#!/usr/bin/env python # -*- coding: utf-8 -*- # # yfinance - market data downloader # https://github.com/ranaroussi/yfinance # # Copyright 2017-2019 Ran Aroussi # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import datetime as _datetime import logging import re import re as _re import sys as _sys import threading from functools import wraps from inspect import getmembers from types import FunctionType from typing import List, Optional import numpy as _np import pandas as _pd import pytz as _tz from dateutil.relativedelta import relativedelta from pytz import UnknownTimeZoneError from yfinance import const # From https://stackoverflow.com/a/59128615 def attributes(obj): disallowed_names = { name for name, value in getmembers(type(obj)) if isinstance(value, FunctionType)} return { name: getattr(obj, name) for name in dir(obj) if name[0] != '_' and name not in disallowed_names and hasattr(obj, name)} # Logging # Note: most of this logic is adding indentation with function depth, # so that DEBUG log is readable. class IndentLoggerAdapter(logging.LoggerAdapter): def process(self, msg, kwargs): if get_yf_logger().isEnabledFor(logging.DEBUG): i = ' ' * self.extra['indent'] if not isinstance(msg, str): msg = str(msg) msg = '\n'.join([i + m for m in msg.split('\n')]) return msg, kwargs _indentation_level = threading.local() class IndentationContext: def __init__(self, increment=1): self.increment = increment def __enter__(self): _indentation_level.indent = getattr(_indentation_level, 'indent', 0) + self.increment def __exit__(self, exc_type, exc_val, exc_tb): _indentation_level.indent -= self.increment def get_indented_logger(name=None): # Never cache the returned value! Will break indentation. return IndentLoggerAdapter(logging.getLogger(name), {'indent': getattr(_indentation_level, 'indent', 0)}) def log_indent_decorator(func): @wraps(func) def wrapper(*args, **kwargs): logger = get_indented_logger('yfinance') logger.debug(f'Entering {func.__name__}()') with IndentationContext(): result = func(*args, **kwargs) logger.debug(f'Exiting {func.__name__}()') return result return wrapper class MultiLineFormatter(logging.Formatter): # The 'fmt' formatting further down is only applied to first line # of log message, specifically the padding after %level%. # For multi-line messages, need to manually copy over padding. def __init__(self, fmt): super().__init__(fmt) # Extract amount of padding match = _re.search(r'%\(levelname\)-(\d+)s', fmt) self.level_length = int(match.group(1)) if match else 0 def format(self, record): original = super().format(record) lines = original.split('\n') levelname = lines[0].split(' ')[0] if len(lines) <= 1: return original else: # Apply padding to all lines below first formatted = [lines[0]] if self.level_length == 0: padding = ' ' * len(levelname) else: padding = ' ' * self.level_length padding += ' ' # +1 for space between level and message formatted.extend(padding + line for line in lines[1:]) return '\n'.join(formatted) yf_logger = None yf_log_indented = False class YFLogFormatter(logging.Filter): # Help be consistent with structuring YF log messages def filter(self, record): msg = record.msg if hasattr(record, 'yf_cat'): msg = f"{record.yf_cat}: {msg}" if hasattr(record, 'yf_interval'): msg = f"{record.yf_interval}: {msg}" if hasattr(record, 'yf_symbol'): msg = f"{record.yf_symbol}: {msg}" record.msg = msg return True def get_yf_logger(): global yf_logger global yf_log_indented if yf_log_indented: yf_logger = get_indented_logger('yfinance') elif yf_logger is None: yf_logger = logging.getLogger('yfinance') yf_logger.addFilter(YFLogFormatter()) return yf_logger def enable_debug_mode(): global yf_logger global yf_log_indented if not yf_log_indented: yf_logger = logging.getLogger('yfinance') yf_logger.setLevel(logging.DEBUG) if yf_logger.handlers is None or len(yf_logger.handlers) == 0: h = logging.StreamHandler() # Ensure different level strings don't interfere with indentation formatter = MultiLineFormatter(fmt='%(levelname)-8s %(message)s') h.setFormatter(formatter) yf_logger.addHandler(h) yf_logger = get_indented_logger() yf_log_indented = True def is_isin(string): return bool(_re.match("^([A-Z]{2})([A-Z0-9]{9})([0-9])$", string)) def get_all_by_isin(isin): if not (is_isin(isin)): raise ValueError("Invalid ISIN number") # Deferred this to prevent circular imports from .search import Search search = Search(query=isin, max_results=1) # Extract the first quote and news ticker = search.quotes[0] if search.quotes else {} news = search.news return { 'ticker': { 'symbol': ticker.get('symbol', ''), 'shortname': ticker.get('shortname', ''), 'longname': ticker.get('longname', ''), 'type': ticker.get('quoteType', ''), 'exchange': ticker.get('exchDisp', ''), }, 'news': news } def get_ticker_by_isin(isin): data = get_all_by_isin(isin) return data.get('ticker', {}).get('symbol', '') def get_info_by_isin(isin): data = get_all_by_isin(isin) return data.get('ticker', {}) def get_news_by_isin(isin): data = get_all_by_isin(isin) return data.get('news', {}) def empty_df(index=None): if index is None: index = [] empty = _pd.DataFrame(index=index, data={ 'Open': _np.nan, 'High': _np.nan, 'Low': _np.nan, 'Close': _np.nan, 'Adj Close': _np.nan, 'Volume': _np.nan}) empty.index.name = 'Date' return empty def empty_earnings_dates_df(): empty = _pd.DataFrame( columns=["Symbol", "Company", "Earnings Date", "EPS Estimate", "Reported EPS", "Surprise(%)"]) return empty def build_template(data): """ build_template returns the details required to rebuild any of the yahoo finance financial statements in the same order as the yahoo finance webpage. The function is built to be used on the "FinancialTemplateStore" json which appears in any one of the three yahoo finance webpages: "/financials", "/cash-flow" and "/balance-sheet". Returns: - template_annual_order: The order that annual figures should be listed in. - template_ttm_order: The order that TTM (Trailing Twelve Month) figures should be listed in. - template_order: The order that quarterlies should be in (note that quarterlies have no pre-fix - hence why this is required). - level_detail: The level of each individual line item. E.g. for the "/financials" webpage, "Total Revenue" is a level 0 item and is the summation of "Operating Revenue" and "Excise Taxes" which are level 1 items. """ template_ttm_order = [] # Save the TTM (Trailing Twelve Months) ordering to an object. template_annual_order = [] # Save the annual ordering to an object. template_order = [] # Save the ordering to an object (this can be utilized for quarterlies) level_detail = [] # Record the level of each line item of the income statement ("Operating Revenue" and "Excise Taxes" sum to return "Total Revenue" we need to keep track of this) def traverse(node, level): """ A recursive function that visits a node and its children. Args: node: The current node in the data structure. level: The depth of the current node in the data structure. """ if level > 5: # Stop when level is above 5 return template_ttm_order.append(f"trailing{node['key']}") template_annual_order.append(f"annual{node['key']}") template_order.append(f"{node['key']}") level_detail.append(level) if 'children' in node: # Check if the node has children for child in node['children']: # If yes, traverse each child traverse(child, level + 1) # Increment the level by 1 for each child for key in data['template']: # Loop through the data traverse(key, 0) # Call the traverse function with initial level being 0 return template_ttm_order, template_annual_order, template_order, level_detail def retrieve_financial_details(data): """ retrieve_financial_details returns all of the available financial details under the "QuoteTimeSeriesStore" for any of the following three yahoo finance webpages: "/financials", "/cash-flow" and "/balance-sheet". Returns: - TTM_dicts: A dictionary full of all of the available Trailing Twelve Month figures, this can easily be converted to a pandas dataframe. - Annual_dicts: A dictionary full of all of the available Annual figures, this can easily be converted to a pandas dataframe. """ TTM_dicts = [] # Save a dictionary object to store the TTM financials. Annual_dicts = [] # Save a dictionary object to store the Annual financials. for key, timeseries in data.get('timeSeries', {}).items(): # Loop through the time series data to grab the key financial figures. try: if timeseries: time_series_dict = {'index': key} for each in timeseries: # Loop through the years if not each: continue time_series_dict[each.get('asOfDate')] = each.get('reportedValue') if 'trailing' in key: TTM_dicts.append(time_series_dict) elif 'annual' in key: Annual_dicts.append(time_series_dict) except KeyError as e: print(f"An error occurred while processing the key: {e}") return TTM_dicts, Annual_dicts def