_idx].device self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.get_seq_length def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx: return 0 return self.key_cache[layer_idx].shape[-2] def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class ZambaAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://huggingface.co/papers/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) """ def __init__(self, config: ZambaConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_hidden_size = config.attention_hidden_size self.head_dim = config.attention_head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.scaling = (self.head_dim / 2) ** -0.5 self.is_causal = True self.attention_dropout = config.attention_dropout self.q_proj = nn.Linear(config.attention_hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor], past_key_values: Optional[ZambaHybridDynamicCache] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if past_key_values is not None: key_states, value_states = past_key_values.update(key_states, value_states, layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class ZambaMambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) This module differs from `transformers.models.mamba.modeling_mamba.MambaMixer` in two ways: - Added multi-head: the output of `self.in_proj` is split into `self.n_mamba_heads` heads, and each head undergoes an independent forward pass, identical to the original `MambaMixer`, up until the pre-activations of `self.out_proj`. The pre-activations, coming from different mamba heads, are then concatenated and fed into `self.out_proj`. """ def __init__(self, config: ZambaConfig, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = config.mamba_expand * config.hidden_size self.time_step_rank = config.mamba_dt_rank self.n_mamba_heads = config.n_mamba_heads self.mamba_head_dim = self.intermediate_size // self.n_mamba_heads self.use_conv_bias = config.mamba_conv_bias self.use_bias = config.mamba_proj_bias self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=self.use_conv_bias, kernel_size=self.conv_kernel_size, groups=self.intermediate_size, padding=self.conv_kernel_size - 1, ) self.activation = config.hidden_mamba_act self.act = ACT2FN[config.hidden_mamba_act] self.use_fast_kernels = config.use_mamba_kernels # projection of the input hidden states self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias) # weight associated to the selective projection used to make dt, B and C input dependent # each mamba head is processed independently self.x_proj_weight = nn.Parameter( torch.zeros( self.n_mamba_heads, self.time_step_rank + self.ssm_state_size * 2, self.mamba_head_dim, ) ) # time step projection (discretization) self.dt_proj_weight = nn.Parameter( (torch.zeros(self.n_mamba_heads, self.mamba_head_dim, self.time_step_rank) - 0.5) * 2 / self.time_step_rank**0.5 ) self.dt_proj_bias = nn.Parameter(torch.zeros(self.n_mamba_heads, self.mamba_head_dim)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(self.intermediate_size, -1).contiguous() self.A_log = nn.Parameter(torch.log(A).reshape(self.n_mamba_heads, self.mamba_head_dim, -1)) self.D = nn.Parameter(torch.ones(self.n_mamba_heads, self.mamba_head_dim)) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias) if not is_fast_path_available: logger.warning_once( "The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: ZambaHybridDynamicCache = None, attention_mask=None ): batch_size, seq_len, _ = hidden_states.shape use_precomputed_states = cache_params is not None and cache_params.has_previous_state and seq_len == 1 # 1. Gated linear projection projected_states = self.in_proj(hidden_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if use_precomputed_states: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_states[self.layer_idx], conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) if cache_params is not None: conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx].copy_(conv_states) hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. SSM sequence transformation # 3.a. input varying initialization of time_step, B and C hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2) A = -torch.exp(self.A_log.float()) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = self.dt_proj_bias.float() if self.dt_proj_bias is not None else None scan_outputs = torch.empty((batch_size, 0, seq_len), device=hidden_states.device, dtype=hidden_states.dtype) if use_precomputed_states: for n in range(self.n_mamba_heads): scan_outputs_ = selective_state_update( cache_params.ssm_states[self.layer_idx][:, n], hidden_states[n, ..., 0], discrete_time_step[n, ..., 0], A[n], B[n, :, 0], C[n, :, 0], self.D[n], gate[n, ..., 0], time_proj_bias[n], dt_softplus=True, ).unsqueeze(-1) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1) else: ssm_state = torch.empty( (batch_size, 0, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=hidden_states.dtype, ) for n in range(self.n_mamba_heads): scan_outputs_, ssm_state_ = selective_scan_fn( hidden_states[n], discrete_time_step[n], A[n], B[n].transpose(1, 2), C[n].transpose(1, 2), self.D[n].float(), gate[n], time_proj_bias[n], delta_softplus=True, return_last_state=True, ) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1).contiguous() ssm_state = torch.cat((ssm_state, ssm_state_.unsqueeze(1)), dim=1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) return contextualized_states def slow_forward(self, input_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated linear projection projected_states = self.in_proj(input_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) use_cache = isinstance(cache_params, ZambaHybridDynamicCache) # 2. Convolution sequence transformation if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size: if self.training: # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass ssm_state = cache_params.ssm_states[self.layer_idx].clone() else: