# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from collections import defaultdict from functools import cached_property from typing import TYPE_CHECKING, Optional, Union from packaging import version from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import ( ACCELERATE_MIN_VERSION, is_accelerate_available, is_bitsandbytes_available, is_torch_available, is_torch_hpu_available, is_torch_npu_available, is_torch_xpu_available, logging, ) if is_torch_available(): import torch from ..pytorch_utils import Conv1D logger = logging.get_logger(__name__) class Bnb4BitHfQuantizer(HfQuantizer): """ 4-bit quantization from bitsandbytes.py quantization method: before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving: from state dict, as usual; saves weights and `quant_state` components loading: need to locate `quant_state` components and pass to Param4bit constructor """ use_keep_in_fp32_modules = True requires_parameters_quantization = True requires_calibration = False required_packages = ["bitsandbytes", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules # This describes the additional items that are saved on the state dict (on the params themselves) self.bnb_keys = [ f"quant_state.bitsandbytes__{self.quantization_config.bnb_4bit_quant_type}", "absmax", "quant_map", ] if self.quantization_config.bnb_4bit_use_double_quant: self.bnb_keys.extend(["nested_absmax", "nested_quant_map"]) def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError( f"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" ) if not is_bitsandbytes_available(check_library_only=True): raise ImportError( "Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" ) if not is_torch_available(): raise ImportError( "The bitsandbytes library requires PyTorch but it was not found in your environment. " "You can install it with `pip install torch`." ) # `bitsandbytes` versions older than 0.43.1 eagerly require CUDA at import time, # so those versions of the library are practically only available when CUDA is too. if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.43.1"): if not torch.cuda.is_available(): raise ImportError( "The installed version of bitsandbytes (<0.43.1) requires CUDA, but CUDA is not available. " "You may need to install PyTorch with CUDA support or upgrade bitsandbytes to >=0.43.1." ) from ..integrations import validate_bnb_backend_availability from ..utils import is_bitsandbytes_multi_backend_available bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available() validate_bnb_backend_availability(raise_exception=True) if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) device_map = kwargs.get("device_map") if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_lm_head = { key: device_map[key] for key in device_map if key not in self.modules_to_not_convert } if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled: pass elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values(): raise ValueError( "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " "in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to " "`from_pretrained`. Check " "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " "for more details. " ) def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"): from accelerate.utils import CustomDtype if target_dtype != torch.int8: logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") return CustomDtype.INT4 else: raise ValueError( "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library," "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map" "calculation. You may encounter unexpected behavior, or pass your own device map" ) def update_unexpected_keys(self, model, unexpected_keys: list[str]) -> list[str]: return [k for k in unexpected_keys if not any(k.endswith(x) for x in self.bnb_keys)] def param_needs_quantization(self, model: "PreTrainedModel", param_name: str, **kwargs) -> bool: import bitsandbytes as bnb # They are on the params themselves, so we cannot easily extract the module from the name if any(param_name.endswith(x) for x in self.bnb_keys): return True module, name = get_module_from_name(model, param_name) return isinstance(module, bnb.nn.Linear4bit) and name != "bias" def get_param_name(self, param_name: str) -> str: """ Get the right param_name in order to get the module associated with the param. This is useful for quantized stats lile absmax or quant_map as we need to update the param_name to get the module as they are stored in ...weight.absmax. """ if self.pre_quantized: # We need to get the param name of quantized weights and not its components. Otherwise, we won't be able to get the nn.Module associated. if any(param_name.endswith(x) for x in self.bnb_keys): param_name = ( param_name.rsplit(".", 1)[0] if "quant_state." not in param_name else param_name.rsplit(".", 2)[0] ) return param_name def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", **kwargs, ): import bitsandbytes as bnb full_name = param_name # update param name to get the weights instead of the quantized stats param_name = self.get_param_name(param_name) module, tensor_name = get_module_from_name(model, param_name) # `torch.Tensor.to()` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)). if isinstance(target_device, int) and is_torch_npu_available(): target_device = f"npu:{target_device}" # construct `new_value` for the module._parameters[tensor_name] if self.pre_quantized: module_name = param_name.rsplit(".", 1)[0] # Save the states for later quantization when they are all gathered if not hasattr(self, "param_quant_stats"): self.param_quant_stats = defaultdict(dict) self.param_quant_stats[module_name].update({full_name: param_value}) # We are ready for quantization in this case (note, the +1 is for the weight itself) if len(self.param_quant_stats[module_name]) == len(self.bnb_keys) + 1: param_kwargs = {} if self.is_bnb_supports_quant_storage_module: param_kwargs["module"] = module weight = self.param_quant_stats[module_name].pop(f"{module_name}.weight") new_value = bnb.nn.Params4bit.from_prequantized( data=weight, quantized_stats=self.param_quant_stats[module_name], requires_grad=False, device=target_device, **param_kwargs, ) # Set it module._parameters[tensor_name] = new_value # Delete the states del self.param_quant_stats[module_name] else: new_value = param_value.to("cpu") old_value = getattr(module, tensor_name) # Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls, Conv1D): new_value = new_value.T kwargs = old_value.__dict__ kwargs.pop("_is_hf_initialized", None) new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) module._parameters[tensor_name] = new_value # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory def adjust_max_memory(self, max_memory: dict[str, Union[int, str]]) -> dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_dtype def update_dtype(self, dtype: "torch.dtype") -> "torch.dtype": if dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding dtype=%s with `dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own dtype to specify the dtype of the remaining non-linear layers or pass" " dtype=torch.float16 to remove this warning.", dtype, ) dtype = torch.float16 return dtype def update_device_map(self, device_map): if device_map is None: if torch.cuda.is_available(): device_map = {"": torch.cuda.current_device()} elif is_torch_npu_available(): device_map = {"": f"npu:{torch.npu.current_device()}"} elif is_torch_hpu_available(): device_map = {"": f"hpu:{torch.hpu.current_device()}"} elif is_torch_xpu_available(): device_map = {"": torch.xpu.current_device()} else: device_map = {"": "cpu"} logger.info( "The device_map was not initialized. " f"Setting device_map to {device_map}. " "If you want to use the model for inference, please set device_map ='auto' " ) return device_map # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: Optional[list[str]] = None, **kwargs, ): from ..integrations import replace_with_bnb_linear llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.llm_int8_skip_modules, keep_in_fp32_modules ) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) model.config.quantization_config = self.quantization_config # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model.is_loaded_in_4bit = True model.is_4bit_serializable = self.is_serializable() return model def is_serializable(self, safe_serialization=None): _is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3") if not _is_4bit_serializable: logger.warning( "You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. " "If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed." ) return False return True @cached_property def is_bnb_supports_quant_storage_module(self) -> bool: """ determines if the current version of bitsandbytes supports the `module` parameter in `Params4bit.from_prequantized` :return: """ return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.43.3") @property def is_trainable(self) -> bool: return True def _dequantize(self, model): from ..integrations import dequantize_and_replace model = dequantize_and_replace( model, self.modules_to_not_convert, quantization_config=self.quantization_config ) return model