format_annual_financial_statement(level_detail, annual_dicts, annual_order, ttm_dicts=None, ttm_order=None): """ format_annual_financial_statement formats any annual financial statement Returns: - _statement: A fully formatted annual financial statement in pandas dataframe. """ Annual = _pd.DataFrame.from_dict(annual_dicts).set_index("index") Annual = Annual.reindex(annual_order) Annual.index = Annual.index.str.replace(r'annual', '') # Note: balance sheet is the only financial statement with no ttm detail if ttm_dicts and ttm_order: TTM = _pd.DataFrame.from_dict(ttm_dicts).set_index("index").reindex(ttm_order) # Add 'TTM' prefix to all column names, so if combined we can tell # the difference between actuals and TTM (similar to yahoo finance). TTM.columns = ['TTM ' + str(col) for col in TTM.columns] TTM.index = TTM.index.str.replace(r'trailing', '') _statement = Annual.merge(TTM, left_index=True, right_index=True) else: _statement = Annual _statement.index = camel2title(_statement.T.index) _statement['level_detail'] = level_detail _statement = _statement.set_index([_statement.index, 'level_detail']) _statement = _statement[sorted(_statement.columns, reverse=True)] _statement = _statement.dropna(how='all') return _statement def format_quarterly_financial_statement(_statement, level_detail, order): """ format_quarterly_financial_statements formats any quarterly financial statement Returns: - _statement: A fully formatted quarterly financial statement in pandas dataframe. """ _statement = _statement.reindex(order) _statement.index = camel2title(_statement.T) _statement['level_detail'] = level_detail _statement = _statement.set_index([_statement.index, 'level_detail']) _statement = _statement[sorted(_statement.columns, reverse=True)] _statement = _statement.dropna(how='all') _statement.columns = _pd.to_datetime(_statement.columns).date return _statement def camel2title(strings: List[str], sep: str = ' ', acronyms: Optional[List[str]] = None) -> List[str]: if isinstance(strings, str) or not hasattr(strings, '__iter__'): raise TypeError("camel2title() 'strings' argument must be iterable of strings") if len(strings) == 0: return strings if not isinstance(strings[0], str): raise TypeError("camel2title() 'strings' argument must be iterable of strings") if not isinstance(sep, str) or len(sep) != 1: raise ValueError(f"camel2title() 'sep' argument = '{sep}' must be single character") if _re.match("[a-zA-Z0-9]", sep): raise ValueError(f"camel2title() 'sep' argument = '{sep}' cannot be alpha-numeric") if _re.escape(sep) != sep and sep not in {' ', '-'}: # Permit some exceptions, I don't understand why they get escaped raise ValueError(f"camel2title() 'sep' argument = '{sep}' cannot be special character") if acronyms is None: pat = "([a-z])([A-Z])" rep = rf"\g<1>{sep}\g<2>" return [_re.sub(pat, rep, s).title() for s in strings] # Handling acronyms requires more care. Assumes Yahoo returns acronym strings upper-case if isinstance(acronyms, str) or not hasattr(acronyms, '__iter__') or not isinstance(acronyms[0], str): raise TypeError("camel2title() 'acronyms' argument must be iterable of strings") for a in acronyms: if not _re.match("^[A-Z]+$", a): raise ValueError(f"camel2title() 'acronyms' argument must only contain upper-case, but '{a}' detected") # Insert 'sep' between lower-then-upper-case pat = "([a-z])([A-Z])" rep = rf"\g<1>{sep}\g<2>" strings = [_re.sub(pat, rep, s) for s in strings] # Insert 'sep' after acronyms for a in acronyms: pat = f"({a})([A-Z][a-z])" rep = rf"\g<1>{sep}\g<2>" strings = [_re.sub(pat, rep, s) for s in strings] # Apply str.title() to non-acronym words strings = [s.split(sep) for s in strings] strings = [[j.title() if j not in acronyms else j for j in s] for s in strings] strings = [sep.join(s) for s in strings] return strings def snake_case_2_camelCase(s): sc = s.split('_')[0] + ''.join(x.title() for x in s.split('_')[1:]) return sc def _parse_user_dt(dt, exchange_tz): if isinstance(dt, int): dt = _pd.Timestamp(dt, unit="s", tz=exchange_tz) else: # Convert str/date -> datetime, set tzinfo=exchange, get timestamp: if isinstance(dt, str): dt = _datetime.datetime.strptime(str(dt), '%Y-%m-%d') if isinstance(dt, _datetime.date) and not isinstance(dt, _datetime.datetime): dt = _datetime.datetime.combine(dt, _datetime.time(0)) if isinstance(dt, _datetime.datetime): if dt.tzinfo is None: # Assume user is referring to exchange's timezone dt = _pd.Timestamp(dt).tz_localize(exchange_tz) else: dt = _pd.Timestamp(dt).tz_convert(exchange_tz) else: # if we reached here, then it hasn't been any known type raise ValueError(f"Unable to parse input dt {dt} of type {type(dt)}") return dt def _interval_to_timedelta(interval): if interval[-1] == "d": return relativedelta(days=int(interval[:-1])) elif interval[-2:] == "wk": return relativedelta(weeks=int(interval[:-2])) elif interval[-2:] == "mo": return relativedelta(months=int(interval[:-2])) elif interval[-1] == "y": return relativedelta(years=int(interval[:-1])) else: return _pd.Timedelta(interval) def is_valid_period_format(period): """Check if the provided period has a valid format.""" if period is None: return False # Regex pattern to match valid period formats like '1d', '2wk', '3mo', '1y' valid_pattern = r"^[1-9]\d*(d|wk|mo|y)$" return bool(re.match(valid_pattern, period)) def auto_adjust(data): col_order = data.columns df = data.copy() ratio = (df["Adj Close"] / df["Close"]).to_numpy() df["Adj Open"] = df["Open"] * ratio df["Adj High"] = df["High"] * ratio df["Adj Low"] = df["Low"] * ratio df.drop( ["Open", "High", "Low", "Close"], axis=1, inplace=True) df.rename(columns={ "Adj Open": "Open", "Adj High": "High", "Adj Low": "Low", "Adj Close": "Close" }, inplace=True) return df[[c for c in col_order if c in df.columns]] def back_adjust(data): """ back-adjusted data to mimic true historical prices """ col_order = data.columns df = data.copy() ratio = df["Adj Close"] / df["Close"] df["Adj Open"] = df["Open"] * ratio df["Adj High"] = df["High"] * ratio df["Adj Low"] = df["Low"] * ratio df.drop( ["Open", "High", "Low", "Adj Close"], axis=1, inplace=True) df.rename(columns={ "Adj Open": "Open", "Adj High": "High", "Adj Low": "Low" }, inplace=True) return df[[c for c in col_order if c in df.columns]] def parse_quotes(data): timestamps = data["timestamp"] ohlc = data["indicators"]["quote"][0] volumes = ohlc["volume"] opens = ohlc["open"] closes = ohlc["close"] lows = ohlc["low"] highs = ohlc["high"] adjclose = closes if "adjclose" in data["indicators"]: adjclose = data["indicators"]["adjclose"][0]["adjclose"] quotes = _pd.DataFrame({"Open": opens, "High": highs, "Low": lows, "Close": closes, "Adj Close": adjclose, "Volume": volumes}) quotes.index = _pd.to_datetime(timestamps, unit="s") quotes.sort_index(inplace=True) return quotes def parse_actions(data): dividends = None capital_gains = None splits = None if "events" in data: if "dividends" in data["events"] and len(data["events"]['dividends']) > 0: dividends = _pd.DataFrame( data=list(data["events"]["dividends"].values())) dividends.set_index("date", inplace=True) dividends.index = _pd.to_datetime(dividends.index, unit="s") dividends.sort_index(inplace=True) if 'currency' in dividends.columns and (dividends['currency'] == '').all(): # Currency column useless, drop it. dividends = dividends.drop('currency', axis=1) dividends = dividends.rename(columns={'amount': 'Dividends'}) if "capitalGains" in data["events"] and len(data["events"]['capitalGains']) > 0: capital_gains = _pd.DataFrame( data=list(data["events"]["capitalGains"].values())) capital_gains.set_index("date", inplace=True) capital_gains.index = _pd.to_datetime(capital_gains.index, unit="s") capital_gains.sort_index(inplace=True) capital_gains.columns = ["Capital Gains"] if "splits" in data["events"] and len(data["events"]['splits']) > 0: splits = _pd.DataFrame( data=list(data["events"]["splits"].values())) splits.set_index("date", inplace=True) splits.index = _pd.to_datetime(splits.index, unit="s") splits.sort_index(inplace=True) splits["Stock Splits"] = splits["numerator"] / splits["denominator"] splits = splits[["Stock Splits"]] if dividends is None: dividends = _pd.DataFrame( columns=["Dividends"], index=_pd.DatetimeIndex([])) if capital_gains is None: capital_gains = _pd.DataFrame( columns=["Capital Gains"], index=_pd.DatetimeIndex([])) if splits is None: splits = _pd.DataFrame( columns=["Stock Splits"], index=_pd.DatetimeIndex([])) return dividends, splits, capital_gains def set_df_tz(df, interval, tz): if df.index.tz is None: df.index = df.index.tz_localize("UTC") df.index = df.index.tz_convert(tz) return df def fix_Yahoo_returning_prepost_unrequested(quotes, interval, tradingPeriods): # Sometimes Yahoo returns post-market data despite not requesting it. # Normally happens on half-day early closes. # # And sometimes returns pre-market data