ssm_state = cache_params.ssm_states[self.layer_idx] ssm_state = ssm_state.to(hidden_states.device) if ( cache_params.has_previous_state and seq_len == 1 and cache_params.conv_states[self.layer_idx].shape[0] == batch_size ): conv_state = cache_params.conv_states[self.layer_idx] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) conv_state[:, :, -1] = hidden_states[:, :, 0] cache_params.conv_states[self.layer_idx] = conv_state hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) conv_state = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx] = conv_state hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) else: ssm_state = torch.zeros( (batch_size, self.n_mamba_heads, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype, ) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = (self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2)) + self.dt_proj_bias[ :, None, :, None ] discrete_time_step = nn.functional.softplus(discrete_time_step) # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) A = -torch.exp(self.A_log.float()) discrete_A = torch.exp(A[:, None, :, None, :] * discrete_time_step[:, :, :, :, None]) discrete_B = discrete_time_step[:, :, :, :, None] * B[:, :, None, :, :].float() deltaB_u = discrete_B * hidden_states[:, :, :, :, None].float() # 3.c perform the recurrence y ← SSM(A, B, C)(x) scan_outputs = [] for i in range(seq_len): ssm_state = discrete_A[:, :, :, i, :].transpose(0, 1) * ssm_state + deltaB_u[:, :, :, i, :].transpose(0, 1) scan_output = torch.matmul(ssm_state.transpose(0, 1).to(dtype), C[:, :, i, :].unsqueeze(-1)) scan_outputs.append(scan_output[:, :, :, 0]) scan_output = torch.stack(scan_outputs, dim=-1) scan_output = scan_output + (hidden_states * self.D[:, None, :, None]) scan_output = scan_output * self.act(gate) if use_cache: cache_params.ssm_states[self.layer_idx] = ssm_state # 4. Final linear projection contextualized_states = self.out_proj( scan_output.transpose(0, 1).reshape(batch_size, -1, seq_len).transpose(1, 2) ) return contextualized_states def forward(self, hidden_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): if self.use_fast_kernels: if not is_fast_path_available or "cuda" not in self.x_proj_weight.device.type: raise ValueError( "Fast Mamba kernels are not available. Make sure to they are installed and that " "the mamba module is on a CUDA device. lease run 'pip install causal-conv1d>=1.2.0' " "and 'pip install mamba-ssm', or set use_mamba_kernels=False in the model's config." ) return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask=attention_mask) return self.slow_forward(hidden_states, cache_params, attention_mask=attention_mask) # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Zamba class ZambaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class ZambaAttentionDecoderLayer(nn.Module): def __init__(self, config: ZambaConfig, layer_idx: Optional[int] = None): super().__init__() self.self_attn = ZambaAttention(config, layer_idx) self.feed_forward = ZambaMLP(config) self.input_layernorm = ZambaRMSNorm(config.attention_hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, original_hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`. This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The concatenated tensor is then used as input of the pre-attention RMSNorm (see fig. 2 in https://huggingface.co/papers/2405.16712). layer_idx (`int`): layer_idx in the forward pass. Used to distinguish Zamba's tied transformer layers. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_values (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1) hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, **kwargs, ) # feed-forward (MLP) hidden_states = self.pre_ff_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class ZambaMambaDecoderLayer(nn.Module): def __init__(self, config: ZambaConfig, layer_idx: int): super().__init__() self.mamba = ZambaMambaMixer(config=config, layer_idx=layer_idx) self.input_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, transformer_hidden_states: Optional[torch.Tensor] = None, **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_values (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states # `transformer_hidden_states` is the output from shared transformer + linear layer (see fig. 2 in https://huggingface.co/papers/2405.16712). # `transformer_hidden_states` is then added to the input to the mamba layer below (as described in eq. (6) of https://huggingface.co/papers/2405.16712). hidden_states = ( hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states ) hidden_states = self.input_layernorm(hidden_states) hidden_states = self.mamba( hidden_states=hidden_states, cache_params=past_key_values, attention_mask=attention_mask, ) self_attn_weights = None # residual connection after mamba hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (past_key_values,) return outputs class ZambaHybridLayer(nn.Module): def __init__(self, shared_transf: ZambaAttentionDecoderLayer, linear: nn.Linear, mamba: ZambaMambaDecoderLayer): super().__init__() self.shared_transf = shared_transf self.linear = linear self.mamba_decoder = mamba @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer. layer_idx (`int`): layer number. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_values (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ layer_outputs = self.shared_transf( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=causal_mask, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) transformer_hidden_states = layer_outputs[0] if output_attentions: self_attn_weights = layer_outputs[1] transformer_hidden_states = self.linear(transformer_hidden_states) layer_outputs = self.mamba_decoder( hidden_states, transformer_hidden_states=transformer_hidden_states, attention_mask=attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) if output_attentions: layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:] return layer_outputs @auto_docstring class ZambaPreTrainedModel(PreTrainedModel): config: ZambaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["ZambaAttentionDecoderLayer", "ZambaMambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = False _supports_sdpa = False # Note: only supports ZambaHybridDynamicCache _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, ZambaRMSNorm): module.weight.data.fill_(1.0) elif isinstance(module, ZambaMambaMixer): module.x_proj_weight.data.normal_(mean=0.0, std=std) dt_init_std = self.config.mamba_dt_rank**-0.5 nn.init.uniform_(module.dt_proj_weight, -dt_init_std, dt_init_std) mamba_head_dim = self.config.mamba_expand * self.config.hidden_size // self.config.n_mamba_heads dt = torch.exp( torch.rand(self.config.n_mamba_heads, mamba_head_dim) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) module.dt_proj_bias.data.copy_(inv_dt) A = torch.arange(1, module.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(module.intermediate_size, -1).contiguous() module.A_log.data.copy_(torch.log(A).reshape(module.n_mamba_heads, module.mamba_head_dim, -1)) module.D.data.fill_(1.0) @auto_docstring class ZambaModel(ZambaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ZambaDecoderLayer`] Args: config: ZambaConfig """ def __init__(self, config: ZambaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) block = ZambaAttentionDecoderLayer(config) mamba_layers = [] linear_layers = [] self.layers_block_type = config.layers_block_type for i in range(config.num_hidden_layers): if config.layers_block_type[i] == "mamba": mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i)) elif config.layers_block_type[i] == "hybrid": linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)) mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i)) mamba_layers = iter(mamba_layers) linear_layers = iter(linear_layers) layers = [] self._tied_weights_keys = [] for layer_id, layer_type in enumerate(self.layers_block_type): if layer_type == "hybrid": prefix_name = f"layers.{layer_id}." tied_keys = [ "shared_transf.self_attn.q_proj.weight", "shared_transf.self_attn.k_proj.weight", "shared_transf.self_attn.v_proj.weight", "shared_transf.self_attn.o_proj.weight", "shared_transf.feed_forward.gate_proj.weight", "shared_transf.feed_forward.up_proj.weight", "shared_transf.feed_forward.down_proj.weight", "shared_transf.input_layernorm.weight", "shared_transf.pre_ff_layernorm.weight", ] self._tied_weights_keys = [*self._tied_weights_keys, *[prefix_name + key for key in tied_keys]] layers.append(ZambaHybridLayer(block, next(linear_layers), next(mamba_layers))) else: layers.append(next(mamba_layers)) self.layers = nn.ModuleList(layers) self._attn_implementation = config._attn_implementation self.final_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds original_hidden_states = torch.clone(inputs_embeds) # original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer if use_cache and past_key_values is None: logger.warning_once( "Zamba requires an initialized `ZambaHybridDynamicCache` to return a cache. None was " "provided, so no cache will be returned." ) if cache_position is None: cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for layer_idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, original_hidden_states, layer_idx, attention_mask, causal_mask, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = layer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, causal_mask=causal_mask, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() # Copied from transformers.models.jamba.modeling_jamba.JambaModel._update_causal_mask def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = cache_position[-1] + 1 causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask # Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM with Jamba->Zamba, JAMBA->ZAMBA class ZambaForCausalLM(ZambaPreTrainedModel, GenerationMixin): def __init__(self, config: ZambaConfig): super().__init__(config) self.model = ZambaModel(config) self._tied_weights_keys = ["lm_head.weight", *self.model._tied_weights_keys] self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> Union[tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, ZambaForCausalLM >>> model = ZambaForCausalLM.from_pretrained("Zyphra/Zamba-7B-v1") >>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba-7B-v1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): # Overwritten -- has a unique cache type, `ZambaHybridDynamicCache` empty_past_kv = past_key_values is None # Omit tokens covered by past_key_values if not empty_past_kv: # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case. # (we can't check exception 3 while compiling) if ( inputs_embeds is not None # Exception 1 or cache_position[-1] >= input_ids.shape[1] # Exception 3 ): input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] else: past_key_values = ZambaHybridDynamicCache( self.config, input_ids.shape[0], dtype=self.dtype, device=self.device ) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if not empty_past_kv: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and empty_past_kv: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "logits_to_keep": self.config.num_logits_to_keep, "cache_position": cache_position, } ) # Forward ALL kwargs that are uninitialized (e.g. `use_cache`). for key, value in kwargs.items(): if key not in model_inputs: model_inputs[key] = value return model_inputs @auto_docstring( custom_intro=""" The Zamba Model with a sequence classification head on top (linear layer). [`ZambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """ ) class ZambaForSequenceClassification(ZambaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = ZambaModel(config) self._tied_weights_keys = self.model._tied_weights_keys self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = ["ZambaForCausalLM", "ZambaForSequenceClassification", "ZambaModel", "ZambaPreTrainedModel"]