despite not requesting it. # E.g. some London tickers. tps_df = tradingPeriods.copy() tps_df["_date"] = tps_df.index.date quotes["_date"] = quotes.index.date idx = quotes.index.copy() quotes = quotes.merge(tps_df, how="left") quotes.index = idx # "end" = end of regular trading hours (including any auction) f_drop = quotes.index >= quotes["end"] f_drop = f_drop | (quotes.index < quotes["start"]) if f_drop.any(): # When printing report, ignore rows that were already NaNs: # f_na = quotes[["Open","Close"]].isna().all(axis=1) # n_nna = quotes.shape[0] - _np.sum(f_na) # n_drop_nna = _np.sum(f_drop & ~f_na) # quotes_dropped = quotes[f_drop] # if debug and n_drop_nna > 0: # print(f"Dropping {n_drop_nna}/{n_nna} intervals for falling outside regular trading hours") quotes = quotes[~f_drop] quotes = quotes.drop(["_date", "start", "end"], axis=1) return quotes def _dts_in_same_interval(dt1, dt2, interval): # Check if second date dt2 in interval starting at dt1 if interval == '1d': last_rows_same_interval = dt1.date() == dt2.date() elif interval == "1wk": last_rows_same_interval = (dt2 - dt1).days < 7 elif interval == "1mo": last_rows_same_interval = dt1.month == dt2.month elif interval == "3mo": shift = (dt1.month % 3) - 1 q1 = (dt1.month - shift - 1) // 3 + 1 q2 = (dt2.month - shift - 1) // 3 + 1 year_diff = dt2.year - dt1.year quarter_diff = q2 - q1 + 4*year_diff last_rows_same_interval = quarter_diff == 0 else: last_rows_same_interval = (dt2 - dt1) < _pd.Timedelta(interval) return last_rows_same_interval def fix_Yahoo_returning_live_separate(quotes, interval, tz_exchange, prepost, repair=False, currency=None): # Yahoo bug fix. If market is open today then Yahoo normally returns # todays data as a separate row from rest-of week/month interval in above row. # Seems to depend on what exchange e.g. crypto OK. # Fix = merge them together if interval[-1] not in ['m', 'h']: prepost = False dropped_row = None if len(quotes) > 1: dt1 = quotes.index[-1] dt2 = quotes.index[-2] if quotes.index.tz is None: dt1 = dt1.tz_localize("UTC") dt2 = dt2.tz_localize("UTC") dt1 = dt1.tz_convert(tz_exchange) dt2 = dt2.tz_convert(tz_exchange) if interval == "1d": # Similar bug in daily data except most data is simply duplicated # - exception is volume, *slightly* greater on final row (and matches website) if dt1.date() == dt2.date(): # Last two rows are on same day. Drop second-to-last row dropped_row = quotes.iloc[-2] quotes = _pd.concat([quotes.iloc[:-2], quotes.iloc[-1:]]) else: if _dts_in_same_interval(dt2, dt1, interval): # Last two rows are within same interval idx1 = quotes.index[-1] idx2 = quotes.index[-2] if idx1 == idx2: # Yahoo returning last interval duplicated, which means # Yahoo is not returning live data (phew!) return quotes, None if prepost: # Possibly dt1 is just start of post-market if dt1.second == 0: # assume post-market interval return quotes, None ss = quotes['Stock Splits'].iloc[-2:].replace(0,1).prod() if repair: # First, check if one row is ~100x the other. A £/pence mixup on LSE. # Avoid if a stock split near 100 if currency == 'KWF': # Kuwaiti Dinar divided into 1000 not 100 currency_divide = 1000 else: currency_divide = 100 # if ss < 75 or ss > 125: if abs(ss/currency_divide-1) > 0.25: ratio = quotes.loc[idx1, const._PRICE_COLNAMES_] / quotes.loc[idx2, const._PRICE_COLNAMES_] if ((ratio/currency_divide-1).abs() < 0.05).all(): # newer prices are 100x for c in const._PRICE_COLNAMES_: quotes.loc[idx2, c] *= 100 elif((ratio*currency_divide-1).abs() < 0.05).all(): # newer prices are 0.01x for c in const._PRICE_COLNAMES_: quotes.loc[idx2, c] *= 0.01 if _np.isnan(quotes.loc[idx2, "Open"]): quotes.loc[idx2, "Open"] = quotes["Open"].iloc[-1] # Note: nanmax() & nanmin() ignores NaNs, but still need to check not all are NaN to avoid warnings if not _np.isnan(quotes["High"].iloc[-1]): quotes.loc[idx2, "High"] = _np.nanmax([quotes["High"].iloc[-1], quotes["High"].iloc[-2]]) if "Adj High" in quotes.columns: quotes.loc[idx2, "Adj High"] = _np.nanmax([quotes["Adj High"].iloc[-1], quotes["Adj High"].iloc[-2]]) if not _np.isnan(quotes["Low"].iloc[-1]): quotes.loc[idx2, "Low"] = _np.nanmin([quotes["Low"].iloc[-1], quotes["Low"].iloc[-2]]) if "Adj Low" in quotes.columns: quotes.loc[idx2, "Adj Low"] = _np.nanmin([quotes["Adj Low"].iloc[-1], quotes["Adj Low"].iloc[-2]]) quotes.loc[idx2, "Close"] = quotes["Close"].iloc[-1] if "Adj Close" in quotes.columns: quotes.loc[idx2, "Adj Close"] = quotes["Adj Close"].iloc[-1] quotes.loc[idx2, "Volume"] += quotes["Volume"].iloc[-1] quotes.loc[idx2, "Dividends"] += quotes["Dividends"].iloc[-1] if ss != 1.0: quotes.loc[idx2, "Stock Splits"] = ss dropped_row = quotes.iloc[-1] quotes = quotes.drop(quotes.index[-1]) return quotes, dropped_row def safe_merge_dfs(df_main, df_sub, interval): if df_sub.empty: raise Exception("No data to merge") if df_main.empty: return df_main data_cols = [c for c in df_sub.columns if c not in df_main] if len(data_cols) > 1: raise Exception("Expected 1 data col") data_col = data_cols[0] df_main = df_main.sort_index() intraday = interval.endswith('m') or interval.endswith('s') td = _interval_to_timedelta(interval) if intraday: # On some exchanges the event can occur before market open. # Problem when combining with intraday data. # Solution = use dates, not datetimes, to map/merge. df_main['_date'] = df_main.index.date df_sub['_date'] = df_sub.index.date indices = _np.searchsorted(_np.append(df_main['_date'], [df_main['_date'].iloc[-1]+td]), df_sub['_date'], side='left') df_main = df_main.drop('_date', axis=1) df_sub = df_sub.drop('_date', axis=1) else: indices = _np.searchsorted(_np.append(df_main.index, df_main.index[-1] + td), df_sub.index, side='right') indices -= 1 # Convert from [[i-1], [i]) to [[i], [i+1]) # Numpy.searchsorted does not handle out-of-range well, so handle manually: if intraday: for i in range(len(df_sub.index)): dt = df_sub.index[i].date() if dt < df_main.index[0].date() or dt >= df_main.index[-1].date() + _datetime.timedelta(days=1): # Out-of-range indices[i] = -1 else: for i in range(len(df_sub.index)): dt = df_sub.index[i] if dt < df_main.index[0] or dt >= df_main.index[-1] + td: # Out-of-range indices[i] = -1 f_outOfRange = indices == -1 if f_outOfRange.any(): if intraday: # Discard out-of-range dividends in intraday data, assume user not interested df_sub = df_sub[~f_outOfRange] if df_sub.empty: df_main['Dividends'] = 0.0 return df_main # df_sub changed so recalc indices: df_main['_date'] = df_main.index.date df_sub['_date'] = df_sub.index.date indices = _np.searchsorted(_np.append(df_main['_date'], [df_main['_date'].iloc[-1]+td]), df_sub['_date'], side='left') df_main = df_main.drop('_date', axis=1) df_sub = df_sub.drop('_date', axis=1) else: empty_row_data = {**{c:[_np.nan] for c in const._PRICE_COLNAMES_}, 'Volume':[0]} if interval == '1d': # For 1d, add all out-of-range event dates for i in _np.where(f_outOfRange)[0]: dt = df_sub.index[i] get_yf_logger().debug(f"Adding out-of-range {data_col} @ {dt.date()} in new prices row of NaNs") empty_row = _pd.DataFrame(data=empty_row_data, index=[dt]) df_main = _pd.concat([df_main, empty_row], sort=True) else: # Else, only add out-of-range event dates if occurring in interval # immediately after last price row last_dt = df_main.index[-1] next_interval_start_dt = last_dt + td next_interval_end_dt = next_interval_start_dt + td for i in _np.where(f_outOfRange)[0]: dt = df_sub.index[i] if next_interval_start_dt <= dt < next_interval_end_dt: get_yf_logger().debug(f"Adding out-of-range {data_col} @ {dt.date()} in new prices row of NaNs") empty_row = _pd.DataFrame(data=empty_row_data, index=[dt]) df_main = _pd.concat([df_main, empty_row], sort=True) df_main = df_main.sort_index() # Re-calculate indices indices = _np.searchsorted(_np.append(df_main.index, df_main.index[-1] + td), df_sub.index, side='right') indices -= 1 # Convert from [[i-1], [i]) to [[i], [i+1]) # Numpy.searchsorted does not handle out-of-range well, so handle manually: for i in range(len(df_sub.index)): dt = df_sub.index[i] if dt < df_main.index[0] or dt >= df_main.index[-1] + td: # Out-of-range indices[i] = -1 f_outOfRange = indices == -1 if f_outOfRange.any(): if intraday or interval in ['1d', '1wk']: raise Exception(f"The following '{data_col}' events are out-of-range, did not expect with interval {interval}: {df_sub.index[f_outOfRange]}") get_yf_logger().debug(f'Discarding these {data_col} events:' + '\n' + str(df_sub[f_outOfRange])) df_sub = df_sub[~f_outOfRange].copy() indices = indices[~f_outOfRange] def _reindex_events(df, new_index, data_col_name): if len(new_index) == len(set(new_index)): # No duplicates, easy df.index = new_index return df df["_NewIndex"] = new_index # Duplicates present within periods but can aggregate if data_col_name in ["Dividends", "Capital Gains"]: # Add df = df.groupby("_NewIndex").sum() df.index.name = None elif data_col_name == "Stock Splits": # Product df = df.groupby("_NewIndex").prod() df.index.name = None else: raise Exception(f"New index contains duplicates but unsure how to aggregate for '{data_col_name}'") if "_NewIndex" in df.columns: df = df.drop("_NewIndex", axis=1) return df new_index = df_main.index[indices] df_sub = _reindex_events(df_sub, new_index, data_col) df = df_main.join(df_sub) f_na = df[data_col].isna() data_lost = sum(~f_na) < df_sub.shape[0] if data_lost: raise Exception('Data was lost in merge, investigate') return df def fix_Yahoo_dst_issue(df, interval): if interval in ["1d", "1w", "1wk"]: # These intervals should start at time 00:00. But for some combinations of date and timezone, # Yahoo has time off by few hours (e.g. Brazil 23:00 around Jan-2022). Suspect DST problem. # The clue is (a) minutes=0 and (b) hour near 0. # Obviously Yahoo meant 00:00, so ensure this doesn't affect date conversion: f_pre_midnight = (df.index.minute == 0) & (df.index.hour.isin([22, 23])) dst_error_hours = _np.array([0] * df.shape[0]) dst_error_hours[f_pre_midnight] = 24 - df.index[f_pre_midnight].hour df.index += _pd.to_timedelta(dst_error_hours, 'h') return df def is_valid_timezone(tz: str) -> bool: try: _tz.timezone(tz) except UnknownTimeZoneError: return False return True def format_history_metadata(md, tradingPeriodsOnly=True): if not isinstance(md, dict): return md if len(md) == 0: return md tz = md["exchangeTimezoneName"] if not tradingPeriodsOnly: for k in ["firstTradeDate", "regularMarketTime"]: if k in md and md[k] is not None: if isinstance(md[k], int): md[k] = _pd.to_datetime(md[k], unit='s', utc=True).tz_convert(tz) if "currentTradingPeriod" in md: for m in ["regular", "pre", "post"]: if m in md["currentTradingPeriod"] and isinstance(md["currentTradingPeriod"][m]["start"], int): for t in ["start", "end"]: md["currentTradingPeriod"][m][t] = \ _pd.to_datetime(md["currentTradingPeriod"][m][t], unit='s', utc=True).tz_convert(tz) del md["currentTradingPeriod"][m]["gmtoffset"] del md["currentTradingPeriod"][m]["timezone"] if "tradingPeriods" in md: tps = md["tradingPeriods"] if tps == {"pre": [], "post": []}: # Ignore pass elif isinstance(tps, (list, dict)): if isinstance(tps, list): # Only regular times df = _pd.DataFrame.from_records(_np.hstack(tps)) df = df.drop(["timezone", "gmtoffset"], axis=1) df["start"] = _pd.to_datetime(df["start"], unit='s', utc=True).dt.tz_convert(tz) df["end"] = _pd.to_datetime(df["end"], unit='s', utc=True).dt.tz_convert(tz) elif isinstance(tps, dict): # Includes pre- and post-market pre_df = _pd.DataFrame.from_records(_np.hstack(tps["pre"])) post_df = _pd.DataFrame.from_records(_np.hstack(tps["post"])) regular_df = _pd.DataFrame.from_records(_np.hstack(tps["regular"])) pre_df = pre_df.rename(columns={"start": "pre_start", "end": "pre_end"}).drop(["timezone", "gmtoffset"], axis=1) post_df = post_df.rename(columns={"start": "post_start", "end": "post_end"}).drop(["timezone", "gmtoffset"], axis=1) regular_df = regular_df.drop(["timezone", "gmtoffset"], axis=1) cols = ["pre_start", "pre_end", "start", "end", "post_start", "post_end"] df = regular_df.join(pre_df).join(post_df) for c in cols: df[c] = _pd.to_datetime(df[c], unit='s', utc=True).dt.tz_convert(tz) df = df[cols] df.index = _pd.to_datetime(df["start"].dt.date) df.index = df.index.tz_localize(tz) df.index.name = "Date" md["tradingPeriods"] = df return md class ProgressBar: def __init__(self, iterations, text='completed'): self.text = text self.iterations = iterations self.prog_bar = '[]' self.fill_char = '*' self.width = 50 self.__update_amount(0) self.elapsed = 1 def completed(self): if self.elapsed > self.iterations: self.elapsed = self.iterations self.update_iteration(1) print('\r' + str(self), end='', file=_sys.stderr) _sys.stderr.flush() print("", file=_sys.stderr) def animate(self, iteration=None): if iteration is None: self.elapsed += 1 iteration = self.elapsed else: self.elapsed += iteration print('\r' + str(self), end='', file=_sys.stderr) _sys.stderr.flush() self.update_iteration() def update_iteration(self, val=None): val = val if val is not None else self.elapsed / float(self.iterations) self.__update_amount(val * 100.0) self.prog_bar += f" {self.elapsed} of {self.iterations} {self.text}" def __update_amount(self, new_amount): percent_done = int(round((new_amount / 100.0) * 100.0)) all_full = self.width - 2 num_hashes = int(round((percent_done / 100.0) * all_full)) self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']' pct_place = (len(self.prog_bar) // 2) - len(str(percent_done)) pct_string = f'{percent_done}%' self.prog_bar = self.prog_bar[0:pct_place] + (pct_string + self.prog_bar[pct_place + len(pct_string):]) def __str__(self): return str(self.prog_bar) def dynamic_docstring(placeholders: dict): """ A decorator to dynamically update the docstring of a function or method. Args: placeholders (dict): A dictionary where keys are placeholder names and values are the strings to insert. """ def decorator(func): if func.__doc__: docstring = func.__doc__ # Replace each placeholder with its corresponding value for key, value in placeholders.items(): docstring = docstring.replace(f"{{{key}}}", value) func.__doc__ = docstring return func return decorator def _generate_table_configurations(title = None) -> str: import textwrap if title is None: title = "Permitted Keys/Values" table = textwrap.dedent(f""" .. list-table:: {title} :widths: 25 75 :header-rows: 1 * - Key - Values """) return table def generate_list_table_from_dict(data: dict, bullets: bool=True, title: str=None) -> str: """ Generate a list-table for the docstring showing permitted keys/values. """ table = _generate_table_configurations(title) for k in sorted(data.keys()): values = data[k] table += ' '*3 + f"* - {k}\n" lengths = [len(str(v)) for v in values] if bullets and max(lengths) > 5: table += ' '*5 + "-\n" for value in sorted(values): table += ' '*7 + f"- {value}\n" else: value_str = ', '.join(sorted(values)) table += ' '*5 + f"- {value_str}\n" return table # def generate_list_table_from_dict_of_dict(data: dict, bullets: bool=True, title: str=None) -> str: # """ # Generate a list-table for the docstring showing permitted keys/values. # """ # table = _generate_table_configurations(title) # for k in sorted(data.keys()): # values = data[k] # table += ' '*3 + f"* - {k}\n" # if bullets: # table += ' '*5 + "-\n" # for value in sorted(values): # table += ' '*7 + f"- {value}\n" # else: # table += ' '*5 + f"- {values}\n" # return table def generate_list_table_from_dict_universal(data: dict, bullets: bool=True, title: str=None, concat_keys=[]) -> str: """ Generate a list-table for the docstring showing permitted keys/values. """ table = _generate_table_configurations(title) for k in data.keys(): values = data[k] table += ' '*3 + f"* - {k}\n" if isinstance(values, dict): table_add = '' concat_short_lines = k in concat_keys if bullets: k_keys = sorted(list(values.keys())) current_line = '' block_format = 'query' in k_keys for i in range(len(k_keys)): k2 = k_keys[i] k2_values = values[k2] k2_values_str = None if isinstance(k2_values, set): k2_values = list(k2_values) elif isinstance(k2_values, dict) and len(k2_values) == 0: k2_values = [] if isinstance(k2_values, list): k2_values = sorted(k2_values) all_scalar = all(isinstance(k2v, (int, float, str)) for k2v in k2_values) if all_scalar: k2_values_str = _re.sub(r"[{}\[\]']", "", str(k2_values)) if k2_values_str is None: k2_values_str = str(k2_values) if len(current_line) > 0 and (len(current_line) + len(k2_values_str) > 40): # new line table_add += current_line + '\n' current_line = '' if concat_short_lines: if current_line == '': current_line += ' '*5 if i == 0: # Only add dash to first current_line += "- " else: current_line += " " # Don't draw bullet points: current_line += '| ' else: current_line += '. ' current_line += f"{k2}: " + k2_values_str else: table_add += ' '*5 if i == 0: # Only add dash to first table_add += "- " else: table_add += " " if '\n' in k2_values_str: # Block format multiple lines table_add += '| ' + f"{k2}: " + "\n" k2_values_str_lines = k2_values_str.split('\n') for j in range(len(k2_values_str_lines)): line = k2_values_str_lines[j] table_add += ' '*7 + '|' + ' '*5 + line if j < len(k2_values_str_lines)-1: table_add += "\n" else: if block_format: table_add += '| ' else: table_add += '* ' table_add += f"{k2}: " + k2_values_str table_add += "\n" if current_line != '': table_add += current_line + '\n' else: table_add += ' '*5 + f"- {values}\n" table += table_add else: lengths = [len(str(v)) for v in values] if bullets and max(lengths) > 5: table += ' '*5 + "-\n" for value in sorted(values): table += ' '*7 + f"- {value}\n" else: value_str = ', '.join(sorted(values)) table += ' '*5 + f"- {value_str}\n" return table